République Algérienne Démocratique et Populaire
Ministére de 1I’Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE MOHAMED KHIDER DE BISKRA @«%\
Faculté des Sciences Exactes et Sciences de la Nature et de la Vie a1
i i \ Sy
Département d'informatique ' ;
Ned’ordre :....coveennnn..
Nede Série :......ocvennnnnn
These

En vue de l'obtention du diplome de

Doctorat en Sciences en Informatique

Présentée par:
M. Abdessamed SASSI

THEME :

Vers des services Internet basés sur les profils de
mobilité des utilisateurs

Soutenue publiquement le : 06/03/2022, devant le jury compose de :

M. Noureddine Djedi, Professeur, Université de Biskra, Président

M. Abdelmadjid Bouabdallah, Professeur, Université de Compiégne, France, Examinateur
M. Yacine Challal, Professeur, Ecole Supérieure d’Informatique, Alger, Examinateur

M. Abdelhamid Djeffal, Professeur, Université de Biskra, Examinateur

M. Walid Bechkit, Maitre des conférence, INSA-Lyon, France, Co Directeur de these

M. Abdelmalik Bachir, Professeur, Université de Biskra, Directeur de thése,



ABSTRACT

Nowadays, mobility prediction models play an important role in many location-
based services, such as food delivery, transportation planning, and advertisement post-
ing. Most previous studies on predicting mobility have worked on computer generated
data and focused on mathematical modeling principally due to the lack of a real mobility
data. Such studies have limited ability to capture human mobility accurately. However,
with the democratization of mobility data and the availability of large data sets, nu-
merous research activities turned toward predicting mobility based on examining real
mobility data traces with the aim of building realistic models that can capture and un-
derstand human’s mobility behaviors as well as making accurate mobility prediction.
In this thesis, we present the methods we proposed to predict spatial and temporal be-
haviors of mobile users. Our first work focuses on predicting the next location of mo-
bile users by analyzing large data sets of the history of their movements. We make use
of past location sequences, also called location history, to train a classification model
that will be used to predict future locations. Contrary to traditional mobility prediction
techniques based on Markovian models, we investigate the use of modern deep learn-
ing techniques such as the use of Convolutional Neural Networks (CNNs). Inspired
by the word2vec embedding technique used for the next word prediction, we present
a new method called loc2vec in which each location is encoded as a vector whereby
the more often two locations cooccur in the location sequences, the closer their vectors
will be. Using the vector representation, we divide long mobility sequences into several
sub-sequences and use them to form Mobility Subsequence Matrices on which we run
CNN classification which will be used later for the prediction. We run extensive testing
and experimentation on a subset of a large real mobility trace database made publicly
available through the CRAWDAD project. Our results show that loc2vec embedding
and CNN-based prediction provide significant improvement in the next location predic-
tion accuracy compared to state-of-the-art methods. We also show that transfer learning
on existing pre-trained CNN models provides further improvement over CNN models
build from scratch on mobility data. We also show that our loc2vec-CNN model en-

hanced with transfer learning achieves better results than other variants including our



other proposal onehot-CNN and existing Markovian models.

In the second work, we focus on predicting the temporal behavior, particularly the
residence time, of mobile users at their relevant locations. In this work, we explored the
joint use of location history, arrival time, and the previous residence time to accurately
predict the residence time at the current location. We developed a model that integrates
all these parameters and uses our modified Moving-Average and CDF time-aided algo-
rithms that include the arrival time in the model. We run performance evaluation ex-
periments on a subset of the same mobility trace collected by Dartmouth College. Our
results show that adding high-granularity temporal information to the mobility model
allows to significantly improve the residence time prediction compared to state-of-the-
art methods. The prediction accuracy improvement for the dataset we work on has been
consistent and of about 20% on the average.

We also presented two linear mobility models for residence time prediction, namely
Linear Regression (LR), and Auto-Regression (AR). We run performance evaluation
experiments on two different WiFi mobility traces datasets made available through the
CRAWDAD project. Our results show that using linear regression-based learning algo-
rithms significantly improve the residence time prediction accuracy compared to state-
of-the-art methods, and achieve prediction errors in the order of seconds and minutes

for a large number of users.

Keywords: Location Prediction, Time Prediction, Location Embedding, Convolutional

Neural Networks, WiFi Mobility Traces.
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Résumé

De nos jours, les modeles de prédiction de la mobilité jouent un réle important dans de
nombreux services basés sur la localisation, tels que la livraison de nourriture, la plan-
ification du transport et la publication d’annonces. La plupart des études précédentes
sur la prédiction de la mobilité ont travaillé sur des données générées par ordinateur
et se sont concentrées sur la modélisation mathématique principalement en raison du
manque de données de mobilité réelles. Ces €tudes ont une capacité limitée a capturer
avec précision la mobilité humaine. Cependant, avec la démocratisation des données de
mobilité et la disponibilité de grands ensembles de données, de nombreuses activités de
recherche se sont orientées vers la prédiction de la mobilité basée sur 1’analyse de traces
de données de mobilité réelles dans le but de construire des modeles réalistes capables
de capturer et de comprendre les comportements de mobilité humaine et aussi faire une
prédiction précise de mobilité.

Dans cette these, nous présentons les méthodes que nous avons proposées pour
prédire les comportements spatiaux et temporels des utilisateurs mobiles. Notre premier
travail se concentre sur la prédiction du prochain emplacement des utilisateurs mobiles
en analysant de grands ensembles de données de I’historique de leurs déplacements.
Nous utilisons des séquences des emplacements visités dans le passé, également ap-
pelées historique des emplacements, pour former un modele de classification qui sera
utilisé pour prédire les futures emplacements. Contrairement aux techniques tradition-
nelles de prédiction de la mobilité basées sur les modeles markoviens, nous étudions
I’utilisation de techniques modernes d’apprentissage en profondeur telles que 1’ utilisation
de réseaux de neurones convolutifs (CNN). Inspiré par la technique d’intégration word2vec
utilisée pour la prédiction du mot suivant, nous présentons une nouvelle méthode ap-
pelée loc2vec dans laquelle chaque emplacement est codé en tant que vecteur, de sorte
que plus deux emplacements coexistent dans les séquences d’emplacements, plus leurs
vecteurs seront proches. En utilisant la représentation vectorielle, nous divisons les
longues séquences de mobilité en plusieurs sous-séquences et les utilisons pour former
des matrices de sous-séquences de mobilité sur lesquelles nous exécutons la classifi-
cation CNN qui sera utilisée plus tard pour la prédiction. Nous effectuons des tests et

des expérimentations approfondis sur un sous-ensemble d’une grande base de données
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de traces de mobilité réelle rendue publique via le projet CRAWDAD. Nos résultats
montrent que ’intégration loc2vec et la prédiction basée sur CNN améliorent con-
sidérablement la précision de la prédiction du prochain emplacement par rapport aux
méthodes d’état de I’art. Nous montrons également que le transfert d’apprentissage
des modeles CNN pré-entranés existants fournit une amélioration significative par rap-
port aux modeles CNN construits a partir de zéro sur les données de mobilité. Nous
montrons également que notre modele loc2vec-CNN amélioré avec I’apprentissage par
transfert obtient de meilleurs résultats que d’autres variantes, y compris notre autre
proposition onehot-CNN et les modeles markoviens existants.

Dans le deuxieme travail, nous nous concentrons sur la prédiction du comportement
temporel, en particulier le temps de résidence, des utilisateurs mobiles a leurs em-
placements pertinents. Dans ce travail, nous avons exploré I’utilisation conjointe de
I’historique d’emplacement, de 1’heure d’arrivée et du temps de résidence précédent
pour prédire avec précision le temps de résidence a I’emplacement actuel. Nous avons
développé un modele qui integre tous ces parametres et utilise nos algorithmes Moving-
Average et CDF modifiés et aidés par le temps qui incluent I’heure d’arrivée dans le
modele. Nous menons des expériences d’évaluation des performances sur un sous-
ensemble de la méme trace de mobilité collectée par le Dartmouth College. Nos résultats
montrent que I’ajout d’informations temporelles de haute granularité au modele de mo-
bilité permet d’améliorer considérablement la prédiction du temps de résidence par rap-
port aux méthodes d’etat de I’art. L’amélioration de la précision des prédictions pour
I’ensemble de données sur lequel nous travaillons a été cohérente et d’environ 20% en
moyenne.

Nous avons également présenté deux modeles de mobilité linéaire pour la prédiction
du temps de résidence, appelés la régression linéaire (LR) et 1’auto-régression (AR).
Nous menons des expériences d’évaluation des performances sur deux différents en-
sembles de données de traces de mobilité WiFi mis a disposition via le projet CRAW-
DAD. Nos résultats montrent que 1’utilisation d’algorithmes d’apprentissage basés sur
la régression linéaire améliore considérablement la précision de la prédiction du temps
de résidence par rapport aux méthodes d’etat de I’art et permet d’obtenir des erreurs de

prédiction de I’ ordre de quelques secondes et minutes pour un grand nombre d’utilisateurs.

Mots clés: Prédiction de I’Emplacement, Prediction de Temps, Intégration de I’Emplacement,
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Réseaux de Neurones Convolutifs, Traces de Mobilité WiFi.
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CHAPTER 1

Introduction

Mobility is ubiquitous in people’s daily life. An individual might move from one place
to the other such as moving from home to workplace, from workplace to restaurant,
etc., and spend different amounts of time at each place.
With the rapid growth of positioning technology coupled with the ubiquitous use of
wearable devices such as smart phones, detecting and recording human movements
have become possible almost anywhere and at anytime with various levels of accuracy.
Since these movements usually contain spatial and temporal information, modeling
user’s mobility behaviors basing on this information would help a lot in making accurate
mobility prediction models. Predicting user mobility become a critical issue for loca-
tion based services. It is generally based on analyzing the history of their movements
and identifying repeating mobility patterns. It is a fundamental requirement for a wide-
range of application areas including urban management, location-based travel recom-
mendation system Ravi and Vairavasundaram|(2016)), Noulas et al.|(20125), Rodriguez-
Carrion et al.| (2012)), advertisement dissemination |Aalto et al. (2004), leisure events
reports and notifications Marmasse and Schmandt (2000), as well as intelligent HVAC
systems [Scott et al. (2011).

In this thesis, we focus on the prediction of mobility, and present our approaches to

predict individuals next location as well as residence time at a particular location.



1.1 Motivation

1.1.1 Predicting the next location

One strong motivation that drives the research of mobility prediction is recommendation
service. By knowing user’s future location, many services related not only to their
current location, but also to their future destinations can be suggested to the user, such
as recommendation of new places or recommendation of nearby restaurants, shops,

transportations, etc.

1.1.2 Predicting the residence time

The ability to predict the arrival and residence time of mobile users at a particular place
is essential for the development of a wealth of new applications and services, such as
smart heating control, transportation planning or urban navigation. Regarding residence
time, it has been shown that users tend to spend most of their time in a few places with
temporal regularity. In/Chon et al.| (2012)), Montoliu et al.| (2013)), it has been shown that
users spend 60% to 65% of their residence time in the top-1 place and between 80%
and 85% of residence-time in the top-2 places. This indicates that, in order to predict
the temporal behaviours, focus has to be put on predicting the residence time in places

which represents the majority of users’ time.

1.2 Problem Statement

Predicting user mobility accurately become a critical issue for location based services.
The main goal of this thesis is to build a model able to predict human mobility accu-

rately. In particular, we focus on the following two main research questions.

1. Which place a user is gong to visit next?

2. How long the user will stay at a specific place?



1.3 Contributions

In this section, we present an overview of the main contributions of this thesis to the

mobility prediction.

e The locations representation
Traditional next location prediction algorithms are based on a symbolic represen-
tation of locations in a way they consider each location as a different symbol.
With such a representation, it is not easy to include more information that pro-

vides additional meaningful and helpful description for the location.

We propose a new location embedding technique called loc2vec in which each
location is encoded as a vector by taking into consideration several features.
Loc2vec embedding ensures that locations that are likely to appear close to each
other in location sequences (i.e. locations frequently seen the one next to the
other) are embedded into similar vectors such that the distance between these vec-
tors is small. A better prediction results can be achieved by integrating loc2vec

in the prediction model.

e The next location prediction
Traditional prediction models such as those based on Markov chains do not per-
form well with long sequences, and cannot build a robust prediction model that is
not highly dependent on context length. Markovian models have been extensively
used in the literature to predict next locations of user. The assumption is that the
probability of the next location of a user depends only on a sequence of limited
previous locations visited by the user. Usually, lower order Markov model, i.e.
I-order or 2-order is a popular configuration for such model. However, certains
people have a complex mobility behaviors and basing on a low sequences length

to predict the next location may not be sufficient.

We propose an innovative representation of mobility subsequences which we call



Mobility Sequence Matrices which allows having a two-dimensional represen-
tation of mobility subsequences and thus can be used as inputs for a modern
deep learning techniques. The Mobility Sequence Matrices could be also seen
as similar to images and thus allow us to make use of Convolutional Neural Net-
works (CNNs) classifiers particularly those which have been pre-trained on image
datasets such as ImageNet. With the Mobility Subsequence Matrices representa-
tion, we propose two variants of CNN-based location prediction algorithms called
onehot-CNN and loc2vec-CNN which are based on onehot and loc2vec location

representations respectively.

Residence time prediction

We focus on predicting the residence time at the current location of a particular
user. In the first part, we developed two new models named k-moving-average-
arrival-time (k-MA-AT) and k-CDF-arrival-time (K-CDF-AT) by combining the
location history, the arrival times and the previous residence time at each location,
and tested them against existing models such as k-moving-average (k-MA) and
k-CDF which do not take into consideration the arrival time in their model Song,
Deshpande, Kozat, Kotz and Jain (2006). Our work differs from Song, Desh-
pande, Kozat, Kotz and Jain| (2006), [Scellato et al.| (2011) by the way we use the
joint temporal and spatial information to predict the residence time. In the sec-
ond part, we used regression-based learning algorithms to predict the residence
time of a particular user at the current location. Previous techniques based on
probabilistic models have not been able to perform such prediction accurately.
We specifically build models using Linear Regression (LR) and Auto Regression
(AR) by considering both linear combination of previous residence times and

other spatial or temporal features as well.



1.4 Outline of thesis
The remainder of this thesis is organized as follows:

1. Chapter 2] contains background information about basic concepts, and presents a

study of several techniques on mobility prediction.

2. Chapter 3] presents a deep learning methodology as a classification model for next
location prediction. It also provides an overview on the most relevant contribu-

tions concerning the next location prediction topic.

3. Chapter 4] demonstrates our approaches and models for predicting the residence

time of mobile user at particular location.

4. lastly, we conclude our work and further work in Chapter 3]



CHAPTER 2

Background

In this chapter, we first define what we mean by location, then we introduce the traces
that we used to drive our simulations, next we present several prediction algorithms
that allow: (i) to predict future locations, i.e, where will a user go next, and (ii) to
estimate the residence time of a user at a particular location, i.e how long a user will
stay at a particular location. We also discuss the metrics that we used to evaluate the

performance of our prediction algorithms.

2.1 Location

We assume in this work that, at any given time, a user resides at a given discrete location.
We assume that the set of all possible locations are listed in a finite alphabet £ =
{li,la,..., li,...,l,}. We represent the sequence of the locations visited by a user,
also called location history H, as a string of symbols. If the history has n locations,
Hy.,, = lily...l, where [; € L for 1 < i < n. In our data, the location is expressed as
the access point (AP) with which the user device is associated (i.e., there are n different

access points).

2.2 Data collection

The dataset used in this work is a subset of WLAN traces extracted from Dartmouth
College Kotz and Essien (2005), Henderson et al. (2008) and made available through
the CRAWDAD project Kotz et al.| (2009). In this dataset, mobility sequence is ex-

pressed in the form of (time, location) pairs for each user where location is taken to be



Table 2.1 A Sample of User Trace

Timestamp Location (AP)
1008253217 | AcadBldgl12AP2
1008253716 | AcadBldg25AP4
1022867758 | AcadBldg20AP1
1022868237 | OFF

that of the access point (AP) to which the user is associated as shown in Table[2.1] This
dataset contains more than 543 different access points resulting in more than 543 dif-
ferent locations. As users move around these locations, they generate different mobility
sequences for different users which lengths vary widely from a user to another reaching
several thousand movements for some users.

Table [2.1] also shows a special location named OFF that represents the users depar-
ture from the network. The timestamp granularity is one second and measured as UNIX
timestamps which count the number of seconds since the epoch. It is to be noted that
the location of a user does not necessarily reflect their exact geographical position. It
rather indicates an approximation of that location to the one of the access point (AP)
that was serving the user at that moment. In this dataset, mobility does not necessarily
represent a physical movement of a user. In fact, it is possible that the users device
associates and re-associates with a number of different nearby access points without
physically moving. Typically, a user situated at boundary of the transmission range of
two APs or more may change association with each one of in response to varying radio

conditions even the user does not move.

2.3 Location Prediction

Location prediction has become an important task for many applications including ur-
ban management |Lv et al. (2018]), Jiang et al.| (2018)), |[Liu and Shoji (2019), trans-
portation recommender systems Rodriguez-Carrion et al.| (2012), smartphone energy

optimization (Chon et al. (2011)), etc.

In general, location predictors can be classified into two categories: domain-independent



and domain-dependent predictors. The domain-independent predictors consider only
the location history of a user to predict their next location whereas the domain-dependent
predictors may include additional information into the location predictor such as time,
geographical distance, social relationships, and check-in on location-based social net-
work Noulas et al.| (2012a), |Gonzalez et al.| (2008])), Cho et al. (2011). In Song et al.
(2004), the authors evaluated and compared the performance of several different loca-
tion predictors by using two popular families of domain-independent predictors, named
Order-k (O(k)) Markov Predictors, and LZ-based Predictors. The major advantage of
this category of domain-independent predictors is that they can be performed online, i.e.
by examining the already available history, extracting the & most recent locations, and
predict the next location. The sequence of the k£ most recent locations in the location

history is also called the current context.

2.4 Prediction algorithms

A large number of algorithms and techniques can be used to treat the prediction prob-
lems. In this thesis, we consider several prediction algorithms that we use for location

and time prediction.

2.4.1 Markov Predictors

Here we introduce an overview of the most popular approach used to solve the predic-
tion tasks. The O(k) Markov predictor assumes that the probability of visiting a partic-
ular next location depends on the current context defined as the sequence of the £ most
recent locations in the location history. For instance, if we assume that the next location
depends on the current location only, then we refer to this model as the order-1 O(1)
Markov model. If the next location now depends on the sequence of the current and
the previous locations, we refer to the model as the order-2 O(2) Markov model, and
so on. The O(k) Markov model consists of a finite set of states, and transitions from
one state to another. The states represent the possible contexts, while the transitions

represent the possible locations that follow each context with their corresponding prob-



abilities. More formally, in a location sequence Si.,, = lils ..., the O(k) Markov
predictor predicts the next location /,,; based on the sequence of the k£ most recent
locations ¢ = l,;, g1 - - . L1l in the history Hy.,. The probability estimation for the

next location to be [ € £ can be calculated as follows:

. N(cl, H)

Pi(l) = N(e. H) 2.1

where N (cl, H) denotes the number of times the sub-sequence ¢l occurs in the sequence
H. Given this estimate, we can predict the location [ € £ with the highest probability,
that is, the location that most frequently followed the current context c in the history. If
c has never occurred before, the above equation evaluates to 0/1 = 0 for all [, and O(k)
Markov predictor can not predict any location.

Example: Consider H = [y15l3l4l11514l1151115l5115 as the location history in this exam-
ple. We observe that H contains four distinct relevant locations [y, [, 3, and l,. We
now want to derive O(2) Markov predictor. The current context (last 2 locations of the
history) /1[5 has seen 5 times in the location history H. The probabilities would be 1/5,
2/5, 1/5 for 1y, I3, 14, respectively. Therefore, it predicts the location ¢ with the highest
probability.

The order-k O(k) Markov model has many advantages as it is easy to implement
and requires a relatively small memory space. In fact, after each movement to the next
location, the predictor updates only one transition probability which make it so fast.
The order-k O(k) Markov model has however some limitations caused by the difficulty
to find the best value for %k a priori as it varies from a situation to another. Note that
the order-k O(k) Markov predictor might also be unable to make a prediction when a
new pattern that has never been recorded before appears, mostly in case when a human
detour from their normal mobility behaviour, e.g., visiting new places, or old places
through new routes, etc. Hence, human’s next location will not match any previous

patterns, which would lead to make inaccurate prediction.



2.4.2 Moving Average Predictor

Moving Averages are most useful to predict a trend in a sequence of values. The order-k
average predictor takes a sequence of previous values and predicts that the next value of

the sequence is the average of the last k£ values in that sequence. Consider a sequence

of values vy, v9, . .., v,. The order-k average predictor estimates the next value to be as
follows:
1 m
Ongr = — ;‘ Un—i+1 (2.2)
1=

where m = min{k, n}.

2.4.3 CDF Predictor

The CDF predictor takes a set of values and computes the probability that the next value
is less than (or greater than) a given value.

Consider a sequence of values vy, vo, . .., v,. Assume that V' is the random variable
that outputs the actual values vy, vs, . .., v,. The CDF predictor computes the probabil-

ity that next value, i.e. v,, 11, is less than a given value v.

Opy1 = argmin (Pr(V < v) > p)

v

= arg min (% ; I(v; <wv) > p) (2.3)

v

where [ is the indicator function.

2.4.4 Linear Regression-Based Prediction

Linear regression assumes a linearity relation ship between data as shown in the Figure
[2.1] In fact, it is a parametric model that computes a linear combination of the input vari-
ables using a vector of parameters. Given a set of n input variables z, ..., x,, and an

output value y, Linear Regression hg aims at finding the set of parameters 0,61, ...,0,
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so that:
y=he(x1,...,2,) =00+ 0121 + -+ + O, 2.4)

where §; are the weights (also called parameters), and z; are the features (also called
variables) with j = 1,...,n. By assuming that xy = 1 (this is the intercept term) and

putting x = (o, 1, ..., 2,)" , and @ = (0,04, ..., 0,)", Eq. (Z-4) can be rewritten as:
y = he(x) =0"x (2.5)

The linear regression model presented in Eq. (2.4) can be used as a method to make
prediction for a given set of input features x; with j = 1,... n.

The model can be trained on a set of m instances x*),x(® ... x(™) with the corre-
sponding labels y™), y ... (™) respectively, where each vector x) is defined as
xW = (xg ), x(z), o ,x,(f))T. The aim of the model is find the best value of parameters,

called @ and based on the training data, which will be used to predict output values, e.g.

g)(m“), from a vector of input variables, e.g. x(™+1) a5 shown in the following:
g(m-i-l) = hg (x(m+1)) = T x(m+1) (2.6)

Finding the best set of parameters 6 for function he with m training examples, i.e.
(xM M) (x@) 4@)), . (x™) y(™) can be obtained by minimizing the square er-

ror function J(@) defined as follows:

1 & N2
©) =53 (ho(x) — ) @.7)

Finding the optimal parameter 6 that minimizes .J (0) can be done with a Gradient
Descent (GD) algorithm or using Normal Equation (NE) technique that we explain later
in the Section

Figure shows an example of a Linear Regression model hg(x) with one input

11
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Fig. 2.1 The best fitting straight line after getting the optimal parameter 6.

variable x after getting an optimal value of the parameter 0 by training the model on a
set of m training examples, i.e, (x(M), yW), (2@ y@) . (2™ ym),
Figure shows how the fitted line hg(x) can be used as predictor by assigning a

value y to each input value of the variable x.

2.4.5 Auto Regression-Based Prediction

The Auto Regression (AR)-based prediction model is only based on building relations
between successive output values, the value to be predicted, say 7,11 is based on its
previous values 4,,¥y,_1,...,y1. Therefore, an order-k autoregression model can be

written as follows:

Yn = hf}(yn—la Yn—2, - - - ayn—k) +€en (28)

12



where the output variable y at time 7 is defined by a function hz of the k immediate past

values plus an error term for time n. Assume that g is a linear function and consider

the history of values y1, s, ..., y,. The order-k autoregression model /g will be then
written as:

hg(Yiz1,Yi-2, - - Yiek) = Po + Bryi—1 + BoYi—o + - - - + BrlYi-k (2.9)
fori € {k+ 1,...,n}. This means that the next value is a linear weighted sum of the

k immediate past values.

By puttlng y = (yi—17 Yi—2y - ayi—k)T7 and /6 = (507 517 s 7ﬁn)T’ Eq " can be

rewritten as:

he(y) =By (2.10)

Also, by defining Y,,_1 and y,, as follows:

(1) (1) (1)

Ly, R ] Yra1
S IR I 7
1 ?/7(177_1)1 yfff)k yflm)
we have:
Yon=Yn1B8+6 (2.11)

Given a history of m observations (we take m = n — k for the sake of simplicity

and without loss of generality), 3 may be estimated by minimizing the squared error

13



function J(3) as follows:

A

B =argmin J(3)

B
=arg min L Xn: (Y = ha(Yio1s - yik))”
B 2m i=k+1

n

=arg min (% Z (yi — Bo — Pryi—1 — -+ — 5kyi_k)2)

s i=k+1

= arggnin (%(Yn—lﬁ —¥n) (Yn18 — Yn))

. 1
= arg min <2— IYn_18 — ynHQ) (2.12)
3 m

After estimating the parameters 3 by using the Gradient Descent (GD) or the Normal
Equation (NE) methods that we explain later in the Section the predicted value can

be computed by Eq. (2.9) as follows:

Unt1 = hﬂ(ym Yn—1s- - Yn—kt1) = Bo + Blyn + BQyn—l +-+ Bkyn—k-i-l (2.13)

Also, Eq. (2.13) can be rewritten, using the vector/matrix format, as follows.
Qn+1 = hB(YrH-l) = IBTyn—i-l (214)

where Yn+1 = (17 YnyYn—1, - - - 7yn—k+1)Ta and /3 = (607 617 e aﬁka ﬂk—‘rl)T-

2.5 Minimizing Squared Error

2.5.1 Using Gradient Descent

Gradient Descent (GD) is an iterative method that is generally used for solving a min-
imization problem for general functions Ng (2013). In our case, GD can be used to
find and update values of a parameter 8 (which could be substituted with v and 3). .

Algorithm [I{ shows how GD can be applied to find optimal values of 8 (o and 3). The

14



Algorithm 1 Finding 6 using GD algorithm.

1: > Let °9 be a given initial value

2: 0°4 0

3: i Iterate until the difference between old value 8°' and the new value 8™ is smaller
than the preset accuracy e.

4: repeat

5 61" —— 09" — A%J(e) (withj=1,...,n)

6: until (|@™" — 6°4| < ¢)

GD method starts by initializing the vector of parameters 0 and iterates to update the
values of @ with the aim of minimizing the value of /(@) as shown in the Figure|2.2and
Figure[2.3] The iteration continues until reaching a preset accuracy e. For a given value

0; (with j = 1,...,n) of the vector 6, the algorithm GD operates as the following:

9
=09 — AT (0 2.1
01 = 0 Aaejj() (2.15)

where ) is a positive number called the learning rate. It basically controls how big a

step will take with GD when updating € as showed in Figure We have:

0 - . N
%J<9) = Z (he(X(l)) _ y(Z)) xy) (2.16)
J

=1

1
m
Therefore, Eq. (2.15) can be rewritten as:
new o 1 - i ) i
o = g — A~ > (ho(x) — y @) 2 (2.17)
i=1

Each time we change the parameters 8, we choose the gradient that reduces J(6)
the most possible. With each step of gradient descent as shown in the Figure [2.2(b)
and Figure [2.3|b), the parameters #; come closer to the optimal values that will achieve
the lowest cost .J(6) which corresponds the best fitting straight line as shows the Figure
[2.2(a) and Figure [2.3]a).

Eq. is the main instruction in the GD algorithm. The updating of 6 can be
performed in batch, mini batch or incremental modes thereby resulting in three variants

of GD algorithm: Batch GD, Mini-Batch GD, and Stochastic GD.
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1. Stochastic Gradient Descent

Instead of updating the parameter 8 based on the whole training set, Stochastic
Gradient Descent (SGD) consider a single training example to update the param-
eter 6. It updates @ sequentially with every randomly picked training example
during the iteration until finding the best value of 8. The algorithm operates as

described in Algorithm 2]

Algorithm 2 Finding 6 using SGD algorithm.

1:
2:
3:

R A

> Let 0 be a given initial value
0+0
> Iterate until the difference between old value @ and the new value 8™" is smaller
than the preset accuracy e.
repeat

OHCW (_ 0

for: < 1tomdo

0" 0 — X (ho(x) — y®) x)

end for

until (||6™Y — 0| < ¢€)

2. Batch Gradient Descent

In Batch Gradient Descent (BGD), the m training examples are considered at
once for every iteration to update . Previous equations can be written using
matrix notation as the following. Eq. (2.7) can be rewritten, using matrix format,

as the following:

9) = . (i))?
_2m; )

1 & 2
:%Z

i=1

=%<Xa ) (X6 - y)

1
=5 IIX6 —y|* (2.18)
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where X and y are defined as follows:

1 20 g Y
X=|1 40 A Ly=] 40
1 xgm) ™ ym)

Similarly, Eq. (2.15) can be rewritten, using the vector/matrix format, as follows.

0™ := 6°! — \V,.J(0) (2.19)
where Vg.J(0) is defined as:
Vol (0) = (L s0)... . -2 10 ' (2.20)
o -~ \ 09, 06, '

Hence, Eq. (2.17) can be rewritten as:

1
0™ «— 0°¢ — \— (X0 —y)X)" (2.21)
m

Algorithm 3 Finding 6 using BGD algorithm.

1: > Let @ be a given initial value

2: 0+ 0

3: > Iterate until the difference between old value 0 and the new value ™" is smaller
than the preset accuracy e.

4: repeat

550 0 0-)\L(X0-y)X)"

6: until (||@™" — 0| < ¢)

3. Mini Batch Gradient Descent

While the Batch Gradient Descent (BGD) method looks at every example in the

whole training set on every step to do a single update for a parameter @ , in

17



Mini Batch Gradient Descent (M-BGD), on the other hand, only a subset b of the
training examples from the entire training set m is considered for every step to

update 0, cycling over the training set.

In this case, previous matrices X and y can be rewritten as follows:

x{1} )
X = X{i} 7y = y{l}
X{m—b+1} y{m—b+1}

where X {1} and y{i} are defined as follows:

1 xgi) @ y®
1 x§i+1) g+1) y(”l)
x i = . ylr =
i+b—1 i+b—1 b
1 §+ ) 1(1+ ) y( +b—1)

Algorithm 4 Finding 6 using MBGD algorithm.

> Let 0 be a given initial value
00
> Let b be a given mini-batch size
> Iterate until the difference between old value 8 and the new value ™" is smaller
than the preset accuracy e.
repeat
enew % 9
for (i < 1;(m — b+ 1);b) do
O 6 — AL ((X{g — ylih) xtHT
end for
10: until (||[@"Y — 0| < ¢)

Rl

R AN

withi e {1,b+1,2b+1,3b+1,...,m —b+ 1}

18
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Fig. 2.2 Optimization of the function hg, by applying the gradient descent to the func-
tion J(6;)
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(a) Fitting the straight line to the data
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Fig. 2.3 Optimization of the function hg,e, by applying the gradient descent to the
function J (6o, 61)
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2.5.2 Minimizing Square Error with Normal Equation

Rather than needing to run an iterative algorithm that takes many steps, multiple iter-
ations of GD to converge in to the global minimum, we can instead just solve for the
optimal value for 0 analytically using the Normal equation method. So that in basically
one step the optimal value of the parameters @ can be easily computed analytically and

is given by :

0= (X"X)"'XxTy (2.22)

Where (X7 X) is an (n X n) symmetric matrix and assumed non-singular (invert-
ible).
If (XTX) not invertible (i.e, singular), we may need to use a pseudo-inverse to

compute the parameters ¢ (In python, numpy.linalg.pinv(a)).

2.6  Prediction metrics

The performance of the predictors listed in Section [2.4] can be evaluated using different
performance metrics. According to the study conducted in this thesis, we use two pop-

ular metrics that measures the performance of location prediction and time prediction.

2.6.1 Next-location prediction

Predictor should predict the next location after analysing the location history. By com-
paring the actual location with the predicted one, three possible outcomes for the next

location prediction:

e Correct location.
e Incorrect location.

e No prediction.
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Predictors may encounter situations in which they can not make prediction espe-
cially for the first locations of the history and for new other locations that have not seen
before in the history (see Table [2.2)). In our evaluation, we consider cases when predic-
tors are unable to make prediction as incorrect prediction. We define the Accuracy to
be the ratio between the number of correct next location predictions and that of all next

location predictions made as follows:

A Number of Correct Predictions (2.23)
ccuracy = .
Y Number of Total Predictions

Table [2.2]shows an example of how we calculate the accuracy when applying the
order-1 O(1) Markov predictor to the sequence ababcab. The last value of the accuracy

in the table depicts the overall accuracy.

Table 2.2 Example of accuracy calculation for O(1) Markov predictor

History a b a b c a b
Prediction | NP | NP | NP | b a |[NP| b
Accuracy | 1/710/2|10/3|1/4|1/5|1/6|2/7

2.6.2 Time prediction

Since time is a continuous value, it is impossible to build a model able to predict the
exact time event. To evaluate a such models, the idea is to measure how much the
predicted time value differs from the actual time value. In this thesis, we evaluate the
performance of our time predictors using the Prediction Error metric defined as the
absolute value of the difference between the predicted time value v, and the real time

value v as follows.

Prediction Error = |v — 1| (2.24)
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2.7 Conclusion

In this chapter, we have presented several location and time prediction algorithms used
in this dissertation. We have also discussed the metrics that we used to evaluate the
performance of our prediction algorithms. In the next chapters, our contributions for

the next location prediction of users will be presented.
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CHAPTER 3

Next Location Prediction

3.1 Introduction

The ability to accurately predict the future locations of mobile users has become a
fundamental requirement for a wide range of location-based services in many areas in-
cluding urban management, travel recommendation systems Ravi and Vairavasundaram
(2016), Noulas et al. (20125), Rodriguez-Carrion et al.| (2012), advertisement dissem-
ination Aalto et al.| (2004), leisure event reporting Marmasse and Schmandt (2000),
intelligent HVAC systems Scott et al.| (2011), etc.

Predicting future locations of a user is generally based on analyzing the history of
their locations and identifying repeating patterns (Gonzalez et al.| (2008). Many tech-
niques have been used to achieve this. Markovian models are one of the models that
have been extensively used in the literature Song et al.| (2004), |Song, Kotz, Jain and He
(2006), |Asahara et al.| (2011)), Gambs et al.| (2012, [2010). Markovian models assume
that the next location of a user depends on the current context defined as a sequence
of the most recent locations visited by the user. According to the considered context
length, various accuracy values have been obtained for different situations. Finding the
optimal context length that achieves high accuracy values consistently has been one of
the main limitations the Markovian models.

With the recent advances in machine learning, new next location prediction algo-
rithms have been developed based on sequence modeling with deep neural networks Liu
et al. (2016), [Mikolov et al.| (2010), [Wu et al.| (2017). In these models, the locations vis-

ited by a user are considered as a sequence of elements. Prediction of the next location is
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thus seen as a pattern recognition problem which can be solved using a neural network.
For example, in the work presented in [Liu et al.| (2016)), the authors proposed the use
of Recurrent Neural Networks (RNNs) for location modeling and solving the next lo-
cation prediction problem. In their model, they take into account temporal information
in addition to spatial information to further enhance their results.

With the recent advances in machine learning, new next location prediction algo-
rithms have been developed based on sequence modeling with deep neural networks Liu
et al.| (2016), [Mikolov et al.| (2010), [Wu et al.| (2017). In these models, the locations vis-
ited by a user are considered as a sequence of elements. Prediction of the next location is
thus seen as a pattern recognition problem which can be solved using a neural network.
For example, in the work presented in Liu et al.| (2016)), the authors proposed the use
of Recurrent Neural Networks (RNNs) for location modeling and solving the next lo-
cation prediction problem. In their model, they take into account temporal information
in addition to spatial information to further enhance their results.

Neural Networks have been generally used efficiently in sequence modeling and
next element prediction in many application domains. For example, in [Mikolov et al.
(2010), the authors developed a neural networks model for the prediction of the next
word in a text. In their approach Mikolov et al. (2013), they enhanced the performance
of their neural network model by making use of a new embedding technique which con-
sists in encoding words as vectors of real values. The proposed embedding technique
called word2vec allowed to achieve significant performance improvement as it ensures
that the distance between the vectors representing words reflects the closeness of these
words in text documents, i.e. words that tend to be next to each other frequently have
very close vector representations.

In our work, we follow a similar approach as word2vec and propose a new location
embedding technique that we use on locations instead of words. Similar to word2vec
philosophy, loc2vec embedding ensures that locations that are likely to appear close to
each other in location sequences (i.e. locations frequently seen the one next to the other)

are embedded into vectors such that the distance between these vectors is small.
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Next, contrary to existing approaches that use recurrent networks in mobility se-
quence modeling, and seen that convolutional architectures outperform recurrent net-
works for a wide range of mobility sequence modeling tasks and datasets Bai et al.
(2018), we make use of Convolutional Neural Network (CNN) to perform the predic-
tion of the next location. In our solution, we rely on Convolutional Neural Networks
(CNNs) and propose new prediction techniques called onehot-CNN and loc2vec-CNN
which are built by converting mobility sequences into matrices which we call Mobility
Sequence Matrices. These matrices could be seen as similar to images and thus allow
us to make use of CNN classifiers particularly those which have been pre-trained on
ImageNet datasets. The use of pre-trained CNN models has achieved significant results
in various application domains such as sequence modeling Bai et al.| (2018]), malware
binary detection Yue|(2017), action recognition Laraba et al.|(2017)), Minh et al.|(2018)),
sounds classification Boddapati et al.|(2017)), etc. compared to CNN models established
from scratch on the specific data of the considered domain.

The main contributions of this work are the following:

e Traditional next location prediction algorithms are based on a symbolic repre-
sentation of locations in a way they consider each location as a different sym-
bol. With such a representation, it is not easy to include more information that
provides additional meaningful and helpful description for the location. The pro-
posed loc2vec location embedding technique, however, represents each location
as a vector by taking into consideration several features. In our case we consider,
to represent locations as vectors, the surrounding locations, i.e. previous and next
location. A better prediction results can be achieved by integrating loc2vec in the

prediction model.

e Traditional prediction models such as those based on Markov chains do not per-
form well with long sequences, and cannot build a robust prediction model that is
not highly dependent on context length. We propose an innovative representation
of mobility subsequences which we call Mobility Subsequence Matrix which al-

lows having a two-dimensional representation of mobility subsequences and thus
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can be used as inputs for a CNN model that has been pre-trained on large image
datasets such as ImageNet Russakovsky et al.| (2015). With the Mobility Subse-
quence Matrices representation, we propose two variants of CNN-based location
prediction algorithms called onehot-CNN and loc2vec-CNN which are based on

onehot and loc2vec location representations respectively.

e We conduct extensive simulations on large real mobility traces from the CRAW-
DAD project Kotz and Essien|(2005), Henderson et al. (2008) and compare our re-
sults with those obtained by means of the prediction techniques based on Marko-
vian models. Experimentation results show that we achieve a stable and higher

prediction accuracy compared to those proposed in the literature.

The remainder of the chapter is organized as follows. In Section[3.2] we provide an
overview of the main contributions on solving the next location prediction problem. In
Section we present our prediction model and algorithms. In Section 3.4, we evalu-
ate the performance of our algorithms and discuss the obtained results. In Section[3.5]

we conclude the chapter by summarizing our findings.

3.2 Related Work

A variety of algorithms for next location prediction have been proposed in the liter-
ature. Most algorithms focused on Markovian models (e.g. Song, Kotz, Jain and He
(2006), Gambs et al.[(2012)). These models, called Order-k (O(k)) Markovian models,
assumed that the probability of visiting a particular next location depends on the current
context defined as the sequence of the £ most recent locations visited. The principle of
such models is based on parsing the location history looking for locations that follow
all occurrences of the current context (i.e., the sequence of the k£ most recent locations)
in the history, then predict the most frequently one as the next location.

In Song et al.| (2004), the authors evaluated and compared the prediction accuracy
of several O(k) Markovian location predictors with the goal of enhancing the initial

Markovian model with a simple fallback mechanism by decrementing the order of the
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model to k — 1, then k — 2, ..., in case the searched context has not been seen before
in the location history. In their experiments, they found that lower order Markov pre-
dictors provide more accurate results compared to higher order ones. In particular, the
O(2) Markovian model with fallback has been shown to be the best overall predictor. In
Song, Kotz, Jain and He| (2006), the authors proposed a time-aided mechanism where
each state of the predictor was a pair of location and arrival time (location, time) with
the aim of improving the spatial-only Markov location predictor. They considered a
quantized time (one minute and one-hour buckets) for the Markov time-aided model
to obtain a finite set of states. They found that the prediction accuracy of one-hour
time quantization is better than that of one-minute. They also found that the original
Markovian model that does not include temporal information provided a better accu-
racy. They explained their findings by the fact that adding a temporal information in
the Markov model increases the number of states. As the number of states increases,
the number of the set of next location candidate decreases. This leads to increase the
incorrect prediction cases.

In \Gambs et al. (2012), the authors proposed a next location prediction algorithm
called n-MMC, by using the Mobility Markov Chains (MMC) presented in|Gambs et al.
(2010). This model incorporates the n previously visited locations to predict the next
location of users. The evaluation over different datasets showed that a high accuracy
for the next location prediction is obtained with n = 2. Similar to the results obtained
with Order-£ Markovian models, the authors showed that having a context larger than
2 elements did not improve the accuracy of the prediction.

The previously mentioned models have many advantages. They are easy to imple-
ment and do not require large memory space as the predictor updates only one transition
probability after each movement from one location to another. These models have how-
ever some limitations caused by the difficulty of a priori finding the best value for £ as
these vary from a situation to another. With a large value for k£ in a Markovian model,
chances of encountering a pattern that has been seen before in the location history are

slim and thus a prediction cannot be done without performing a fallback into lower
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values for k. In|Scellato et al.| (2011), the authors used delay embedding technique to
extract similar patterns from time series. The proposed algorithm, called Nextplace,
used the previous arrival and residence times of a user at each of their relevant places
to predict the next relevant place. In their proposal, they independently predict the ar-
rival time and the residence time of a user at a given location. The prediction of arrival
time (resp. residence time) is based on the similarity existing between the current ar-
rival time pattern (resp. residence time pattern) and the previous arrival times patterns
(resp. residence times patterns) of the same location in the location history. Then, they
used the predicted values of arrival and residence times of a user at each of their rel-
evant places to predict the next relevant place. Nextplace can only predict the user to
be or not to be in one of his relevant places. Compared to Markov predictor, NextPlace
model considers the similarity between sequences of arrival time (resp. residence time)
without taking into account information about the previously visited locations. They
considered Nextplace model as a location-independent predictor.

In Baumann et al. (20135), the authors presented a prediction model in which they
ran several parallel predictors and performed voting to select the best predictors. In
their proposal they incorporated more information to the Markovian model (the time
of the day, the day of the week, etc.). They derived several prediction algorithms by
using different combinations of spatial and temporal features. The authors proposed an
algorithm, called Major, which predicts the next location of the user based on a voting
processes combining the outputs of the several prediction algorithms used.

In Wu et al.| (2017)), the authors treated the problem of next location prediction as
a classification problem. They proposed a solution based on Long Short Term Mem-
ory (LSTM) neural networks which is a class of Reccurent Neural Networks (RNNs).
The authors proposed a spatial-temporal-semantic neural network algorithm for loca-
tion prediction called STS-LSTM. First, the algorithm generates a discrete location
sequences from the whole trajectory by using a spatial-temporal-semantic feature ex-
traction algorithm (STS). Then, a Long Short-Term Memory (LSTM) neural network

model is constructed to make further prediction.
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Our proposal differs from the aforementioned work on two aspects. First, we consider
a CNN architecture as opposed to RNN, which allows us to take advantage of transfer
learning from pre-trained CNNs. Second, our work makes use of location embedding
according to the loc2vec technique which contributes in improving the quality of learn-
ing and prediction.

This work also considers the location prediction as a classification problem, but it
differs from our method by the way we integrate a new location embedding algorithm
to represent the locations. It also differs from our solution by the way we apply the
CNN-classification based on a transformation of the embedded location sequences to

images.

3.3 Proposed Approach

We assume in this work that, at any given time, a user resides at a given discrete location.
We assume L is the set of all discrete locations where £ = {ly,ls,...,0;,...,l,}. In
our data, the location is expressed as the access point with which the user device is
associated (i.e., there are n different access points). Our aim is to answer the question:
where will a user go next. First, we describe the proposed approach, illustrated in

Figure [3.1] which contains three components as follows:

1. Representation phase: In this phase, we perform location embedding which con-
sists in representing each location /; € L by a vector v; of length [ where v; is
defined as v; = (v, o, . . - ,vil)T. For a sequence of successive user locations,
we consider sequence embedding by replacing each location in the sequence by
its corresponding vector. After that, we divide the embedded location sequence
(i.e. a sequence of vectors v;) into multiple sub-sequences with fixed length .
Finally, each subsequence can be represented as a matrix and thus can be seen
as an image. We give a label for each subsequence (or image), the label is the
next vector in the location embedding sequence. For example: consider a loca-

tion sequence of a given user as l//3l4l5, the corresponding embedding will be
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Fig. 3.1 Overview of next location prediction based on CNN.

v1Vavavyvs. If we take a window length of £ = 2 to construct sub-sequences,
we get the following sub-sequences (in the case where we do not take overlap-
ping sub-sequences) vivy and vgvy. We provide a label for each subsequence
in the following way: the label of a given sub-sequence is the embedding vector
representing the next location in the original sequence, i.e. for the sub-sequence
vV the label will be vz and for the other subsequence vav,4 the label will be vs.

Note that sub-sequencing can also generate overlapping sub-sequences as shown

in Table

The output of this phase is a set of images classified according to their next loca-
tion labels. We divide the set of images assigned to each label into two parts. We

use the first part to train the model and the second part to test it.

. Training phase: we propose to use a CNN to train an image classification model

that will be used to predict future locations.

e Pre-training: rather than starting from a model with a random configuration
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of neural network parameters, we can instead start with parameters of an
already trained neural network on a specific task with a very large number
of examples Yue|(2017), Boddapati et al.|(2017),|Laraba et al. (2017}, Singh
et al.[ (2017). In this phase, deep architectures will be trained on a large
dataset of images like ImageNet Russakovsky et al. (2015)) using powerful
machines with the aim of initializing the network weights to be used for
the next phase. This pre-training phase is optional and we evaluate later in
this work the improvement while using pre-training. The pre-training phase
results in a neural network composed of an input layer, middle layers, and
an output layer with the weights set for the connection between the elements
of the neural network. The output layer represents the number of classes in

the classification problem to be solved.

e Training (fine-tuning): by changing the number of classes of the output layer
of the pre-trained model to match the number of next locations, we fine-tune

the model by considering a part of images set, i.e the training images set.

e Testing: we test our model by considering the second part of images set.

3. Deployment: the obtained CNN can be used to predict the next location of users
by finding the corresponding label (which represents the next location) from a

given sub-sequence of user history locations.

3.3.1 Embedding Methods for Location Representations

Embedding methods, which correspond to representing a given piece of data by a vector
of reals, are being extensively used as inputs to machine learning algorithms, especially
in the deep learning community Mikolov et al.|(2013), LeCun et al. (2015), Bengio et al.
(2013). Several embedding methods have been proposed in the literature (Camacho-
Collados and Pilehvar (2018]) with one-hot embedding and word embedding being the
most popular ones. We consider both methods of embedding with our proposal based

on pre-trained CNNs which we name one-hot and loc2vec.
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3.3.1.1 One-Hot Representation

In the one-hot embedding, a given location [; € L is represented by a vector v"ehot

i

which the dimension [ is equal to n where [; is embedded as vt with v§rehot —

(1,0,...,0)T, I, is embedded as vt with vgrehet = (0, 1,...,0)%, and [, is embed-
ded as vorehot with vorehot = (0,0, ..., 1)7. In general, a location [; is represented by a
vector v = (v vy, ..., vj, ..., v,)  Where:
1 ifi=j
v = jedl,...,n}

0 otherwise

It is a way to represent locations /; as vectors v; by taking all vocabulary of loca-
tions L = ly,ls,...,1l,, put them in a certain order, and then use one-hot encoding to
transform each location [; to a vector v; of length n where each vector v; consisting of

a single value of 1 at the ¢-th index of the vector and zeros in all other indexes. For

example, given n vocabulary of locations, the vector vi = (1,0,0,...,0,0) represents
the first location and the vector vo = (0, 1,0, ...,0,0) represents the second location
and so on.

3.3.1.2 loc2vec Representation

The previously described representation one-Hot does not take context into consider-
ation. Therefore, we propose another representation inspired from word2vec Mikolov
et al.| (2013) to take context into account which we call loc2vec. In order to find the
best embedding, loc2vec uses a similar approach as word2vec which consists in using a
neural network with a single hidden layer as shown in Figure [3.2]to find the best vector

corresponding to a given location. The basic idea behind loc2vec is to attribute to each

location [; a vector vi°*'*° such as locations that have the same neighboring locations
in sequences will have similar embedding. For example, given a hypothetical sequence
of locations 1150304111513, the locations [, and /5 are surrounded by the same locations

I, and I3. Therefore, the locations I, and /5 will have similar vectors v and viee2ve
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respectively.

We propose to build our loc2vec neural network on locations and their surrounding
locations (i.e previous and next locations in the mobility sequence). For a given location
l; the surrounding locations are all location /; defined such that j € {i —¢,...,i—2,i—
l,i+ 1,7+ 2,...,i+ c} where cis the length of the context, which delimits how long
the surrounding context is taken around the location 7. The loc2vec neural network is
built by training it on various pairs (/;,1;). We show in Table some of the training
examples (location pairs) taken from location sub-sequence of length equal to 9 and a

context c of length equal to 2.

Table 3.1 Training examples extracted from a sub-sequence with the loc2vec neural
network model

Sub-sequence of locations Training examples (I;, [;)
Lo g lylsl6 b7 ls g (i, la), (1, 13)
Ll 13 1a 05 06 Iz ls lo (l2, 1), (Lo, l3), (I2, 1)
Lilalglylslslrilsly | (I3,0), (I3, 1), (I3, 1), (I3, 15)

lyla U3 ly 15 lg 17 15 19 (lo, I7), (lg, 1s)

The main goal of loc2vec is to represent a function that find the best association
for each input location [; with its corresponding output location /;. To construct the
hidden layer of the loc2vec neural network, we use all pairs (/;,[;). To achieve this, we
consider the one-hot representations vt VJf’neh"t of locations /; and [;.

In this work, we propose two ways of generating sub-sequences from the locations
sequence: non overlapping and overlapping sub-sequences. In the overlapping case, we
generate an overlapping sub-sequences of fixed length s from the locations sequence
by sliding a window of length s across the locations sequence. For example, given a
sequence of locations l1l5l3l41516l71s, a sub-sequence of length 5 with an overlapping of
2 locations can be generated as follows: {l;lsl3l4l5, 1415617l }. In this work we focus
on a sub-sequences of length s = 32 consecutive locations shifted by 15 locations

at a time. In non-overlapping case, we generate sub-suequences of length s from the

locations sequence while shifting the starting point by s consecutive locations at each
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step. In this work, we focus on a sub-sequences of s = day consecutive locations.
This means that the length of sub-sequences is variable and depend on the number of

locations visited at each a day period.

Output layer

onehot
Vi_c
Hidden
Input layer layer ponehot
(O]
1
1
hot
vgnehot| O
1
|
_JO onehot
Viv1
onehot
Vite
\&

Fig. 3.2 Architecture of the training loc2vec neural network.

Figure [3.2] shows that loc2vec is a neural network with an input layer and a single
hidden layer.

In that Figure, v; represents the one-hot vector corresponding to the input location
l; in the training example and {v;_¢, ..., v;_1, Vi1, ..., Virc} are the one-hot vectors
corresponding to the output locations in the training example. Both the input and the
outputs are represented as a one-hot vectors of length n.

The goal of loc2vec is to find a representation vector vi°>¥*° for each location /;. By
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onehot
i

contrast to one-hot where the representation vector v of location [; is of length n,
the length of the loc2vec representation vector vi®*'*¢ can be equal to a value m pre-set
in advance and considered as a parameter which is the number of nodes in the hidden
layer of the loc2vec neural network. To find the values of the vector V%"Cz"ec, loc2vec
consists in constructing a n X m matrix W, called the weight matrix, where the ™ row
of the matrix W represents the weights of location ;. We have:

V%ochec — WTV?nehot (3 1)

where WT is the transpose of matrix W. The elements of the matrix W are constructed
by applying back-propagation and stochastic gradient descent algorithms by consider-
ing the set of all inputs /; € £ (represented by v{""") and the corresponding outputs /;

(represented by V}’“Ch‘”) for each considered ;.

3.3.2 Convolutional Neural Network for Next Location Prediction

Very good results are achieved using Convolutional Neural Networks (CNNs) in many
areas in the literature Taigman et al.| (2014)), Krizhevsky et al.| (2012), Szegedy et al.
(n.d.), LeCun et al. (2015). In this work, we propose to use these powerful neural net-
works for next location prediction of users based on learning from previous mobility
sequences. CNNs have a great power in learning patterns and can make correct predic-
tion even with long sequences by generating images from Mobility sequences. We shift
toward using images in our representation to exploit standard architectures of images
which are already trained on a large dataset of images like ImageNet Russakovsky et al.
(2015).

The general architecture of a CNN is presented in Figure A CNN is typically
composed of a Convolution layer, Max-pooling layer and two Fully Connected lay-
ers. Depending on the way these layers are superposed, various architectures can be
constructed providing different performance results for different application domains.

A CNN takes various types of inputs and provide results as outputs. Depending on
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Fig. 3.3 Convolutional Neural Network (CNN)

the structure and the encoding of input, different results may be obtained.

The following subsection gives some details about these layers.

3.3.3 CNN layers

3.3.3.1 Convolution layer

Fig. 3.4 Convolution layer.

The Convolution operation consists of sliding on image/tensor a small rectangular
patch of learnable weights. These patches, called filters or kernel, are used to detect
local features in images/tensors (see Figure [3.4). More formally, the convolution op-
eration * between an image [ having C' channels and a filter K having the dimension

k1 X ko x Dy, is given by the following formula:
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(IxK)(i,j) = I(i—n,i—m,d)K(n,m,d) (3.2)

where (I * K)(i, ) is a value that measures the similarity between the filter X" and
an image region during the filter sliding. Hence, the matrix / * K, called feature map,
resumes all activations between the filter and image /. In practice, convolution layer
applies D,,, different filters on input tensor which yields an output tensor composed of

D, feature maps.

] | ! ReLU ! |
ReLU(z)=max(0,z)
al ]
2 J
- !
&
0 | L 1 |
-6 4 2 0 2 4 6
Zz

Fig. 3.5 ReL.U activation function.

To increase the expressiveness of the CNN, an activation function is applied after the
convolution (Goodfellow et al. (2016). Recently, Rectified Linear Unit (ReLU) is used
as the standard activation function on CNN standard architectures Krizhevsky et al.

(2017). ReLU is defined by the following formula:
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ReLU(z) =max(0, z) (3.3)

where z here is a value from the convolution output tensor. Therefore, the applica-
tion of RelU function enforce all values calculated by the convolution to be positive or

Z€10.

3.3.3.2 Pooling layer

The Max-Polling layer is used to reduce the spatial size of the inputs while preserving
the depth of the input tensor (D;,, = D,,:). The pooling divides every feature map of
the input tensor in non-overlapping rectangular regions. Then, values of each region are
reduced to one value using a specific function. For example, max-pooling, used exten-
sively recently, produce the maximum value of each region. In Figure max-pooling
is applied to a tensor having D;,, = 1. However, if D;,, > 1 then max pooling is applied

for each feature map Krizhevsky et al. (2017)), Szegedy et al.|(2015), He et al.|(2015).

3.3.3.3 Fully connected layer

After several stages of constructing features by alternating convolution and pooling lay-
ers, fully connected layers are used as the final layers in the CNN architecture Krizhevsky
et al. (2017). The fully connected layers are used to implement the decision component
by combining all input tensor values to produce a vector that estimates the class of the

input image.

3.3.4 CNN Training

CNN is trained using an optimization algorithm in order to minimize a Loss function

in respect to the learnable weights 11/ of the network function g. This Loss function
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represents the error of the network output §; = g(I;, W) compared to the ground truth
label y; for all N examples (I;, ;) in the training set. This loss can be written as

following:

N N
Loss =Y Lossi(§i,4i) = »_ Lossi(g(Ii, W), ) (3.4)
=1 =1
C
Lossi(ii, yi) = — Y _ yilog(f) (3.5)
i=1

To minimize this loss function, gradient descent calculate the gradient Vy Loss of
the loss function in respect to all learnable weights 11/ in the network. This gradient
is calculated using backpropagation algorithm. Then, network weights are updated as

following:
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W =W — aVwLoss (3.6)

Where « is a hyper-parameter called learning rate. « controls the size of each updating
gradient descent step.

As shown in Table[3.2] we propose to encode inputs as Mobility Subsequence Matri-
ces where each matrix is composed of a mobility subsequence of length k as explained
in Section [3.3] Each element of the mobility sub-sequence (i.e. each vector v; of the
Mobility Subsequence Matrix) is represented by one-hot embedding and loc2vec em-
bedding resulting in two methods that we refer to as one-hot-CNN and loc2vec-CNN
respectively.

Finally, an image and its label are generated from each Mobility Subsequence Ma-
trix to be used by CNN. Both images and their labels (see Table[3.2) are used to train a
CNN model as well as making predictions. Hence, our model will take an image as an
input and will output a label which correspond to the next location to be visited.

It is important to note that our loc2vec-CNN construction ensure a spatial locality in
the image generation to get closer to the spatial structure of real images. Indeed, each
row ¢ of the image corresponds to the encoded vector of location /; which is itself com-
puted using a neural network based on the surrounding locations (see Section [3.3.1).
The vectors corresponding to rows after and before the row 7 are computed based on
neighbouring surrounding locations which guarantee the spatial locality.

The success of using a given CNN solution depends on the architecture and also on
the availability of pre-training. It has been shown that a CNN with pre-training gener-
ally provides significantly better results than a randomly initialized CNN. We consider
using existing pre-trained CNN models that have been constructed based on a large
image dataset like ImageNet (e.g. Inception Szegedy et al. (2016), ResNet He et al.
(2016), SequeezeNet [landola et al. (2016), DenseNet Huang et al.| (n.d.), etc.)) which
showed significant results in various application domains |Yue (2017}, [Boddapati et al.

(2017), [Laraba et al.| (2017), |Singh et al.| (2017), Minh et al.| (2018). The rationale of
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relying on images is two-fold: (i) using a pre-trained network is generally better than a
randomly initialized one even if the domain applications are different (e.g. environmen-
tal sound classification |Yue (2017)), and (i1) there is a similarity between our Mobility
Subsequence Matrices and images as there is proximity between neighboring pixels in
images and neighboring location in a mobility subsequence.

In our solution, we choose to rely on SequeezeNet architecture |landola et al.| (2016))
which is a CNN that has been trained on very large image datasets. In our solution,
we use a pre-trained CNN model that we fine-tune by further training it on a subset of

Mobility Subsequence Matrices (as inputs) and their corresponding labels (as outputs).

Table 3.2 Generating Mobility Subsequence Matrices and their corresponding labels
from a mobility sequence according to a sliding window of length £ = 3

Sequence of vectors Mobility Sub-sequence Matrix | Label
T
V1VaVs...Vy (v1,Va,Vs) V4
T
V1VaVgVya...Vp_1Vy (V2,V3,Vy) Vs
T
Vi.. Vo 3Vn-2Vn-1Vn | (Vn-3;Vn-2,Vn_1) Vn

3.4 Performance Evaluation

3.4.1 Effect of loc2vec Parameters Choice

We wrote simulation code in Python and used Gensim Rehurek and Sojkal (2010) mod-
ule to implement our location embedding approach loc2vec. We start by taking a subset
of our dataset which we use for the generation of loc2vec embedding for locations. On
this subset, we run loc2vec training algorithm by considering all pairs extracted from
each mobility subsequence by considering both overlapping and non overlapping sub-
sequences. We set the length of the context ¢ = 3, i.e. for each location in the mobility
sequence we consider its one and three-hop neighboring locations.

In the overlapping case, we choose to reduce the length of the initial mobility se-
quences taken from the considered subset by splitting long sequences into subsequences

of equal length s = 32. However, for the non-overlapping case, we reduce the length
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of sequences by splitting long ones into subsequences of lengths covering mobility se-
quence of one day.

In Figure we evaluate the effect of loc2vec construction on the performance
of the final prediction algorithm that is based on CNN, called loc2vec-CNN. We use
the accuracy metric defined as the ratio between the number of correct next location
predictions and that of all next location predictions made. In the evaluation of the effect
of loc2vec parameters choice, we consider the following parameters: (i) the embedding
vector length m, and (ii) the length of the subsequences s obtained from the splitting
of long sequences. We consider the following values (m, s) = (50, 32), (10, 32) and
(10, 1 day), with the two first values concerning the overlapping case and the latter one
concerning the non-overlapping one. We show that non-overlapping loc2vec-CNN with
a variable subsequences length (s=1 day) provides the best performance over the other
considered cases. The reason is that constructing subsequences according to a certain
logic (activities during a day) captures better the relations between user movements and
activities than taking fixed length subsequences.

We also show that having relatively shorter loc2vec vectors is likely to be more
accurate than having longer ones as loc2vec-CNN (m=10, s=32) provides better results
than a loc2vec-CNN (m=50, s=32). By reducing the length m of location vectors, each
vector will contain more information and the mobility subsequence matrix generated
from each £ vectors may show more patterns.

We also show in Figure that the accuracy of the combination of loc2vec with
CNN is affected by the choice of parameter k£ which determines the length of the context
that is taken into account for the prediction of the next location. We show that increasing
the length of % decreases the accuracy of the prediction which is in concordance with
early results on location prediction based on O(k) Markovian models.

The accuracy, however, decreases whenever the length of the window £ increases for
the three models. For example, with loc2vec-CNN(m=10, s=1 day) model the accuracy
decreases by more than 9% between the two values of £ = 8 and k£ = 32, and decreases

of about 17% between the two values of £ = 2 and & = 32.
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This means that a high value of the window £ does not necessarily improve the
model because it becomes difficult to find repeating patterns that would help predicting
the next location correctly which is a similar behaviour observed with O(k) Markovian

Predictor when £ is large.

| o—e Loc2vec-CNN (m=50, s=32)
0.80 b oooh oo Loc2vec-CNN (m=10, s=32)
s |oc2vec-CNN (m=10, s=day)
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Fig. 3.7 Comparison of the three variants of loc2vec-CNN model according to the av-
erage accuracy metric with various subsequence lengths s and embedding vector sizes
m.

3.4.2 Evaluating the Performance of CNN-based Predictions

We evaluate the performance of our CNN-based location prediction proposal, we choose
two variants for location encoding: one-hot and loc2vec, thereby resulting in two differ-
ent methods which we call onehot-CNN and loc2vec-CNN respectively. We proceed as
the following. We construct a subset by randomly choosing different users whose mo-
bility sequences vary widely in length with a minimum of 2500, a medium of 6000, and
a maximum of 13500 location sequences. For each user, we split the location sequence

into two halves: we use the first half to build and train the model, and the second half as
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a live data to test the performance of our predictor. The training of the proposed CNN
model is based on Stochastic gradient descent algorithm with the following hyperpa-
rameters: (learning rate = 0.001, momentum = 0.9, batch size= 20, number of epochs =
20).

We compare the performance of our models loc2vec-CNN and onehot-CNN with
O(k) Markov predictor, which is one of the most popular next location predictors of the
literature.

In Figure we evaluate the performance of three models: loc2vec-CNN, onehot-
CNN, and O(k) Markov, according to different context lengths by varying the value of
k from 2 to 32. We show that the loc2vec-CNN provides a much higher accuracy com-
pared with onehot-CNN for all the values of k. We also show that loc2vec embedding
improves the accuracy of about 40% on the average compared to onehot representation.

We also show that low-order loc2vec-CNN models worked as well or better than
high-order ones, and better than both onehot-CNN and O(%k) Markov models. Figure|3.8
shows that O(k) Markov is better than onehot-CNN only when £ is small. It also shows
that increasing the value of k in both loc2vec-CNN and onehot-CNN provides a smaller
decreasing in the accuracy compared to the O(k) Markov model which exhibits a very
high decreasing in the accuracy. For example, with O(k) Markov, the average accuracy
decreases by more than 30% between the two values of £k = 8 and k = 32 whereas with
our models onehot-CNN and loc2vec-CNN, it only decreases by less than 4% and 7%
respectively for the same values of &.

This means that CNN models are able to keep somewhat the accuracy even with a
high order of context k£ due to its efficiency in learning patterns contrary to traditional
mobility prediction models such as O(k) Markovian which are based on examining the
history of sequence to predict the next location.

In Figure we plot comparison results of 20 users with a context length £ = 8§,
a sequence length s corresponding to one day, and a loc2vec embedding vector size

m = 10. We show that the accuracy varies from a user to another for models loc2vec-
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Fig. 3.8 Comparison of loc2vec-CNN, onehot-CNN and O(k) Markov, according to the
average accuracy metric.

1.0 — 1 1 1 T 1 T T W r T T T 1 T
: : ; o : : : : : : : : : . |l Onehot-CNN
U Bl MWMalpg 0 =k
osb M W gog | c2vecon ]
SR 0 T GT) RPN | S ) RO | A Y O U 3 O 1 O 4 4 Y A 4 ) 4 SO 1 O IS i
J
©
A
=]
!
< 04} .
I AT HUY HER“HEN AM HEN HEW HAY GR) HE) BAE HER ASEEHEL HER HER § i

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1D user

Fig. 3.9 Comparison of loc2vec-CNN, onehot-CNN and O(k) Markov according to the
accuracy metric for every user.
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CNN, onehot-CNN, and O(k) Markov. The results show that loc2vec-CNN provides
the best accuracy compared to the other models for almost all considered users. Only in

four cases, O(k) Markov provided slightly better accuracy compared to loc2vec-CNN.
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Fig. 3.10 Effect of pre-training on the performance of loc2vec-CNN.

Table 3.3 Average accuracy with and without fine-tuning for five pre-trained models

Models Fine Tuning | From Scratch
SqueezeNet 71.78% 67.54%
Inception 75.31% 69.76%
AlexNet 79.97% 71.14%
DenseNet 79.87% 72.52%
ResNet 79.92% 72.90%

In Figure [3.10] and Table [3.3] we compare the average accuracy of five existing
CNN models by training the whole network from scratch, and by fine-tuning these
models using transfer learning from existing popular pre-trained models. We considered
the following models: SqueezeNet landola et al. (2016) (the model used to obtain the

previous results in this work), Inception |Szegedy et al. (2016), AlexNet Krizhevsky
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et al.| (2012)), DenseNet Huang et al.| (n.d.) and ResNet He et al.| (2016). We show that
starting from an already trained CNN model provides a much higher accuracy compared
to the training from scratch. We show that the average accuracy obtained with all the five
considered CNN models increases with fine-tuning. The difference between a model
trained from scratch and another one taking advantage of transfer learning after fine-
tuning exceeds 7% for most considered models.

The use of pre-trained models can be viewed as transfer learning from real images
to our images. This transfer learning may be justified by the presence of some low-level

image features (edges, colors, etc.) shared between real images and generated images.

3.5 Conclusions

In this chapter, we have presented and evaluated several models for next location pre-
diction using a subset of real mobility traces. In contrast to most existing proposals,
we proposed to make use of modern machine learning techniques based on deep neu-
ral networks. We have proposed the use of Convolutional Neural Networks for which
we enhanced the representation of input data by the use of embedding techniques. We
have explicitly derived a new location embedding technique which we called loc2vec
to enhance the quality of input location representations. Our loc2vec embedding tech-
nique improves the representation of locations by encoding close locations in mobility
sequences in a way that makes their loc2vec representations also close after the em-
bedding. We enhanced the performance of our CNN models that are based on loc2vec
embedding with the use of transfer learning which allows us to take advantage of pre-
trained CNN networks which we fine-tuned on our location prediction application do-
main. We evaluated the performance of our proposals on real mobility datasets and
showed that the combination of loc2vec, CNN, and the use of transfer learning from
existing CNN model provide the best results compared to popular state of the art pre-

diction techniques relying on Markovian models.
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CHAPTER 4

Residence Time Prediction

4.1 Introduction

The ability to predict the arrival and residence time of mobile users at a particular place
is essential for the development of a wealth of new applications and services, such as
smart heating control, transportation planning or urban navigation.

In addition to the prediction of spatial aspects of human mobility such as predicting
the next location Wu et al.|(2018)),|Zheng et al.|(2018)),Sass1 et al.|(2019)), there has been
several models and algorithms developed to predict the temporal aspects too. Most
of these methods focused on predicting the residence times of users at their relevant
places typically defined as the places frequently visited by those users Baumann et al.
(2013a), Chon et al.| (2012), [Sassi et al. (2017)). Others focused on predicting both
spatial and temporal aspects as the same time such as predicting the residence times at
the current location and the next location movement|Song, Deshpande, Kozat, Kotz and
Jain| (2006)), [Chon et al.[|(2012)), [Scellato et al. (2011)).

Regarding residence time, it has been shown that users tend to spend most of their
time in a few places with temporal regularity. In |Chon et al.| (2012), Montoliu et al.
(2013), it has been shown that users spend 60% to 65% of their residence time in the top-
1 place and between 80% and 85% of residence-time in the top-2 places. This indicates
that, in order to predict the temporal behaviours, focus has to be put on predicting the
residence time in places which represents the majority of users’ time.

In this chapter, we describe our models and the algorithms we use in this thesis to

predict the residence time of a user at their relevant places. Our aim is to find an answer
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to the question: how long a user will stay at their relevant places in the future? We
consider relevant places as those places that the user visits more frequently compared
to other places.

This chapter is organized as follows:

e The chapter starts by presenting an overview of the related works on the residence

time prediction (section [{4.2).

e The Section {.3]describes the system model of the first contribution on predicting
the residence time of mobile users. It also presents the different algorithms we
use to solve the residence time prediction problem (Section[4.3.2)). At the end of
the first contribution (i.e. Section @), a series of experiments are presented in

order to evaluate the performance of the presented approach.

e In the Section #.4] we present the second contribution of this chapter. Like the
previous Section this section (Section [4.4) presents algorithms, discussion

and evaluation of these algorithms.

e Finally, section 4.6] concludes the chapter by a general discussion of temporal

prediction models.

4.2 Related Work

Human mobility prediction has attracted extensive research covering both temporal and
spatial aspects |Pirozmand et al. (2014).

In Song et al.|(2004), the authors evaluated and compared the performance of sev-
eral different location predictors by using two popular families of domain-independent
predictors, named Order-k (O(k)) Markov Predictors, and LZ-based Predictors. The
major advantage of this category of domain-independent predictors is that they can be
performed online, i.e. by examining the already available history, extracting the £ most
recent locations, and predict the next location. The sequence of the £ most recent loca-

tions in the location history is also called the current context. The O(k) Markov model
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consists of a finite set of states, and transitions from one state to another. The states
represent the possible contexts, while the transitions represent the possible locations
that follow each context with their corresponding probabilities.

In|Song et al.|(2004)), the authors found that a low order Markov predictors provide
more accurate results compared to a high order ones. They also showed that adding
fallback to those lower order predictors further improves their accuracy.

Markovian models such as the Order-k O(k) Markov model can be considered as
a domain independent model which targets to predict the next residence time of a user
based only on the history of previous residence times Song, Deshpande, Kozat, Kotz
and Jain| (20006)), (Chon et al.|(2012)), [ Baumann et al.| (2013a)).

In |Song, Deshpande, Kozat, Kotz and Jain (2006)), the authors applied a Markov
model to a sequence of previous durations, where each duration is quantized into inter-
vals of equal lengths.

The O(k) Markov model has many advantages as it is easy to implement and re-
quires a relatively small memory space. In fact, after each movement to the next lo-
cation, the predictor updates only one transition probability which make it relatively
fast. The O(k) Markov model has however some limitations caused by the difficulty to
find the best value for & a priori as it varies from a situation to another. Note that the
O(k) Markov predictor might also be unable to make a prediction when a new pattern
that has never been recorded before appears. To cope with the case where a predictors
encountered a pattern that has never been seen before in the location history, which
would affect the prediction quality by failing to make prediction, the authors of [Song
et al. (2004), Song, Kotz, Jain and He (2006), (Chon et al.[(2012) used a fallback mech-
anism to reduce the length of the pattern sequence gradually until a matching becomes
available so it would be able to make a prediction. In brief, the fallback mechanism
recursively uses the result of the low-order predictor if the high-order predictor has no
prediction result. The fallback mechanism has been shown to significantly improve the
overall accuracy of the predictor.

In Vu et al.| (2011), the authors proposed a model based on a Naive Bayesian clas-
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sifier to predict next location and residence duration at that location. They added extra
information such as the type of the day (weekdays or weekends) and quantized the
time into one and two hours buckets. They found that adding these high granularity
time-related information improved the prediction quality.

In Scellato et al. (2011)), the authors used delay embedding technique to extract
similar temporal patterns from time series. The proposed algorithm used the previous
residence times (resp. arrival times) of a user at a given location to predict the next
residence times (resp. arrival times). The prediction of residence time (resp. arrival
time) is based on the similarity existing between the current residence time pattern
(resp. arrival time pattern) and the previous residence times patterns (resp. arrival
times patterns) of the same location in the location history. To predict residence time
they consider the similarity between sequences of residence time without taking into
account other temporal features about the current residence time pattern.

In Song, Deshpande, Kozat, Kotz and Jain (2006), the authors considered three
techniques to predict the next residence time by considering the history of previous
residence times at a location which are: Markovian, Moving-Average, Cumulative Dis-
tribution Function (CDF), predictors. They combined spatial and temporal information
to predict both the next spatial and temporal information about a particular user. They
particularly combined a Markovian location predictor with a duration predictor where
the states of the Markovian location model are only based on spatial information and do
not depend on temporal information. The next location prediction is based on the cur-
rent context and the transition probabilities between the states of the Markovian model.
Regarding the residence time predictor, it is based on the previous residence times at
the same location. For the residence time prediction, they used CDF time predictors
but without integrating the arrival time information in the predictor. They named the
proposed integrated approach that predicts the location and time jointly MarkovCDF.
The predictor outputs a list of location and probability pairs; the user may move to each
of the locations with the corresponding probability within duration d.

In [Sassi et al.| (2017), the authors proposed a time predictor model to predict the
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residence time at the current location of a particular user by combining both the cur-
rent arrival time and the previous residence times at that location. Their work differs
from Song, Deshpande, Kozat, Kotz and Jain (2006)), Scellato et al.| (2011) by the way
they used the joint temporal and spatial information to predict the residence time. They
developed two time-aided algorithms that include the arrival time in the model named
k-moving-average-arrival-time and k-CDF-arrival-time and tested them against exist-
ing models such as k-moving-average and k-CDF which do not take into consideration
the arrival time in their model Song, Deshpande, Kozat, Kotz and Jain| (2006). They
showed that including the arrival time information in the models used to predict the
residence time, i.e k-moving-average-arrival-time and k-CDF-arrival-time provides a
significant improvement of the prediction accuracy by about 20% on the average com-
pared to k-moving-average and k-CDF models proposed in [Song, Deshpande, Kozat,
Kotz and Jain| (2006).

In Baumann et al. (2013a)), the authors analyzed the theoretical predictability of
arrival and residence times and evaluated the performance of eight different existing
residence time predictors proposed in Song, Deshpande, Kozat, Kotz and Jain| (2006)),
Scellato et al.| (2011). They also consider MarkovCDF time-aided (i.e., the residence
time depends on the arrival time) which differs from Song, Deshpande, Kozat, Kotz and
Jain| (2006) by the way they included the arrival time in the model to predict both the
next spatial and temporal aspects. They found that the predictability of the arrival times
is in general lower than the predictability of the residence times, and that spending a
higher period of time at a specific place influences negatively on the predictability of
the arrival and residence time.

In|Chon et al. (2012), the authors evaluated several time-aided mobility models for
the prediction of the residence time of users at their current locations. In their work,
they predict the residence time of the current location by looking at the residence times
at the same location in the location history of the user in addition to the arrival time.
They take only locations that have similar location sequence pattern. They showed that

the location-dependent model is better than the location-independent model for the pre-
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diction of temporal behavior, and that a longer location-sequence does not necessarily
improve the accuracy of the residence time prediction. They also showed that the spa-
tiotemporal regularity is only inherent to a few locations and in other situations previous

locations do not help improve the accuracy of the residence time.

4.3 First System Model

In our first model, we particularly focus on two parameters: the arrival time, and the res-
idence time at that location. Consider a user with the following time-ordered movement

sequence history H such that:

H ={(t1,d1,1h), (ta,do, 12), ..., (tn,dn,1n)} 4.1

where t; are the arrival times, d; are the residence time and [; are the locations for
1 < ¢ < n. From the movement history H we extract the location history L =
liyloy oo ly—ks1y -y ln—1,l,. We define the k recent location context ¢;(k) as sub-
set of L such that ¢;(k) = L(n — k+ 1,n) = l,_k+1, -, ln_1,l,. The visit history at
a particular location I, is H; = {(t1,ds,1;), (t2,ds, ), ..., (tn,dn, ;) }. From H;, we
extract the history of arrival times at location [;, T; = t1,t2,..., tn—k+1,- -, tn—1,tns
and recent k arrival time context ¢;+(k) =T (n —k+ 1,n) = ty_gi1, .oy tne1, ty-

To predict the residence time at a certain location /;, where 1 < j < m and m is
a finite set of relevant places, previous works proceed as the following. For the entire
history of locations L, identify all occurrences of the context c,. For each occurrence
of ¢, find the set of all possible destinations. For each destination x, calculate the set
of residence times corresponding to the last location in each occurrence of the context.

The set of all these durations is D,. Formally, D, is defined as the following.

D, = {d;|d; = t;y1 —t; where L(i — k + 1,i +1) = (c,2)} (4.2)

In this case, the set D, will contain all the residence times of the current location, i.e.

the one that will correspond to [;, where the next location after [; will be x. Note that

55



D,. has been constructed according to contexts of length equal to k.

Note that the previously described approach, proposed in Song, Deshpande, Kozat,
Kotz and Jain (2006)), does not take into consideration the effect of arrival time in pre-
dicting the residence time. As we will show, the arrival time has a significant effect on
the residence time, we propose a new model in which we include the arrival time in the
prediction of the residence time.

We start by constructing the set of all occurrences of a given context, c¢,. We sort all
occurrences of this context according to the arrival time which we quantize to obtain a
discrete set of possible arrival times. We can take as an example, a one-hour bucket for
quantization. Therefore, we will have time-dependent context, c(a, t) which contain all
occurrences of the context where the arrival time at the last location of the context is
equal to ¢. For each time-dependent context ¢, ;, we perform a similar technique as the
previously described one to construct the set of all time-dependent resident times D, ,,
for each possible destination z that follows the time-dependent context ¢, ;. Formally,

the set D, , is defined as the following:

Dt,:v = {dz‘dz = ti+1 — tl where L(Z —k + 1,2 + 1) = (Ca’tl’)} (43)

Note that the set of residence times D;, which we constructed in our model is a
subset of the set of residence times D, constructed in the previously cited work.

Our subset contains only residence times that have the same quantized arrival time
in the history of visits to that location according to the context length we chose which
we took equal to k. We will show that this will significantly improve the residence time
prediction accuracy. The rationale behind including the arrival time in the prediction
of the residence time is that in most cases the residence time depends on the arrival
time. For example, assume that we have a user that arrived at their workplace at 9am.
The user is most likely to leave work place at the end of the work shift, typically at
around Spm. In this case the residence time is about 8 hours. Note that even if the same
user arrived at 10am or 10.30am, they are likely to leave at Spm too, in which case the

residence time becomes 7 hours or 6.5 hours respectively which is different from the
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Table 4.1 Example of the visits history at Workplace when the next location is Home

Work Place Home
AT RT AT RT
10.45pm | 90min | 12.15pm | 45min
1.10pm | 320min | 6.30pm | 90min
3.10pm | 195min | 6.25pm | 120min
10.50am | ? ? ?

Table 4.2 Example of the visits history at Workplace when the next location is Cafeteria

Work Place Cafeteria
AT RT AT RT
12.15am | 55min | 1.10pm | 20min
Spm 98min | 7.32pm | 30min
12pm ? ? ?

original residence time of 8 hours.

4.3.1 Anillustrative Example

Assume that the current location of a user is Workplace and the possible next locations
according to the context are Home and Cafeteria. In our model, we need to estimate
the residence time at Workplace for each of the possible next locations: Home and
Cafeteria. Tables [.1]and 1.2] provide a view on the history of mobility data of the user.
We use AT (resp. RT) to refer to the Arrival Time (resp. Residence Time)

When relying only on the set of residence times corresponds to the one defined in
Eq. (4.2). From the mobility data presented in tables .| and [4.2] the set of residence
times corresponding to a current location equal to Workplace is obtained as follows.

Dhome = {90min, 320min, ..., 195min, where L(i,7 + 1) = (c,, ) = Workplace,
Home}

Dcafeteria = {35min, 98min, ..., where L(i,7 4+ 1) = (¢, x) = Workplace, Cafeteria}

Note that in the previous example, we assumed that length of the context is equal to

1, i.e. K = 1. When adding the arrival time to the context such as shown in tables 4.3

57



Table 4.3 Example of visit history taking into account the arrival time when the next

location is Home.

Work Place Home
Time Slot | AT RT AT RT
10 10.45pm | 90min | 12.15pm | 45min
1 1.10pm | 320min | 6.30pm | 90min
3.10pm | 195min | 6.25pm | 120min
10 10.50am | ? ? ?

Table 4.4 Example of visit history taking into account the arrival time when the next
location is Cafeteria.

Work Place Cafeteria
Time Slot | AT RT AT RT
12 12.15am | 55min | 1.10pm | 20min
5 Spm 98min | 7.32pm | 30min
12 12pm ? ? ?

and 4.4} taking a quantized arrival time in one-hour buckets, and applying the definition
or residence times expressed in Eq. (4.3]), we can obtain various arrival-time dependent
residence time sets.

For example, if we take the arrival time as equal to 10am for a next place equals to
home and another arrival time equals to 12 for a next place equal to Cafeteria, we obtain

the following residence time sets Djgam, Home a0d D12pm, cateteria-

D10am, Home = {90min where L(i,7 + 1) = (¢4 10am, x) = Workplace, Home}  (4.4)

D12pm, Cafeteria = {35min where L(7,7 4+ 1) = (cq,12pm, *) = Workplace, Cafeteria}

4.3.2 Residence Time Prediction

After the construction of the residence time sets, we focus on predicting the residence
time in the current location for each possible next location. We apply the following

algorithms:
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e The order-k average duration predictor which predicts the next duration value of

the sequence to be the average of the previous £ values in the sequence.

e The order-k CDF duration predictor with probability p to predict the residence
time in the current location. The probability p expresses the desired confidence

in the result.

4.3.2.1 The Order-k Average Predictor

The order-k average predictor takes a sequence of previous residence times of a user at
a given location, and predicts that the next residence time of the sequence is the average
of the last £ durations in that sequence.

Consider a set of residence times D, ; as defined in Eq. (4.3). We assume that
D,: = {dy,ds,...,d,}. The order-k average predictor estimates the next residence

time to be as follows:

. 1 &
o1 = — ; i1 (4.5)

where m = min{k,n}. Note that we used m that is the smallest value between %k and
n to reflect the fact that if we have not enough history to reach £ elements in the set of

residence times D, ;, we take all the values contained in D, 4, i.e. all values of D, ;.

Algorithm 5 The Order-k Average Predictor.
Input: H, k
Output: the average duration Av
n<+ LENGTH(H)
sum < 0
141
if £ > n then
k+n
end if
while i < k do
sum <— sum + d,,_;11
1 1+1
end while

. sum
s Av i

R e A

—_—
—_— O
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4.3.2.2 The Order-k CDF Predictor

Similarly to the order-k average predictor, we start by constructing the set D, ;. The
order-k CDF predictor takes the last k values of the set D, ; and computes the probabil-
ity that the next residence time value is less than (or greater than) a given value. Assume
that D is the random variable that outputs the actual values in D, ;. The order-k CDF
predictor computes the probability that next residence time, i.e. d,. 1, is less than a

given value d.

~

dy+1 = argmin (Pr(D < d) > p)
d

1 m
= in [ — I(d,_; d) > 4.6
arg min <m ; (dp—iy1 < d) p) (4.6)

d

where m = min{k,n} and I is the indicator function. We can also use this algorithm
in a way that takes the last £ values from a sequence of values and a given probability
P (the desired confidence in the result), and outputs the value of d that satisfies the

probability P.

Algorithm 6 CDF-Prediction.
Input: H,d, k
Output: the probability P
n <+ LENGTH(H)
c+ 0
141
if £ > n then
k+n
end if
while : < £k do
if dn—i-l—l > d then
c+—c+1
end if
: end while
P %

R AR AN

—_ = =
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Fig. 4.1 Comparison of the four predictors according to the time difference metric. The
k-CDF and k-moving have been first proposed in Song, Deshpande, Kozat, Kotz and
Jain| (2006)).

4.3.3 Results

In this section, we evaluate the performance of our approach presented in Section 4.3
according to time difference metric. We compare the performance of our models k-
CDF-AT (k-CDF Arrival Time) and k-moving-average-AT (k-moving-average Arrival
Time) with k-CDF and k-moving-average proposed in [Song, Deshpande, Kozat, Kotz
and Jain (2006) which have been proposed by analysing the same dataset we worked on
in this thesis.

Our results have been obtained with a quantization of one hour bucket. They show
that some predictors provide better results than others for some situations. Some pre-
dictors work better for certain users or for some particular locations.

Figure 4.1] has been plotted by randomly taking a subset of users. It shows that the
accuracy of a given predictor depends on the user and that the residence time of some
users is difficult to predict. However, even with this difficulty, the results plotted in
the figure show that our proposed models k-CDF-AT and k-moving-average-AT always
provide a better accuracy even for those users whom the residence time is difficult to
predict.

In Figure we show the cumulative distribution of the time difference metric

obtained with the four tested prediction models. We show that our models k-CDF-
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AT and k-moving-average-AT constantly provide a smaller time difference between the
predicted and the real residence time compared to the other models. For example, with
our models we achieve less than 5000 seconds prediction error for about 80% of the
users whereas the other models achieve that accuracy, i.e. 5000 seconds, for a much
lesser percentage of users (only about 60% of users residence times are predicted with
that accuracy). Overall, the presented results show that our proposed model improve
the accuracy of existing ones by a 20% margin on the average.

In Figure 4.3| we explore the performance of two different orders of moving-average
predictors: O(5) and O(10) with a recent history of a 5 and 10 residence times respec-
tively. The results show that an O(5) moving-average-AT predictor with one hour inter-
val yields the best performance over all other tested models. The results also show that

an O(5) moving-average predictor was more accurate than an O(10) moving-average

— Average O(5

— Average-AT O(5)
— CDF (P=0.8)

— CDF-AT (P=0.8)

Fraction of users

0.0

0 5000 10000 15000 20000 25000
Delay (seconds)

Fig. 4.2 Comparison of the four predictors according to the time difference metric. The

values used for the context length £ is 5 and the value used for the desired confidence p
is 0.8.
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one. Similarly, an O(5) moving-average-AT was better than an O(10) moving-average-
AT. These results confirm existing findings that lower-order moving-average predictors,
with or without arrival times, perform better than higher-order ones.

In Figure we evaluate the performance of k-CDF predictors with and without
arrival time. We considered two values p = 0.2 and p = 0.8 for the desired confidence.
The results also show that higher values of p yield better results. For example, for a
p = 0.8, the predicted value is larger than 80% of the existing residence times and thus
there is a higher chance (about 80%) that the predicted value match the real value.

These results show that our models relying on the integrating the arrival time in
the prediction of the residence time significantly reduce the time difference between
the predicted and the real residence times compared to traditional methods which not

include the arrival time in the prediction.

_.—-—'_"L'—-'-._
Average O(10)

Average-AT O(10)
Average O(5)
Average-AT O(5)

Fraction of users

0.0

0 5000 10000 15000 20000 25000
Delay (seconds)

Fig. 4.3 Comparison of the two k-moving average and k-moving-average-AT predictors
according to various context lengths (kK = 5 and k£ = 10
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desired confidence values (p = 0.2 and p = 0.8)
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4.4  Second System Model

In this section, we follow a different approach and focus on using regression-based
learning algorithms to predict the residence time of a user at its relevant location. We
specifically build models using Linear Regression (LR) and Auto Regression (AR) by
considering both linear combination of previous residence times and other spatial or
temporal features as well. Our first model LR uses a linear combination of several tem-
poral features, and our second mode AR uses a linear combination of the k£ immediate
past values of residence times and is also called Order-k AR and noted as (O(k)AR).
Our work differs from previous works Song, Deshpande, Kozat, Kotz and Jain/ (2006),
Sassi et al.[(2017)), Scellato et al. (2011) mainly by the way we use a linear combination
of spatial and temporal features to predict the residence time. We evaluated our pro-
posal by comparing their performance against existing models such Order(k)-Moving-
Average (O(k)-MA) and Order(k)-Cumulative-Distribution-Function (O(k)-CDF) pro-
posed in Song, Deshpande, Kozat, Kotz and Jain| (2006), Sassi et al. (2017)), and non-
linear (NL) time series analysis method proposed in Scellato et al.| (2011). In our eval-
uation, we worked on two real mobility traces from the CRAWDAD project: one pro-
vided by Dartmouth College Kotz et al.| (2009), and another one called the “’Tle Sans
Fils” Wireless Network [Lenczner and Hoen| (2015)). These two datasets have been con-
structed by recording WiFi associations of mobile users with access points — with the
location of a user is taken to be that of the access point with which it is associated.
The obtained results on these two benchmark datasets showed that our proposals LR
and AR provide significant improvement of the prediction accuracy compared to the

aforementioned state-of-the-art methods.

4.4.1 Regression-Based Residence Time Prediction
4.4.1.1 System Model and Assumptions

We assume in this work that, at any given time, a user resides at a given discrete location.

In our data, the location is expressed as the name of an access point with which the
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user’s device associated (see Section 4.5)).

In our work, we propose to make use of two types of models: Linear Regression-
based (LR) models, and Autoregression-based (AR) models. Both models can be
trained on the history of visits of an individual and used to predict its residence time. To
predict the residence time of a user at a relevant location, we consider only the history
of visits to that same location. We particularly focus on three parameters: the arrival
time which allows to derive other additional temporal features, the residence time at
that location, and the current location.

For a given user u at a given location [, we define the visit history #,; as the set of

the residence times spent by user u at location [ as the following:

Hu = {(t1,d1), (t2,da), ..., (tn, dyn)} 4.7)

where d; is the residence time spent by the same user u at location [ at time ;.

4.4.1.2 Linear Regression-Based Prediction

The Linear Regression (LR) model aims at finding the optimal function A, that aims
at approximating the following equation for all values H,; for a given user at a given

location such that:

di - hO,(tl) (48)

Given a temporal information ¢, many features can be extracted such as time of the
day, day of the week, type of the day, etc. In the general case, let us assume that
n features could be extracted from the temporal information, and use the following
variables ("), ..., 2(") to represent these features. Therefore, Eq. (#.8)) can be rewritten

as:

d =he(zV, ..., z™) (4.9)
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With linear regression for function A, Eq (4.9) can be rewritten as:

d; =ap + n 2! + -+ apz™ (4.10)
=a’x; (4.11)
T
where x; = <1,x§1),. .,ml(-")> and o = («ap, aq, ..., ). By finding the optimal value

for o, Linear Regression presented in Eq. (4.11)) can be used as a method to make
prediction for next residence time d given a set of input features x. To find the opti-
mal value for a, represented by &, the model can be trained on a set of m instances
X1, Xa2, ..., Xy Of input values with the corresponding labels d;, ds, - - - , d,,, respec-
tively. Therefore, given an input instance Xy, 1, the corresponding output value cfmﬂ

can be predicted according to the following equation:

A

A1 = T Xmy1 (4.12)

Finding the best set of parameters & for function h, with m training examples, i.e.
(x1,d1), (x2,ds), ..., (Xm, dm), can be obtained by minimizing the mean squared error

function J () defined as follows:

1 m
:2—§ aTx; — d;) (4.13)
m
i=1

Finding the optimal parameter & that minimizes J(), i.e. & = arg min,, J(a) can be
done with a Gradient Descent (GD) algorithm or using Normal Equation (NE) technique
as shown in Section

Figure shows an example of a Linear Regression model h,,(t) with one input
variable ¢ after getting an optimal value of the parameter & by training the model on a
set of m training examples, i.e, (t1,d1), (ta,d1), ..., (tm, dp).

Figure shows how the fitted line h, () can be used as predictor by assigning a

value d to each input value of the variable .
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Fig. 4.5 The best fitting straight line after getting the optimal parameter .

4.4.1.3 Auto Regression-Based Prediction

By contrast to LR that is based on input values, the Auto Regression (AR) predictor
is solely based on building relations between successive output values, residence times
in our case. Consequently the prediction of residence time chH is calculated from
previous values d,,,,d,,_1,...,d;. Order(k) AR model performs prediction according

to the following equation:

di - hﬁ(di—la di_Q, e 7di—k) (414)

where the output variable d at time ¢ is defined by a function hg of the £ immediate
past values. Assume that hg is a linear function and consider the history of values

dy,ds, ..., dy. The O(k) AR model hg will be then written as:

d; = Bo + Pidi—1 + Podi—o + - - - + Brpdi_g, (4.15)
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fori € {k+1,...,m}. This means that the next value is a linear weighted sum
of the k immediate past values. By putting d; = (d;_1,d;_2, ... ,di,k)T, and 8 =

(Bo, B, - - - 6k)T, Eq. (#.13) can be rewritten as:

d; = B1dq; (4.16)
Also, by defining D and d as follows:
dy - dy disr
Do div1 o0 do = di+2
dm-1 -+ dpg A
we have:
d=Dp (4.17)

Given a history of p observations (we take p = m—k for the sake of simplicity and with-
out loss of generality), 3 may be estimated by minimizing the squared error function

J(B) defined as follows:

m

J(B) :% ; (di — hg(dia, ... diy))’
i=kt1
:2i Z (di — Bo — Brdi—1 — -+ — Brdiy)?
i—ht1

1 T
I%(Dﬁ —d) (DB —d)

1
=g, 1PB—dl’ (4.18)

After estimating the parameters B = argming J(3) by using the Gradient Descent

(GD) or the Normal Equation (NE) methods as shown in Section 4.4.2] the predicted
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value can be computed by Eq. as follows:
dis1 = 0" dimia (4.19)

4.4.2 Minimizing Squared Error
4.42.1 Using Gradient Descent

As has been described before, The Gradient Descent (GD) method can be used to find
and update values of 6.
For a given value 0; (with j = 1, ..., n) of the vector 8, the algorithm GD operates

as the following:

0
v .= 4% — \— J(0 4.20
J J ae] ‘]( ) ( )

When J(0) is taken as the mean squared error function, we have for LR (where 6

is substituted by ):
> (ha(xi) — di) 2P 4.21)

and we have for AR (where @ is substituted by 3):

0 1 —
—J(B) == hg(dy) — d;) d;_; 4.22
o5, /8) = 2 (sl = d o (422)

4.4.2.2 Using Normal Equation

Rather than needing to run an iterative algorithm that takes multiple iterations of GD
to converge to the global minimum, we can instead just solve for the optimal value
for O analytically using the Normal equation method. So that in basically one step the

optimal value of the parameters 8 can be easily computed analytically and is given in
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the LR case by:

0= (X"X)"'X"dq (4.23)

where X and d are defined as the following:

1 2 2™ dy
Y- 1 xgl) e xé”) = do
1 ZL‘%) x% ) dm
and it is given in the AR case by :
6 =(D"D)"'D"d (4.24)
where D and d are defined as follows:
de - dy dir
D e N = di12
dm-1 *++ dpg A

4.4.3 Applying LR and AR on Selected Features

443.1 WithLR

LR takes into account input variables and tries to build a model that links those input
variables with the output variables. The input variables can have several features that

resulting of a vector of variables. In our case we consider temporal information ¢;
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(1)

(as defined in Eq.(.9)) from which we extract two features z; ’ presenting the time
of the day quantized into intervals of 1 hour and a:§2) day of the week. There is also
the possibility to extract another variable to represent type of the day, whether it is a
working day, week-end, bank holiday, season holiday, etc. We choose to restraint our
study to the previously mentioned features. Other features can be extracted and fed to
our model as it is designed to be as general as possible and is able to take many feature
variables. Under this choice, input values ¢; can be used to construct input variables
x; = (1, xgl), xEQ))T where xgl) € {0,...,23} and xEQ) € {0,...,6}. The intuitions

behind choosing those two features are the following:
1. The time of the day: people tend to spend similar residence times at similar times
of day. For example, assume that we have a user that arrived at their workplace
at 9am. The user is most likely to leave work place at the end of the work shift,

typically at around Spm. In this case the residence time is about 8 hours. Similar

behaviour would be observed in restaurants, department stores, etc.

2. The day of the week: people tend to spend similar residence times at similar
places in similar days of the week. For example, if an individual periodically
goes to the gym on Mondays and Thursdays, their mobility pattern would be

affected for those particular days.

4432 With AR

AR does not try to find a relation between input and output variables but it builds a
model for successive observations of a variable. Therefore building the AR model con-
sists in using residence times d; as described in (Eq. (4.15))) and use the development
described in Section and find optimal value for B using GD or NE.

4.4.4 Results

In this section, we evaluate the performance of the approaches presented in the pre-
vious sections according to time difference metric which measures the difference be-

tween the predicted residence time and the real one. We compare the performance of
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Fig. 4.6 Cumulative Distribution of the fraction of users according to the prediction
error achieved on them for the Dartmouth WiFi dataset and the Ile Sans Fils dataset.

our models: O(k)-AutoRegression, Linear Regression with O(k)-moving-average and
O(k)-CDF time-aided algorithms proposed in Sassi et al. (2017), and with nonlinear
time series analysis method proposed in [Scellato et al.| (2011). For the sake of con-
ciseness, we use the term “’the five algorithms” to refer to AutoRegression (AR), Linear
Regression (LR), Moving-Average-Arrival-Time (MA-AT), CDF Arrival-Time (CDF-
AT), and NonLinear time series (NL). Wherever it not explicitly stated, the value of
default value used for our experiments for £ is 8.

In Figure [4.6] we show the cumulative distribution of the prediction errors of 100
users obtained with our prediction algorithms compared to CDF-AT and MA-AT pro-
posed inSassi et al. (2017, and NL proposed in Scellato et al.|(2011). We show that our
proposed models AR-GD, AR-NE, LR-GD and LR-GD (with GD standing for Gradient
Descent and NE for Normal Equation) provide better accuracy compared to the others.

The results presented in the Figure {.6| show that our models can achieve a prediction
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error in the order of seconds and minutes compared to the other algorithms. For exam-
ple in the Dartmouth WiFi dataset, with our models we achieve less than 60 seconds
prediction error for about more than 10% of the users, and less than 200 seconds predic-
tion error for about 40% to 65% of the users, whereas the other models do not achieve
that accuracy, i.e. a prediction error of 200 seconds, at all for all the users. All predic-
tions errors with the other models are above 200 seconds (ses Figure 4.6(b)). However,
in the case of Ile Sans Fils dataset we achieve between 120 and 250 seconds prediction
error for about more than 10% of the users, and less than 400 seconds prediction error
for about 40% to 65% of the users which are better results than those provided by NL,
CDF-AT, and MA-AT as shown in Figure [4.6(c) and Figure [4.6(d).

These results confirm existing findings that using linear regression and autoregres-
sion models perform better than using a simple moving-average models for predicting
residence time of a user. Overall, the presented results with the Dartmouth WiFi dataset
(resp. Ile Sans Fils dataset) show that our proposed models improve the prediction er-
ror of at least 40% (resp. 30%) of users (see Figure [4.6(a) and Figure [4.6(c)) as 40%
(resp. 30%) of users have their prediction error below 200 seconds (resp. 300 seconds)
which is not obtained for any user with other algorithms. The results plotted in the
Figure [4.6] also show that AR-GD model achieves the best performance over all other
tested models proposed in this chapter. We also show that GD models achieve lower
prediction errors than NE ones with LR-GD achieving better than LR-NE, and AR-GD
achieving better than an AR-NE. We see in Figure 4.7/ that for the two datasets, AR and
LR models are always outperforming the other methods.

Figure 4.7(a) and Figure 4.7(c) show the median prediction error of TOP-n relevant
places for the four AR, LR, MA-AT and NL models. they show also that, for all TOP-n
places, AR has a lower prediction error than LR which in turn has a lower error than
MA-AT and NL.

In Figure 4.7(b) and Figure [4.7(d), we show that all considered models provide rel-
atively low prediction errors for some relevant places compared to others. O(k) AR

provides the lowest prediction error for all the relevant places compared to the other
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Fig. 4.8 Prediction Error variation for a sample users history.

considered models. We also show that, with the Dartmouth WiFi dataset, LR achieves
a lower error than MA-AT and NL for most of the cases (in 7 out of the 8 cases con-
sidered). While with Ile Sans Fils dataset, LR achieves a lower error than MA-AT and
NL for all the relevant places. We did not plot CDF-AR in Figure and Figure 4.7
because its values are very close to that of MA-AT and the curves are almost identical.,
For the remaining Figures, We present only the results obtained by the Dartmouth WiFi
dataset.

In the Figure .8 we run the considered algorithms to make predictions and for
each prediction step we measure the Prediction Error defined as the difference between
the real and the predicted residence times. We show that generally LR and O(k) AR
achieve lower Prediction Errors compared to NL and O(k) MA-AT (with £ = 8). We
also show that for some instances AR provides better values and for others LR provide

better values, but overall AR provides lower Prediction Error.
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Fig. 4.9 Prediction Error of various LR models with input features including: H (Hour
of the Day), D (Day of the Week), and W (Type of the Day).
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Fig. 4.10 Comparison of the two autoregression models according to the time difference
metric with various values of k.

In Figure 4.9 we evaluate various LR models by considering three main input fea-
tures: H (Hour of the Day), D (Day of the Week), and W (Type of the Day). The figure
shows the cumulative distribution of the prediction errors of 100 users obtained with
our linear regression models LR-H, LR-D, LR-W, and LR-DH. The results plotted in
the Figure #.9show that LR-D model provide a better accuracy compared to LR-H and
LR-W models, and that LR-H was more accurate than LR-W. The results also show that
adding a feature such as D to LR-H model, i.e LR-DH model, increases the performance
of the model.

Figure 4.10] has been plotted by randomly taking four users. It explores the per-
formance of two AR algorithms AR-GD and AR-NE models for different values of k:
k =4k =5k =6,k = 7and k = 8 with a recent history of a 4, 5, 6, 7 and 8
residence times respectively.

It shows that AR-GD always provides a lower prediction error compared to AR-NE
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Fig. 4.11 Evaluating three variants of GD techniques: Batch GD, Mini-Batch GD, and
Stochastic GD with both autoregression and linear regression models according to the
prediction error metric.

model for all considered value of k. This may be explained by the way GD and NE con-
verge to the global minimum. In fact, GD does not necessarily converge to the global
minimum exactly but instead in some regions close to the global minimum. And it
could be a good model when the parameters end up in some regions close to the global
minimum. Figure [4.10] also shows that increasing the value of k£ in AR-GD provides
a lower prediction error compared to AR-NE which shows deteriorating performance
with higher prediction errors with higher values of k. For example, with AR-NE the
prediction error for user 3 reaches 130 seconds between the two values of k (k = 4 and
k = 8) whereas with AR-GD, the prediction error do not exceed 8 seconds for the same
values of k. Figure has been plotted by randomly taking a subset of 100 users.
The Figure explores different variants of GD techniques, such as Batch GD, MiniBatch
GD, and Stochastic GD, with both linear regression and autoregression models. In Fig-

ure a), we compare the above three GD techniques by using autoregression model.
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We show that with Stochastic GD a lower prediction errors are obtained with a higher
fraction of users, compared to Batch and Mini-Batch variants. Although the curves are
close to each other, it is clear that Batch GD is less accurate than both Stochastic and
Mini-Batch GD and that the median user experienced an average prediction accuracy
of 152, 155, and 177 seconds, for Stochastic GD, and Mini-Batch GD, and Batch GD,
respectively. However, in Figure d.T1(b) we show that with linear regression models,

Batch GD is slightly less accurate than Mini-Batch and Stochastic GD.

4.5 Performance Evaluation

In this section, we present the results of our experiments for predicting the residence
times of users. Then we evaluate the performance of our predictors using the Prediction
Error metric defined as the difference between the predicted residence time d and the

real one d. First, we describe the datasets we used in our evaluation.

4.5.1 Evaluation Dataset

For the evaluation of our models, we use two different datasets. The first dataset is a
subset of WiFi traces extracted from the dataset provided by Dartmouth College Kotz
and Essien| (2005)), Henderson et al.|(2008) and made available through the CRAWDAD
project |[Kotz et al. (2009). In this dataset, each user’s mobility trace is expressed as a
series of (time, location) pairs where a location is taken to be that of the access point
to which the user (their hand-held devices) is associated. This dataset contains more
than 543 different access points resulting in more than 543 different locations. The
second dataset, called "Ile Sans Fils”, is composed of access points used by the City
of Montreal to provide free internet access through WiFi hotspots Lenczner and Hoen!
(2015)). In this dataset, there are more than 140 hotspots located in publicly accessible
spaces such as restaurants, cafes, parks, streets, etc. so that outdoor spaces are also
covered.

In our experiments, we consider relevant places. We define a place as relevant to a

user, if it has been visited by that user for more than 20 times in the past. We divide
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each dataset in two halves: We use the first half to serve as an initial offline training
data and the second one as a live data set to test the performance of our predictor. At

each prediction, a sliding window is used.

4.5.2 Eliminating the Ping-Pong Effect

Our preliminary studies of the two datasets have shown frequent re-associations of two
or more neighboring access points in a short period of time repeatedly. Such behavior,
called ping-pong effect, appears even if the user is not moving, which may result in a se-
quence of locations of the form: ..., [;,[;,1;,[;,1;,;, ..., where a device keeps switch-
ing from location /; to [; and then back to /; then again to /; for a number of times in a
short time interval. Various techniques have been used in the literature to deal with this
ping-pong effect with the aim of obtaining accurate residence times Rodriguez Carrion
(2015), Burbey| (2011). In our case we adopt the following procedure. Consider a user
with the following sequence of visits (I;,d;), (lix1,div1), (liv2, div2), ..., where d; is
the residence time spent at location /;. We define a residence time threshold o consid-
ered as the minimum residence time. Therefore, if [; = [;.5 and d; .y < o, we merge [;,
li+1, and [;, 5 so the entire sequence becomes (I;, d;+d;1+d;12), . . ., which eliminates
the ping-pong effect. In our experiments we set the value of o to 30 seconds.

In this way the sequences of durations obtained are more likely to imitate the real
patterns of residence times of a users.

In order to obtain a more accurate residence time, we should eliminate this effect.

For that, we have performed pretreatments by applying a merging procedure to the
two datasets. We choose a two-month subset of mobility data corresponding to the
period from January to February 2003 and we did not compute the prediction error for
transitions to or from the location OFF. We use the first month to serve as an initial
offline training data and the second one as a live data set to test the performance of our

predictor. At each prediction, a sliding window of one month is used.
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4.6 Conclusions

In this chapter, we presented and evaluated several models for temporal prediction us-
ing a subset of real mobility data made available by the CRAWDAD project. We have
shown that the prediction of the residence time at the current location of a given user
can be significantly improved by using popular linear regression-based learning models
namely: linear regression and the autoregression. We have shown that these models
perform significantly better than traditional models such as simple moving-average,
moving-CDEF, and NL models. We have also shown that simple low-order autoregres-
sion worked at least as well or better than the linear regression for residence time at
relevant place prediction, and that higher order, taking a longer history context, do not
necessarily improve the prediction accuracy and rather deteriorate it. In particular with
the data set we worked on, we showed that Order(5) (and above) autoregression did
not improve over Order(4) autoregression models even with a large number of users.
In fact, it is difficult to find the best value for k a priori as it varies from a situation to
another.

We have also evaluated the performance of different variants of our proposed lin-
ear and auto regression models with two different optimization techniques Gradient
Descent and Normal Equation. The resulting variants: AR-GD, AR-NE, LR-GD and
LR-NE, have been compared with state-of-the-art approaches according to the predic-
tion error metric. Our results showed that using Gradient Descent as the optimization
technique to minimize the mean squared prediction error provided better results than
Normal Equation, and resulted in errors in the order of seconds and minutes for a large
set of users which has not been achieved by state-of-the-art methods.

There are several directions for further research. First, we have evaluated the perfor-
mance of our models by using only patterns of a devices association with access points
which is not human movements. Our future work will address large-scale data analysis
and more sophisticated GPS-based datasets to validate our finding.

Also, it will be interesting to exploit additional data sources, such as other users or
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on line social networks (e.g., Facebook, Twitter), to explore more features of human
mobility. Secondly, we will address location prediction problem by investigating some
deep learning techniques such as Recurrent Neural Network (RNN) as RNN is able to
predict a sequence or a value at particular time point. Finally, we will use other metrics

to evaluate our models.
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CHAPTER 5

Conclusion and future research directions

This chapter gives a general conclusion of this thesis and some future research direc-
tions.

In this thesis, we presented and evaluated several models for next location and
time prediction using a subset of real mobility data made available by the CRAWDAD
project.

For next location prediction, we proposed to make use of modern machine learning
techniques based on deep neural networks. We have proposed the use of Convolu-
tional Neural Networks for which we enhanced the representation of input data by the
use of embedding techniques. We have explicitly derived a new location embedding
technique which we called loc2vec to enhance the quality of input location represen-
tations. Our loc2vec embedding technique improves the representation of locations by
encoding close locations in mobility sequences in a way that makes their loc2vec rep-
resentations also close after the embedding. We enhanced the performance of our CNN
models that are based on loc2vec embedding with the use of transfer learning which
allows us to take advantage of pre-trained CNN networks which we fine-tuned on our
location prediction application domain. We evaluated the performance of our proposals
on real mobility datasets and showed that the combination of loc2vec, CNN, and the
use of transfer learning from existing CNN model provide the best results compared to
popular state of the art prediction techniques relying on Markovian models.

For time prediction, We have shown that the prediction of the residence time at the
current location of a given user can be significantly improved by using popular linear

regression-based learning models namely: linear regression and the autoregression. We
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have shown that these models perform significantly better than traditional models such
as simple moving-average, moving-CDF, and NL models. We have also shown that sim-
ple low-order autoregression worked at least as well or better than the linear regression
for residence time at relevant place prediction, and that higher order, taking a longer his-
tory context, do not necessarily improve the prediction accuracy and rather deteriorate
it. In particular with the data set we worked on, we showed that Order(5) (and above)
autoregression did not improve over Order(4) autoregression models even with a large
number of users. In fact, it is difficult to find the best value for k& a priori as it varies
from a situation to another. We have also evaluated the performance of different vari-
ants of our proposed linear and auto regression models with two different optimization
techniques Gradient Descent and Normal Equation. The resulting variants: AR-GD,
AR-NE, LR-GD and LR-NE, have been compared with state-of-the-art approaches ac-
cording to the prediction error metric. Our results showed that using Gradient Descent
as the optimization technique to minimize the mean squared prediction error provided
better results than Normal Equation, and resulted in errors in the order of seconds and
minutes for a large set of users which has not been achieved by state-of-the-art methods.

There are several directions for further research. First, we have evaluated the perfor-
mance of our models by using only patterns of a devices association with access points
which is not human movements. Our future work will address large-scale data analysis
and more sophisticated GPS-based datasets to validate our finding.

Also, it will be interesting to exploit additional data sources, such as other users
or on line social networks (e.g., Facebook, Twitter), to explore more features of hu-
man mobility. Secondly, we will address location prediction problem by investigating
other deep learning techniques such Transformers as Transformers can capture natu-
rally longer term dependencies between sequence components than LSTMs and process

them simultaneously. Finally, we will use other metrics to evaluate our models.
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