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Abstract

Robot Operating System (ROS) is becoming a widely-used environment for devel-
oping robot software systems. It provides unique features such as message-passing
between processes and code reuse between robots. The new trend in ROS-based
robotic systems is facing the development and delivery of effective services by com-

bining the advantages of both cloud robotics and web services.

Cloud robotics is the way that allows robots to overcome their limitations of pro-
cessing and knowledge by boosting computational and cognitive capabilities. On
the other hand, as an implementation of Service-Oriented Architecture (SOA), web
services allow mainly different ROS codes to be discovered over the internet for their
reuse. However, the characterization, description, and discovery of the ROS service
capability for the offered robotic functionality are still issues that are not fully ad-

dressed.

In this context, we focus in this thesis on developing an architecture for robotic
software provisioning to both software developers and robots by exploiting the op-
portunities of ROS, web services, and cloud robotics. We propose a complete SOA
approach for cloud robotics, in which ROS-based robotic tasks are defined as web
services. The approach focuses on defining the service cycle process of describing,
discovering, and selecting services. Two characterizations for ROS web services are
proposed. The service characterizations describe the semantic representation of the
robot task from ROS itself. In each case, we present a strategy that allows users to

discover the relevant robotic service that can match their queries and robots.

Keywords: Robot Operating System (ROS), Cloud robotics, Service-Oriented Archi-

tecture (SOA), Web services, Semantic web services, Robotic service discovery.
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Résumé

Robot Operating System (ROS) devient de plus en plus I’environnement le plus util-
isé pour le développement de systémes logiciels de robots. Il fournit des fonction-
nalités uniques telles que la transmission de messages entre les processus et la réu-
tilisation de code entre robots. La nouvelle tendance des systémes robotiques basés
sur ROS est confrontée au développement et provision de services efficaces en com-

binant les avantages de Cloud Robotics et des services Web.

Le Cloud Robotics désigne la maniere qui permet aux robots de surmonter leurs
limites de traitement et de connaissances en promouvant les capacités de calcul et
cognitives. D’autre part, en tant qu'implémentation de I’Architecture-Orientée Ser-
vices (SOA), les services Web sont principalement destinés a découvrir des codes
ROS sur Internet pour leur réutilisation. Cependant, la caractérisation, la descrip-
tion, et la découverte de capacité d'un service ROS sur la fonctionnalité robotique

offerte ne sont pas complétement adressées.

Dans ce contexte, nous nous concentrons dans cette these sur le développement
d’une architecture pour la fourniture de logiciels robotiques aux développeurs de
logiciels et aux robots en exploitant la technologie et le concept de ROS, services Web
et de Cloud Robotics. Nous proposons une approche SOA compléte pour le Cloud
Robotics, dans laquelle les taches robotiques basées sur ROS sont définies comme des
services Web. L'approche se concentre sur la définition du processus de cycle de ser-
vice pour la description, la découverte, et la sélection des services. Deux caractérisa-
tions des services web ROS sont proposées. Les caractérisations de service décrivent
la représentation sémantique de la tache du robot a partir de ROS lui-méme. Dans
chaque cas, nous présentons une stratégie qui permet aux utilisateurs de découvrir

le service robotique pertinent qui peut correspondre a leurs requétes et robots.

Keywords: Robot Operating System (ROS), Cloud Robotics, Architecture-Orientée
Services (SOA), services Web, services Web sémantiques, Découverte de services robotiques.
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Chapter 1. Introduction

1.1 Context

Cloud computing has brought a significant shift in the accessibility and utilization of
robots because of technological advancements in processing, storage, and commu-
nication. This relevant innovation in robotics field is known as “Cloud Robotics”.
Cloud robotics allows robots to overcome their processing constraints, share infor-
mation, or acquire new skills [1]. It describes a new generation of robotics that use
cloud computing to improve task performance, by boosting computational and cog-

nitive capabilities and enabling knowledge sharing.

The development of robot software systems within this context has been widely
built recently using “Robot Operating System” (ROS). This is due to its open-source
robotic system that provides various features, including low-level device control, ab-
straction of hardware, and message passing between processes [2]. Nevertheless, as
robotic systems development may require challenges of implementation complex-
ity [3,4], understanding ROS requires thorough learning for achieving desired robot
tasks. Thus, designing software that deliver reusable components in robotic sys-
tems has been receiving much attention using Service-Oriented Architecture (SOA).
SOA presents an architectural style of designing software systems that can be ac-
complished using web service technologies. It provides encapsulated, discoverable,
reusable, and loosely coupled application functions distributed in a network. By
encapsulating ROS implementation details and offering loosely coupled application
functions, SOA and web services provide a step to the response of ROS manipulation

issue [5].

However, implementing SOA in robotics in general is influenced by the devel-
opers’ background [6], which can restrict the scope of SOA. By studying the state-
of-the-art of service-oriented solutions in robotics, a diversity of research proposals
can be observed in many levels of both system conception and development. Most
studies have focused on SOA as a mechanism that adapts in each case study of the
various robotic fields, rather than building an architectural style. This has affected

the SOA life cycle process of dynamic service discovery.

2



1.2. Problem statements

1.2 Problem statements

The problem addressed in this thesis targets the development of service-oriented
robotic services for ROS-based robots and cloud robotics. At first, we seek to study
SOA adaptation for robotic services development and delivery. This includes SOA-
based robotic evolution of research directions, trends, and service delivery models
in cloud robotics. Thus, this first part can be determined by the following research
question:

e RQ1. How can SOA be applied to the development of robotic services, and particularly,
to the delivery of robotic services in cloud-based systems?

By tackling the first problem, the second issue of this thesis has been arisen. It
studies the whole life cycle process of applying SOA by calling the “robotic services”
concept into question. This issue involves the description, discovery and selection
mechanisms of such services. Therefore, the second research question addressed in
this thesis is:

o RQ2. What are the key characteristics of robotic services?
Indeed, this main research question is divided into the two following questions:

e RQ2.1. What is a robotic service? How the robotic service is represented or described?

e RQ2.2. How can a robotic service be discovered and consumed to complete a robot task?

1.3 Contributions

In this thesis, we carried out a comparative analysis that targets the service-oriented
solutions in robotics, and we provide a literature categorization. Based on the review
results, the thesis’s main contributions may be summarized into two principal axes.
In the first contribution, a complete SOA-based architecture for cloud robotic service
provisioning has been proposed. The architecture addresses the idea of Robotic Ser-
vices as a Service (RSaaS) using ROS. It supports the automatic search of services
that deliver various robotic tasks, which allows users to assign different on-demand
skills to their robots. We consider the ROS services as web services and aim to im-

prove the task performance of services by boosting computational capabilities. The

3



Chapter 1. Introduction

system architecture is structured as a layered architecture that is inspired from clas-

sical cloud computing architectures.

The second contribution focuses on defining the elements and cycle process of
ROS-based robotic services. Two solutions are proposed for this definition, which
presents a characterization of these services that describes the robot task representa-
tion from ROS itself. In the first one, we define the functional meta data of ROS Web
Service (ROS-WS), by considering ROS-WSs as SOAP (Simple Object Access Proto-
col) web services due to this protocol’s completeness of architecture elements. The
architecture system allows also users to obtain and access the relevant ROS-WS for
their robots, according to the score assigned to a service-query match using similar-
ity measures. To that end, the discovery engine uses the computationally efficient
sentence-BERT [7] to generate sentence embeddings. This allows the system to es-
timate the most suitable service of a desired task according to the user’s query by
calculating the similarity between their embeddings. In this context, a reinforce-
ment of training dataset has been proposed by distinguishing the relation between
ROS requirements and robot tasks. The second one exploits the opportunities of se-
mantic web services using the Ontology Web Language for Services (OWL-S), and
brings a semantic layer to ROS-WSs. We define a ROS Semantic Web Service (ROS-
SWS) description that expresses itself via a ROS domain ontology of capabilities and

properties to handle the dynamic discovery of services.

1.4 Thesis structure

The remainder of this thesis is structured as follows:

e Chapter 2 introduces the fundamental basics of ROS, SOA, web services and
cloud robotics. It summarizes as well an overview about architectures and

projects in cloud robotics.

e In Chapter 3, we present a comparative analysis about service-oriented solu-
tions in robotics that examine the SOA-based modelling architectures, delivery

models and discovery of robotic services.

e Chapter 4 presents our first contribution for Robotic Services as a Service ap-

proach. We present the overall cloud architecture, actors and system modules.

4



1.4. Thesis structure

e Chapter 5 presents the second contribution for the cycle of ROS web services.
It is drawn on two main parts. The first part defines the ROS-WS requirements
and proposed solution for their service discovery. The second part introduces
the ROS-SWS description and ROS domain ontology of capabilities and prop-
erties for the discovery process. The chapter outlines also the case study and
experiments.

e Chapter 6 concludes this thesis and summarizes some potential challenges and
future research.
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2.1. Introduction

2.1 Introduction

This chapter presents the fundamental concepts linked to our work and an overview
of cloud robotics architectures. It begins by summarizing the world of robots in sec-
tion 2.2 and outlining the features of this work’s core element, the Robot Operat-
ing System (ROS), in section 2.3. Next, we briefly introduce section 2.4, the scopes
of Service-Oriented Architecture (SOA) and Web services. Section2.5 presents the
basics of cloud computing and its relation with SOA. Finally, section 2.6 gives an

overview of cloud robotics projects and architectures.

2.2 World of robots

Robotics is an interdisciplinary field that interests in designing and applying robots.
It benefits from many disciplines including mechanical engineering, electrical and
electronic engineering, computer science and others [8]. From a historical point of
view, the origin of robotics goes back to science fiction. In 1921, the term robot was
coined through the czech word ‘robota’ meaning ‘labor” in the play Rossum’s Univer-
sal Robots. A number of stories that popularize the idea of robotics was subsequently
published. By the late 1950s, the concrete transition to reality and development of

first industrial robot has been occurred [9], [10].

As reported by the ISO 8373:2012 definition [11,12], a robot is an “actuated mech-
anism programmable in two or more axes with a degree of autonomy', moving within its
environment, to perform intended tasks”. It consists of an integrated set of hardware
and software components that build the whole machine. Figure 2.1 summarizes the
seven main components of a robot as described by author of [8]. Robots can be fixed
or mobile. Thus, various kinds of mobile robots can be distinguished due to their

motion mechanism in the three environments: terrestrial, aquatic and aerial [13].

The evolution of robots showed an enormous expansion in several areas of mod-
ern human society. This is because robots provide a set of positive effects such as
improved worker safety, and increase of manufacturing productivity and quality,
which has been shown especially during the COVID-19 pandemic [14]. Robots are
classified by their intended application into industrial and service robots [11] [14]:

! Autonomy is the robot capability of performing tasks, on the basis of sensing and current state,
without the intervention of humans.



Chapter 2. Fundamentals
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Figure 2.1: Components of a robot.

Industrial robots: Industrial robots were the first kind of invented robots, and have
known a large use through the years. Unimate, the first industrial robot with mag-
netic drum and six degrees of freedom?, has been put on an assembly line in 1961
[10]. At present, industrial robot applications comprise numerous processes and
manufacturing activities such as handling, welding, assembly, painting, and pro-

cessing® [15].

Service robots: Service robotics encompass a broad range of professional and do-
mestic applications for humans, excluding industrial automation applications [11,
16]. The degree of autonomy for service robots can be distinguished to partial,
including human robot interaction, or full in which human intervention is not re-
quired [14]. The practical need of using service robots is growing. In accordance
with the last statistics of the International Federation of Robotics (IFR), sales of ser-
vice robots have been increased considerably in 2020 [16]. This increase has known
an additional demand for some robot applications due to the global pandemic in-

cluding medical, hospitality, professional cleaning, and logistics.

?Degrees of freedom are the set of coordinates used to describe a pose of a mobile robot or an end
effector. Further information can be found in [13].
3This includes material removal processes like grinding, deburring, milling, and drilling.
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2.3 Robot Operating System

Robot Operating System (ROS) is considered as the main axis of this thesis. The work
does not use ROS just as a tool for system implementation, since it relies principally

on it. We present in this section the main features about ROS.

2.3.1 Overview

ROS [2] is an open-source meta-operating system that is widely used in robot appli-
cation developments nowadays. It was initially developed by the Stanford Al Labo-
ratory in 2007, and its development was continued at the robotics research institute

“Willow Garage” in collaboration with more than 20 institutions by the year 2008 [ 17].

ROS provides several features such as abstraction of hardware, low-level control
of device, and message passing between processes®. Although the existing of some
similar aspects between ROS and other robotic frameworks such as MRDS [18] and
YARP [19], there are many reasons to prefer ROS [2], [20]. ROS is designed for
supporting code reuse in robotics development and research. Primarily, a ROS code
can be worked with many robots by changing the data related to every robot. Robots
that we can use with ROS are multiple such as Nao, TurtleBot, PR2, and many other
robots’. In addition, ROS provides a large set of tools for building, visualizing, and
performing simulation. There are also many available and ready to use packages for

some robots like SLAM that is used for performing autonomous navigation.

2.3.2 ROS concepts

We present below the three levels of ROS concepts.

Computation Graph level

The Computation Graph is the network of processes in ROS. This level’s concepts are

summarized in the following.

e Nodes: The main feature about ROS is the Node. Nodes are processes that

carry out computation and constitute the ROS distributed framework. ROS

4ROS is officially supported on Ubuntu.
SRobots using ROS: https://robots.ros.org/.
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libraries gives the ability to program the nodes in many languages including
Python, C 4++ and Java. Itis possible to display information about nodes due to
the rosnode command-line tool. For instance, the command rosnode info

node_name gives the set of information about a particular node®.

e Master: The Master in ROS could be seen as a manager node that allows nodes
to find each other and exchange messages. This is done due to its XMLRPC-
based API enabling nodes to store and retrieve each other information. We

usually use the roscore command to run the master.

e Parameter Server: It is a part of the Master, which provides a central location to

store data.

e Messages: The communication between nodes is done via messages. A message
is data structure that comprises some field types. This includes standard prim-
itive types such as integer, boolean, string, etc, and arrays of primitive types.

e Topics: Topics look like buses, in which the messages can be exchanged between
nodes. They are based on “publish/subscribe” transport system. A node can
publish a message through a topic, so that an interested node will subscribe to
this topic. For interacting with topics, ROS provides the rost opic command-
line tool. The command rostopic pub topic_name msg_type data,for

example, publishes data to a given topic.

e Services: ROS provides also a “request/reply” transport system via services. A
client can call a service by sending a request message, from a node that acts as s
server, and awaits the reply. We can discover information about active services

using the rosservice command-line tool.

e Bags: Message data in ROS are stored in a file called a bag, which can be used
for recording and playback.

Filesystem level

The Filesystem level comprises the resources stored on the disk, which are organized
as follows:

6To run a node, we generally use the command rosrun package_name node_name.
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e Packages: The main unit of ROS software organization is the packages, which
contain runtime nodes, a ROS library, configuration files, etc. The main direc-
tories and files in a ROS package are: src, scripts, msg, srv, package.xml, CMake-
Lists.txt.

o DPackage Manifests: A package manifest is a file in XML format called “package.xml”.
It describes the package metadata like its name, version, authors, and depen-

dencies.

e Message types: The ROS message descriptions are stored in files with . msg ex-

tension in the msg directory of a package.

e Service types: The definition of ROS service types is stored in files with .srv
extension in the srv directory of a package.

o Metapackages: A metapackage in ROS is used to reference related packages. It

contains only the package manifest.

e Repositories: A repository is a collection of packages.

Community level

The ROS Community Level covers the set of sources that enable the knowledge and
software to be exchanged and reused between communities. This is mainly given by
the ROS Wiki pages [2] and its other forums and sites such as ROS repositories, and
ROS Answers’.

2.3.3 Difficulty in learning ROS

The main drawback about ROS is the difficulty in learning and in starting with sim-
ulation and robot modeling [20], which can be noticed by ROS users. Indeed, even
with the ROS huge command-line tools and wiki pages, it is difficult to learn ROS
and use it. A user will spend a lot of time in learning and discovering new skills, or
in testing existing examples to obtain desired actions for his robot, which make the
possibility of developing robotic application quickly very hard. Therefore, this is the

main reason why SOA is introduced towards improving the ROS software use.

’ROS Answers: https://answers.ros.org/questions/.
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2.4 Service-Oriented Architecture and Web services

Web services were regarded as an acceptable manner for implementing the archi-
tectural style “Service-Oriented Architecture” over the last twenty years. These two

concepts are briefly presented in the following.

24.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture, or SOA, is an approach that provides distributed sys-
tems, based on usage of software components called “services”. It allows mainly
these services to be discovered over the internet, through published interfaces. As
defined by the W3C [21], SOA is “a set of components which can be invoked, and whose
interface descriptions can be published and discovered”®.

Service
| description

{Service Registry )
1." . T
Find Publish

¥ .- Service

Service - Bind And / Service

Consumer / Invoke \ Provider| service
- . description

Figure 2.2: SOA Architecture.

The main integrated components in SOA architecture are illustrated in Figure
2.2 [23]. As shown in the figure, the service provider makes services available and
accessible to service consumers’, by publishing the interfaces of services via a service
registry. The relation between consumers and providers of services may be specified
and guaranteed by a formal agreement, known as Service Level Agreement (SLA),
in order to ensure the Quality of Service (QoS) criteria [24,25]. The QoS includes
many characteristics about the service and performance criteria such as response

time, availability, security, throughput, etc.

In the context of SOA, a service is “a discrete unit of business functionality that is
made available through a service contract, which specifies all interactions between the service

consumer and service provider” [24]. Services are described by many characteristics,
like [24]:

8There are many other definitions for the term SOA. A set of additional definitions are listed in [22].
9In SOA, a service consumer is a software or other services that need a service.
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e Encapsulation: All the internal implementation of service operations is hidden

from its published interface.

e Loose coupling: This refers to the dependency degree between modules. There

are few dependencies within loosely coupled services.

e Autonomy: Autonomy means that services are independent from each other in

terms of deployment, modification, and maintenance.

e Reuse: Service reuse deals with the sharing of building blocks of software,

which is the main SOA aspect for process construction.

e Dynamic discovery and binding: Services are discoverable entities. The service
consumer can be dynamically routed and bound to the proper service provider,

by inquiring the service registry for a service that matches its criteria.

2.4.2 Web services

Web services are considered as a way for SOA implementation. Independent of
any programming language or platforms, web services offer a distributed comput-
ing technology for the integration of the heterogeneous applications over the Inter-
net [23]. Thus, they offer loosely coupled application components enabling interop-
erability and reuse of services. In general, realization types of web services encom-
pass two major ways of service implementation [24], [26]. The choice for the way of
service implementation is depending on use aspects as presented in the comparison
below [25].

The first type are the services that agree with Simple Object Access Protocol (SOAP)
and Web Services Description Language (WSDL). SOAP web services are also re-
ferred to as WS-*. WS-* implementation has great support for QoS such as security
and availability. Furthermore, it defines many standards including: (i) an infras-
tructure for service composition'?, (ii) transactions, (iii) service discovery, and (iv)

reliability.

As a protocol, SOAP is a form of XML specification that relies on HTTP and RPC
for the transmission of messages. A SOAP message is structured in an envelope and

a body in XML format. SOAP offers an interoperability between applications due

19SOAP can use the Business Process Execution Language (BPEL) which allows, among others, to
compose web services.
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to this standardization of messages in which the implementation features are not

mandated.

The second type are those described as Representational State Transfer (ReST
or REST) style services. REST is a client-server based architectural style, where the
information network is identified and addressed by a URI scheme. The communi-
cation between an HTTP client and server is accomplished using a small operations
collection known as: read, create, update, and delete operations. REST is a stateless pro-
tocol and meant to be self-descriptive, in which REST interfaces gives only a syntactic

interoperability between services.

On top of HTTDP, only few characters are used for the exchange of messages in
REST contrary to SOAP. Therefore, REST performs better than the SOAP structured
messages in case of systems that exchange lots of messages. However, unlike SOAP,
REST is more suitable for read-only functionality that requires minimum QoS re-
quirements. Ultimately, SOAP expresses “completeness” while REST expresses “sim-
plicity”.

2.4.3 Semantic Web services

Existing Web service description standards such as WSDL that employ XML struc-
tures to describe the services” functionality are syntactic structures. This might pro-
vide a certain level of ambiguity, in which the same structure may be read in different
ways by various users. To address this issue, semantic web services bring the appli-
cation of semantic web technologies to the description and use of web services. A
semantic Web service is a web service that is described using semantic annotations in
a well-defined language such as ontologies''. It enables the services to have an inter-
pretable interface and to facilitate the automation of specific tasks such as discovery,
selection, invocation and composition [27]. There are several ontology description
languages for semantic Web services have been developed. The well-known lan-
guages are Ontology Web Language for Services (OWL-S) [28], which is based on
the OWL language, and WSMO [29].

1 An ontology provides a way of defining a specific domain’s core concepts and features.
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2.5 Opportunities of cloud computing

Basically, from a technological development perspective, cloud computing is a com-
bination of different research axes. It combines a set of technologies such as grid
computing'?, virtualization'®, and even SOA [30-32]. Thus, cloud computing is a
logical continuation of a number of computer technologies [33]. The final cloud
computing definition and its main assets have been published by the NIST in 2011,
in [34].

2.5.1 Cloud computing basics

As given in [34], cloud computing is “a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction”. The NIST determines three
major elements (characteristics, deployment models, service models) that compose
the cloud model as presented in Figure 2.3.

Primarily, cloud computing is distinguished by five basic characteristics that de-
scribe its scope. For enabling pooling of computing resources, consideration had
been given to multi-tenant model'* to serve the numerous consumers as often as
needed. This is made using different physical and virtual resources. The provision
of resources is elastically built to rapidly scale inward and outward proportionate.
Thus, from point of view of a consumer, the capabilities appear to be unlimited.
Resource usage can be measured by the consumption of storage, processing, band-
width, or active user accounts based on “pay-per-use” basis that determine the con-

sumer charges.

As shown in Figure 2.3, there exist four deployment models for cloud infras-
tructure functioning: private, community, public, and hybrid. As their names in-

dicate, each model is distinguished depending on how a cloud consumer may be

12Grid computing is a distributed computing form that combines networked computers acting with
each other to perform very large tasks.

B3Generally, virtualization refers to the process of creating multiple Virtual Machines (VMs) on a
single physical device. This allows to run multiple instances of operating systems on one computer
system concurrently. For more information see section 4.2.2 of chapter 4.

4Multitenancy enables sharing of resources among consumers to support many concurrent users
at once.
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Figure 2.3: NIST basics of cloud computing.

allowed to access the computing resources. The NIST definition comprises three
models for service provisioning: (i) Software as a Service (SaaS), (ii) Platform as a
Service (PaaS), and (iii) Infrastructure as a Service (IaaS), in which providers and
consumers of cloud systems share the control of available resources, as illustrated in
Figure 2.4 [35]. However, Everything as a Service (XaaS) [36] has also been intro-
duced as an exhaustive denotation to express other emerged service models. These
models are briefly highlighted in the following.

Cloud Consumer

w
©

Application Layer A

PaaS
laaS

Middleware Layer

SaaS

PaaS

Operating System
Layer

IaaS

Cloud Provider

Figure 2.4: Scope of controls between providers and consumers in a cloud system. For in-
stance, a middleware layer enables PaaS consumers to develop their application software. On
the other hand, this layer is hidden from SaaS consumers and managed by IaaS consumers
or PaaS providers [35].
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Software as a Service

The services provided to users with SaaS encompass applications and data as Web-
based applications. In a SaaS environment, the provider is basically responsible for
everything about storage, system monitoring, and so on [37]. There are many SaaS
providers such as Outlook.com, Google Drive, and Salesforce.com.

Platform as a Service

PaaS provides an operating system with platforms of development and database
to the customers. Examples of PaaS providers can be given by Windows Azure and
Google App Engine.

Infrastructure as a Service

IaaS offers basic services such as computing power, storage, networking, and oper-
ating systems, where the customer can construct his environment above. A well-
known Iaa$S provider is Amazon EC2 [37].

Everything as a Service

There are various emerging delivery models that has been identified, in the course
of time, to provide anything “as a Service” via the internet. XaaS, the acronym for
Everything as a Service [36], covers not only the above three known models but also
any kind of provided computing services. This encompass a wide variety of comput-
ing resources or capabilities including applications, tools, data, communication and
so on. For instance, Discovery as a Service (DaaS) [38], Robot as a Service or RaaS
(see section 3.2.1 of chapter 3), and PHM (Prognostic and Health Management) as

a Service [39] are illustrations of XaaS concepts.

2.5.2 SOA and cloud computing

Indeed, one of the key elements in architecting and delivering cloud services is SOA
[40]. SOA constitutes one of the major assets of the cloud technology. As described
in [41], “SOA is to offer services which are based on open standard Internet services and vir-
tualisation technology and have been running in a different environment, grid offers services
from multiple environments and virtualisation, and cloud combines both” .

17



Chapter 2. Fundamentals

SOA guides business process management for creating, organizing, and reusing
the computing components. It provides independent, reusable application func-
tions as services. On the other side, cloud computing is more technical model that
addresses many technical details, which services a bigger and more flexible plat-
form [32,42]. The five characteristics defined by the NIST for cloud computing [34]
must be satisfied in a cloud computing service, but they considered as optional fac-
tors in SOA services [32].

Thus, the relationship between cloud computing and SOA can be compared with
the relationship between web services and SOA [32,43]. SOA can be used without
or with web services. Similarly, cloud computing uses SOA, however, it is possible

to implement cloud computing without having an SOA [43].

2.6 Cloud Robotics: An overview

With the rise of the World Wide Web and Internet, many initiatives have been re-
volved around the connection of robots to the global network. Robot teleoperation
via internet browsers, remote computing for robot control, and networked robotics'
received much attention since the 1990’s [1]. Over the last decade, the focus of
robotic systems development is oriented to the integration of cloud computing prop-
erties, where robots can meet their needs as an on-demand solution. This refers to
“Cloud Robotics” term that was announced for the first time in 2010, in [44], by

James Kuffner [1].

Various projects (e.g. the European Union funded “RoboEarth” [45] and “RAPP”
[46] projects) and architectures (e.g. [47-57]) have been designed and developed
around the cloud robotics topic. Indeed, two fundamental goals were addressed:
(i) knowledge sharing among robots, and/or (ii) offloading robotic computational
tasks to the cloud. However, diversity of proposals can be observed from one work
to another. This is mainly related to the various robotic fields and case studies on
one hand, and to the variety of used technology innovation, including architecture
styles, protocols, and frameworks on the other hand. We summarize the scope of a

sample of these different works in Table 2.1.

As stated in [62,63], there are some challenges and issues in cloud robotics that

should be addressed. This includes: (i) Resource allocation and scheduling, (if)

5Networked robotics is the study that aims to communicate the robots with each other.
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Data heterogeneity and their exchange between robots and cloud platforms, (iif)

Data privacy and security, and (iv) Network latency.

2.7 Conclusion

This chapter outlined our thesis’s main axes: ROS, SOA, web services, and cloud
robotics. We have presented specifically the fundamental concepts and definitions
that are related to these concepts. We have also introduced the cloud robotics domain
by presenting a set of its architectures. The use of ROS will be presented more in
chapters 4 and 5. The following chapter aims to present a review that underline the
Service-Oriented Robotic Architectures.
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Chapter 3. Service-Oriented Robotic Architectures

3.1 Introduction

In this chapter, we investigate the works discussing the use of SOA, Web services
and cloud computing concepts, as main sources of robotic services. We carried out a
comparative analysis that targets their objective, scope, architecture, robotic service
design, application and evaluation criteria. The review process starts with keywords
such as (“Robotic” OR “Robot” OR “Cloud Robotics”) AND (“Services” OR “Service-
Oriented” OR “Discovery”) AND (“Architecture” OR “System” OR “Software” OR “Ap-
proach” OR “Applications” OR “Middleware”). The identified and selected articles for
this review shows that the works in this area are published with different research
proposals that are diverse in many levels of both system conception and develop-

ment.

Through a comparative analysis, this chapter is drawn on three main axes. In
section 3.2, we propose a classification of the literature of service-oriented robotic
architectures into four main models. Then, we conduct a comparison about the de-
scription, discovery, and applications of robotic services for exhaustive state of the art
of each proposed model in section 3.3. Furthermore, the main issues of the reviewed

works are discussed in section 3.4.

3.2 Service-oriented robotic models

The ongoing efforts to define and improve the research of SOA and cloud-based
robotic solutions result in the appearance of various studies. Preliminary work in
this field focused primarily on designing flexible software for robotic systems, and
it grows vaster for further improving existing problems and developing new ap-
proaches. However, a huge diversity can be observed from one study to another.
Indeed, it is difficult for readers to identify and follow the comprehensive analysis of

the domain due to the heterogeneous scopes, architectures, and used technologies.

To address this issue, we conducted in this chapter a global overview on the emer-
gence and evolution of research directions. We classify the existing service-oriented
approaches and architectures for robotic service delivery based on the scope of each
proposal. Therefore, we identify four major service models as illustrated in Figure
3.1. The diversity is revealed in the significant difference between the propositions

with regard to the provision of robotic services, which is introduced through the as-
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Figure 3.1: Service-oriented robotic models.

pects of each category. We review the key concept, contribution and related works

of each model as follows.

3.2.1 Robot as a Service (Raa$S)

As the “Robot as a Service (RaaS)” term indicates, this concept reflects on the use,
and the access to the robots as an on-demand service throughout the Internet. Users
at the client side can manipulate their server-side robots by handling robotic software
such as algorithms of robot navigation remotely. SOA and web services technologies
have played a significant role in building the background fundamentals of RaaS,

which has known a significant growth in its implementation.

RaaS concept was invented for the first time by Chen et al. in [64] with the inten-
tion of building a kind of robot that has the function of the SOA architecture as cloud
units, as shown in Figure 3.2. As a proposed implementation of this idea, users were
able to manipulate robotic services and applications remotely, using the robotic en-
vironment MRDS. Subsequently, various initiatives were taken around the design of
RaaS.
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Figure 3.2: RaaS in cloud environment [64].

The concrete application of this model was given initially through the remote
laboratories and remote monitoring of robots [5, 64-69]. However, quite recently,
Raa$ implementation was oriented to provide more flexible services by offloading
computational capabilities, storage, and communication of various applications to
the cloud using SOA [54,70-72], or without it [73-76].

In [54] for instance, Du et al. introduced the idea of “Robot Cloud” that integrates
RaaS into the cloud platform. As the authors pointed, unlike James Kuffner’s cloud-
enabled robotics (see section 2.6 of chapter 2), the work’s objective is to form robots as
an integral element of the cloud computing service. Robots can communicate with
one another, instead of acting as separate entities capable only of exchanging data
with remote servers. The authors develop a prototype, using the popular Google

App, and a mechanism of scheduling robot services that adopts the benefits of SOA.

Recent study [72] uses RaaS to facilitate the seamless integration of robots into a
cloud robotic system that enables the switching between several tasks using shared
data. The mechanism is conducted by transmitting the surrounding environment
information sensed by the robot to a fog' service node in order to receive the anal-
ysis result and the control information. More recent studies have also focused on
network communication improvement for the effective control of robots by empha-
sizing on several protocols including ROSLink and MAVLink [71], MQTT and CoAP
[78], REST [79], and WebSocket protocol for implementing a ‘plug-and-play” solu-
tion [80].

'Fog computing [77] is considered as a form of computing that enables computing, storage, net-
working closer to the users.
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3.2.2 Cloud-enabled Robotic Services (CRS)

Unlike RaaS model, some of the architecture designs push the vision of obtaining and
consuming hosted services for robots, rather than accessing and controlling them.
We refer to this group as the “Cloud-enabled Robotic Services (CRS)”. Similarly to
works that support the cloud robotics paradigm, this approach adopts particularly
on the same process in data exchange and acquisition between robots and clouds.
The cloud storage provides a service for robots where the data about tasks, environ-
ments, users, etc., are available and remotely accessible over a network, usually the

internet.

Works based on this approach are quite diverse. Heterogeneity of the proposals
is mainly related to robotic services representation and how these services can be
used or accessed. For instance, the interpretations of the robotic service concept are

outlined by the following contributions:

RSi-Cloud

For providing more useful and attractive services, Kato et al. proposed “RSi-Cloud”
in [81], in order to combine current internet services with robot services. RSi defines
robot services as “information services and physical services provided via computer net-
works”. This definition consists of providing robot services on the cloud, and robot
applications on the robots using RSNP protocol. Numerous services may be pro-
vided to different robots due to service profiles classification. Another implementa-

tion of this proposition can be found in [82].

Cloud Networked Robotics

This research [49] is intended to overcome the limitations that cannot be met alone
or in conjunction with networked robotic services. As reported in [49], robotic ser-
vices were considered as “systems, devices, and robots with three functions: sensation,
actuation, and control”. The work’s attention was to gather logically such devices to
create a cloud of robots via network connectivity in order to achieve an integrated
system for supporting daily activity using the available resources on demand. Using
the Ubiquitous Network Robot Platform (UNR-PF) [83], as a layer of intermediary
between the service application and robotic components, a case study in a shopping

mall was released in order to enable multi-location robotic services in daily activities.
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Robotic Service as a Service (RSaaS)

Under the name of “Robotic Service as a Service” (RSaaS), authors in [84] distin-
guish the model in which “the robotic system deliver high-order services to the end-users
to complete a robot task”. Examples of this model are given by social robots that inter-
act with users who need news, information, etc., by connecting to the cloud. RSaaS
model can be given by the RAPP project [46] (see Table 2.1 of chapter 2).

Robotics and Automation as a Service (RAaaS)

An implementation of this concept is presented in [85]. “RAaaS was introduced in [1],
and it is the robotics equivalent model of SaaS. In RAaa$S the software modules are stored on
a central cloud server and provided to the users/robots over the internet” [85]. A SaaS-
based architecture was also proposed in [86] who intend additionally to make the
source code publically available for users as a PaaS Implementation. The proposed
framework is applicable to systems with a single or multi robots, where robots are

linked to a JavaScript-based cloud server via use of web sockets.

Robot Inference and Learning as a Service (RILaaS)

Authors in [87] introduced a RILaaS platform for offering user-based inference in or-
der to deploy models of deep learning. It distributes the queries for trained models
either over cloud or edge” based on their resource consumption. RILaaS experiments
were presented for serving deep models of both grasp planning and object recogni-

tion as a service.

SOA-based architecture

Initiatives around providing reusable robotic services in CRS with SOA can be found
in [88], [89], [90], [91]. In [91], a web service-based layered cloud robotics architec-
ture that is inspired by [50] was proposed. The approach integrates web services
technologies to describe robot packages as an on-demand solution. In [92], Oliveira
et al. developed a tool that enhances service cataloging and discovery for ROS. The
search strategy is built on the basis of a semantic taxonomy with common vocabu-

laries that organize knowledge about the domain. The work is presented without

2Edge and fog computing share the concept of computation to the edge of the network, but [77]
provides a distinction, in which fog computing further involves computing, networking, storage, and
control.

26



3.2. Service-oriented robotic models

integration of cloud computing technologies, nevertheless, it can be considered as a

step for cloud services search.

By developing respectively context-aware and emotion-aware dialogues for the
development of robot dialoguing services to achieve natural human-robot interac-
tions and enhance user experiences, a cloud-based SOA is adopted in [93] and [94].
The proposed frameworks target two types of dialogue services: (i) domain-specific
dialogues that provide knowledge services of a certain domain through a question-
answering manner between the user and the robot, and (ii) task-specific dialogues
that accomplish a given task’s objective by iteratively performing human-robot dia-
logues to adapt to the user’s purpose or preference in relation to the task’s goal.

3.2.3 Multi-Robot-based Services (MRS)

Multi-robot research is the study that focuses on the cooperation of robots with each
other to perform tasks, which would be difficult or impossible to be accomplished
by individual robots. We refer to service-oriented applications in such systems as
“Multi-Robot-based Services (MRS)”. The main addressed aspects in MRS are as

follows:

Cooperation architecture in MRS:

One of the challenges in MRS is to design an architecture that has the ability to
provide a common way to deal with the heterogeneous hardware and software of
robots. Thus, this is an essence of bringing SOA into this sector in diverse applica-
tion domains such as collaboration of mobile service robots (e.g. [95], [96]), robotic
swarm system (e.g. [97], [98]), and UAV (Unmanned Arial Vehicles) applications
(e.g. [99-101]).

A layered multirobots cooperative architecture with SOA was introduced by Cai
etal. [102], as shown in Figure 3.3. At the start of the multi-robot cooperative serving
process, a service applicant provides its service descriptions to the layer of service
translation in order to get standard descriptions. Therefore, this layer is in charge of
translating dissimilar communication language into corresponding service descrip-
tion with a uniform format, which allows multi-robots to interact with one another.
Then, the standard descriptions are sent to SOA interface layer, where the descrip-
tions and additional application data will be packaged and submitted to service reg-

istry center. When the application is received by the service registry center, it will
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Figure 3.3: Layered multi-robots cooperative architecture [102].

send the information and service licenses of the most appropriate providers to the
service applicant to connect with.

In [103] and [104], authors aim to develop a web-based entity that uses service
robots represented as collections of web services to create and execute plans for com-
pleting tasks provided by a user. A centralized control architecture, used for the allo-
cation in the shortest possible time of numerous robots, was presented. To represent
the task knowledge, OWL-S was combined with Prolog and ROS Python using dif-
terent ontology-based knowledge representations.

Communication and Service scheduling in MRS:

The communication in MRS refers to applications of networking that allow robots
to dynamically discover each other. The framework of distributed coordination of a
robot swarm [105], and the middleware for mobile robots inside a fleet in an ad-hoc
network [106] are examples of this application that exploit the Universal Plug and
Play (UPnP) for service discovery protocol.

The robots” communication with the cloud was addressed in [107]. The aim of
the study was to introduce a SOA architecture that is distributed on cloud to address

the issue of localisation in cooperative multi-robot systems. Differently, Zhou et al.
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in [108] proposed an algorithm of Circular Area Search (CAS) for the scheduling

problem of regional service in SOA cloud platform for multi-robot service.

Some authors, as in [109] and [110], address the issue of cloud-based multi-
robotic services in real-time applications such as fire emergency management, which
necessitate instantaneous responses and transmission of data between robots and the
cloud. The solutions exploit the concept of Edge Cloud [77] to address mainly the
communication latency constraint, via the execution of the latency sensitive and ser-

vices requiring a high level of computation closer to the work environment.

3.2.4 Robotic Service Composition Middlewares (RSCM)

Robotic Service Composition Middlewares (RSCM) are the set of development plat-
forms that address the issue of service composition for robotic systems. Service com-
position “consists of creating new complex services by combining the existing atomic services
that cannot satisfy the needs of complex robot tasks” [111].

Multiple works have been designed around RSCM by exploiting the web service
architecture, using OWL-S to describe knowledge about services semantically. This
includes development platforms for robot action sequences [97,98,112-114], [103,
104], and those that enable robots to utilize heterogeneous resources in ubiquitous

computing [115-117] and ambient intelligence [118-120] environments.

In a different context, cloud-based architecture for RSCM have focused on pre-
senting architecture for distributed and virtualized environments [121], [122], [123],
[124], [125]. This involves different context of applications including scheduling
[121], resource allocation [125], integration of robots in ambient [120] and cyber-
physical [124] systems, and others [103,104].

3.3 Description, discovery, and applications of robotic

services

In the context of the service reuse principle, discovery is critical [26]. Reuse of ser-
vices requires us to find the services that exist, and to examine them to decide if they
perform the functions required, provide the appropriate qualities of service, are reli-
able, and so on [24]. Therefore, the first step toward service reuse and consumption

is discovery [26]. For this purpose, The service must be published along with a col-
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lection of descriptive data to be effectively searched in response to criteria-driven
queries [26,126]. This information consists of (7) functional meta data that describes
what the service is capable of, and (ii) QoS meta data that encompasses behavioral

characteristics, limitations, and interaction requirements [126].

Generally, there are two forms of discovery: manual process and automatic pro-
cess called “runtime discovery” [126]. Runtime discovery provides programmatic
interfaces into service registry repositories that build programs and services capa-
ble of issuing dynamic discovery queries [126]. However, Rosen et al. [24] pointed
out that service discovery does not necessarily have to be based on a repository, but
should provide mainly:

e A catalog of available services.

e Ability of identifying potential services through sophisticated search capabili-
ties.

e Capabilities for examining a service in order to identify if it is appropriate for
the desired usage.

e Metrics on service usage.

In robotics, there is only few researches that have addressed the issue of service
discovery as a research axis, such asin [ 105] and [92]. However, most of the works of
RSCM model that have focused on web service composition have indicated a search
process, by using ontologies for identifying the services to compose. Also, service
discovery for robots has been announced in some works of MRS model to dynam-
ically discover each other. On the other hand, there is a lack of service discovery
proposals in both RaaS and CRS models.

To highlight this issue, a comparative analysis with the reviewed papers of differ-
ent models is given in the initial and continued parts of Table 3.1. The comparison

is made according to:

1. Model: That targets the model of each work according to the four identified

service models to define the scope and focus of works.

2. Software process: The software process encompasses the details of software
proposals and system design. This includes the service representation, its re-
quirements and meta data, service description language, communication pro-

tocol and the discovery process, in which we have indicated if the similarity
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criteria between services and compatibility of services with different robots are

discussed or no.

3. Cloud deployment: Respectively, cloud deployment outlines: (i) the cloud ser-
vice model, i.e. SaaS, PaaS or IaaS, (ii) the way of realizing the cloud solution,

and (iii) the robot-cloud communication mechanism.

4. Case study and Robotic tools: Which summarize the experimental robotic set-

tings, including the robotic system, case studies and the used robots.

5. Experimental analysis: That describe how the results are evaluated according

to the evaluation criteria and comparison with other works.

As we can observe from the parts of Table 3.1, each solution is addressed with
different aspects, thus, there is no standard use in the the software process from the
conceptual perspective, among others, the representation of robotic services (e.g.
[92], [122]). Additionally, each study targets specific scope factors and it has its own
data and conditions of implementation for building the service-based middleware,
in which the experimental results are discussed. Therefore, this is the reason behind
the absence of experimental comparison criteria, contrary to domains that provide
benchmarks and standard data for comparison and validation. Nevertheless, it is
essential to emphasize that ROS is among the most widely used frameworks, in par-
ticular, for service robots, which provides a standard development framework for

robotic software, and allows reuse of codes between.
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3.4 Discussion

As illustrated in Figure 3.4, the trend towards introducing service-oriented solutions
in robotics has been receiving much attention in the literature, and has been evolved
alot in the last five years. In the remainder of this section, we discuss the review find-
ings and research issues of the conducted analysis on both cloud and SOA-related

aspects.

3.4.1 Deployment model and Service Level Agreements

Although there has been numerous research around the design of cloud-based SOAs
in robotics, the integration of the cloud and its service models in such systems from
the aspects of architecture modeling, resource virtualization and implementation
process was not highlighted until 2017 [54], [121], [91], [125], [109], [71]. Instead
of implementing a remote intercommunication with robots via Internet under the
name of cloud, the set of studies that has been conducted accordingly has turned
the “robotic service” concept into more powerful service models by providing Soft-
ware, Platforms and Infrastructures as an on-demand service through virtualized

computing resources.

As presented in the continued parts of Table 3.1, realizing the cloud solution in
each study was conducted following the private deployment model [34, 35]. The
exclusive access and usage of the computational resources are given to local users
in order to establish the set of local case studies. The concern of researchers is the
validation of the used technology innovation without any consideration of shared
concerns between different cloud consumers that belongs to different organizations
or the general public. The cloud architecture implemented through the public net-
work shown in Figure 3.4 are presented in a real-time performance and networking
over internet privately, which is not related to the cloud deployment model. The
approach proposed in [91] addresses the issue of collaborative multi-clouds system
that is comprised of many providers, but its implemented solution needs an empiri-

cal validation in this context.

During the review, we found that this way of system architecting among the ma-
jority of researchers has influenced significantly the SLA [35] contract definition and
use. At present, there is a lack of SLA management in SOA-based cloud robotics sys-

tems. Generally, the set of QoS requirements of the on-demand service offerings is
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Figure 3.4: Historical overview of the reviewed works of the service-oriented robotic models.

defined in a given SLA, which leads to a regulated relationship between the service
provider and consumers [91], [125]. Thus, SLAs are highly required and need to be
addressed to specify the terms fulfilled by cloud providers, especially in multi-cloud

environments.

3.4.2 Representation and description of robotic services

Robotic services are varied. Robotic service denotation is used in PaaS [54] and
IaaS [76] to refer to the computing resource offered by the service model. In SaaS, it
is generally understood to mean software components [71], [85], [91], [123], [125]
such as algorithms and applications of navigation, object and voice recognition, or it

can refer to entities like images [122], dialogue services [93], [94], or deep learning
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models [87]. Different technology styles have been considered for service deploy-
ment implementation including SOAP [5], [71], [91], [121], REST [5], [71], [79],
microservices® [78], [123], OWL-S [103,104], and others, as outlined in Table 3.1.

The most used standard format for describing the service is WSDL. WSDL pro-
vides a description that includes the name, address, operations, inputs and outputs
of the web service. Nevertheless, there is a need to describe and standardize more
the content of the service, and keeps the aspect of the encapsulation. Robotic ser-
vices should provide more information about their capability, which characterize
their functionality and applicability on the different types of robots. In that regard,
exploiting the semantic descriptions and strategies that have been widely used in
RSCM frameworks (see Table 3.1) may offer an improvement to the definition and
description of cloud robotic services (e.g. [124]).

3.4.3 Deficiencies in SOA implementation: Robotic service discov-
ery gap

Service implementation in the matter of SOA life cycle process in robotics still has
several deficiencies. Most of the studies have focused on SOA as a mechanism that
provides service encapsulation and loose coupling between system modules. How-
ever, there is less focus in the literature on the dynamic discovery for enabling the
reuse of services. Despite the interest of introducing SOA, this drawback affects the
implementation of services as discoverable entities, which is the fundamental scope

and focus of service-oriented architecture style.

Research on service discovery has been investigated in some earlier work of MRS
(e.g.[105],[96]), RSCM (e.g. [120],[114]), and in [92]. It has taken many initiatives
and modeling techniques that involve semantic technologies and ontologies to cover
the underlying background of MRS and RSCM models. But the research has known
a lack in the recent and cloud-based systems as shown in Table 3.1. For instance,
authors of [54] proposed a scheduling algorithm of robots based on the customer’s
request. In [76], a discovery mechanism that targets the use of IaaS for robots when
needed was proposed. [93] and [94 ] adopted deep learning for the answer searching

and selection mechanisms in dialogue services between the user and the robot.

3Microservices are small and independent processes that can communicate together to build com-
plex applications.
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As presented in 3.3, service discovery is the phase that enables the service con-
sumers to find relevant services by offering a list of candidate services, through
matching the set of descriptive information of published services with the consumers’
criteria. Hence, there is a lack of this scope in the cloud-based service-oriented ar-
chitectures. Some authors have discussed the impact that service discovery offers to
use the available robotic services, especially, for the future issue of service composi-
tion [123], [111], [125]. Nevertheless, there is a gap that lies in the absence of sophis-
ticated search capabilities for identifying potential cloud robotic services provided
by different service providers that can help users to find relevant services. This in-
volves the capability of examining the published robotic services, which can be even
similar, depending on: (7) the needs of service consumers, and (ii) the compatibility
between the service and the various kinds of robots. Indeed, the problem of finding
relevant cloud services that can respond the needs of robots remains a challenge that

is not fully addressed.

3.4.4 Robot Operating System and case studies

As shown in the continued parts of Table 3.1, ROS is the most used robotic frame-
work. This is due to the set of ROS benefits including its compatibility with many

robots due to its development support for software reuse.

The set of case studies and used robots (see Table 3.1) in cloud-based SOA robotic
solutions show that they are implemented to support service robotics in a variety of

environments where mobile robots are employed, and less use in the industry [124],
[127].

3.5 Conclusion

SOA is considered as a key element for providing services over the internet in robotics
applications, which have known a growing shift into cloud-based architectures. In
this chapter, we have proposed a classification of research proposals in the liter-
ature of this area. We propose the following service model: Robot as a Service
(RaaS), Cloud-enabled Robotic Services (CRS), Multi-Robot-based Services (MRS),
and Robotic Service Composition Middlewares (RSCM). This classification is made
according to the provisioning and delivery of robotic services as well as the architec-

ture of different approaches. In addition, we have conducted a comparative analy-
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sis that examines the software modelling and experimental deployment of the pre-

sented works.

The result of the study shows that the works are diverse in many levels of both
system conception and development. From a conceptual point of view, we have no-
ticed that the web services technology have been widely used in robotic services
representation. However, the standardization of representation and robotic services
discovery have not received enough attention. The next chapter will present the the-

sis’s contribution axes.
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41 Introduction

The development of on demand software for robotic service provisioning is grow-
ing. By the encapsulation of implementation details and offering loosely coupled
application functions, the use of SOA provides a solution to the response of software
development problem for robots. However, as presented in section 3.4 of chapter 3,

there are a set of issues about service-oriented solutions.

In this chapter, we present the first contribution addressed in this thesis based on
the defined issues in the previous chapter. We present our proposed architecture as
“Robotic Services as a Service” (RSaaS) approach. To that end, we highlight firstly
the scope of RSaaS in section 4.2. Next, we present the actors, architectural elements
and modules that build the RSaaS architecture in section 4.3. The experimental set-

tings that have been used to develop the system are summarized in section 4.4.

4.2 Highlights

Unlike traditional robots that use a large number of devices for storage, calculation
and processing, they can use less expensive and more effective hardware due to
cloud robotics. Based on that, our proposed solution addresses the drawback about
SOA implementation in cloud robotics systems for service provisioning. We present

in this section the main items that are addressed by our proposals.

4.2.1 Robotic Services as a Service scope

The change in the form of service distribution, which has been introduced by cloud
computing into robotics, motivated our proposed solution for robotic services deliv-
ery. Our work aims to propose an architecture for delivering “Robotic Services as a
Service” (RSaaS) to the robots as a CRS model (see subsection 3.2.2 of chapter 3), by

leveraging the advantages of cloud robotics and web services.

Indeed, we notice in the first place that there is a lack of using classical cloud
computing architecture, which is based mainly on virtualization concept, in SOA-
based works. The studies that has been conducted accordingly have designed the
cloud solutions as client-server model for remote intercommunication with robots
via Internet. This influenced the real aspect of cloud computing that provides pow-

erful service models by providing Software, Platforms and Infrastructures as an on-
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demand service. For this reason, we addressed this issue and we proposed an ar-
chitecture firstly in [91], by extending the cloud robotics solution of [50] with web
services technologies.

We proposed subsequently the detailed architecture of this work in [128] that fo-
cus on providing a complete SOA-based architecture for service provisioning. The
proposed approach extends the architecture [91] that has discussed the service search-

ing topic mainly without a particular mechanism.

The proposed approach [128] presents a full SOA-based approach, in which robotic
ROS tasks are considered as web services, according to a defined representation, that
are hosted, virtualsed, and delivered over a cloud infrastructure. The idea of host-
ing robotic software is also addressed in [85]. However, the work does not consider
robotic services as web services, and does not discuss how the software can be virtu-
alsed and discovered. The addressed aspects of CRS-based works are different from
our contribution, which is more focused on the SOA context, technologies, methods
and tools. We denote this approach by “Robotic Services as a Service” or “RSaaS”.
Although this denotation is given by the taxonomy proposed in [84], our definition
presents another approach for RSaaS. Indeed, according to [84 ], RSaaS refers to user
service that are obtained from the cloud using robots, which can be given by the
RAPP project [46] or dialogue-based systems [93,94] (see CRS model in subsection
3.2.2 of chapter 3).

4.2.2 Virtualization concept

Cloud computing has becoming increasingly used paradigm. This is mainly shown
by the numerous cloud providers that are engaged in the creation and delivery of
various computing services. Indeed, “virtualization” is the engine that enables this
paradigm change in computing, and in particular, “machine virtualization” [129]. Vir-
tualization abstracts some physical component into a logical object, in which we can
acquire a higher level of utility from the resource. [130]. It creates the artificial view
that many computers are one computing resource or that a single machine is many

individual computers [131].

Instead of owning the computing resources, cloud computing applies virtual-
ization to enable consumers to access them as a service using cloud data centers.

Virtualization allows the computer systems” hardware resources to be divided into
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a number of different execution environments known as Virtual Machines (VMs).
VMs can be classified based on how much functionality they implement of the tar-
geted machines' [132]. Each VM can act as a complete system to execute the user
applications in isolation with other VMs. A VM is defined in [133] as “a complete
compute environment with its own isolated processing capabilities, memory, and communi-
cation channels”. Accordingly, there are several benefits of virtualization for enabling
cloud computing, including execution isolation, easier management, and enhancing
reliability [129].

For hosting a VM, everything a VM needs in terms of CPU, memory, storage and
network bandwidth is provided by a physical machine or a server. The VMs are
managed within the physical machine by a layer of software anointed VM Monitor
(VMM), or as it is commonly called a hypervisor. A hypervisor resides below the
virtual machines (guests) and above the hardware (host) [130,132]. There are two
categories of hypervisors that are generally named [129,130]:

Type 1: A Type 1 hypervisor does not require an operating system since it runs
directly on the physical hardware. It has direct access to hardware resources, and
the guest does not affect the hypervisor on which it is running. VMWare ESX, Xen,
and XtratuM are some examples of Type 1.

Type2: Type2hypervisorsrunatop a traditional operating system. They are straight-
forward to install and deploy because the operating system handles most hardware
configuration tasks, such as networking and storage. Examples of Type 2 can be
given by the KVM, VMware Workstation, VirtualBox, etc.

4.3 Robotic Services as a Service architecture

The RSaa$ solution provides both of robotic services, which are delivered to be con-
sumed “as a service”, and virtualized computing resources that enable to run these
services, on different instances, according to desired requests. The description of the

architecture will be presented in the following subsections.

IThere are four major levels of virtualization that can be distinguished: full virtualization, para
virtualization, hardware assisted virtualization, and resource virtualization.
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4.3.1 Overall system

The overall architecture of RSaaS is shown in Figure 4.1. In our design, a robot ben-
efits from the computational resources, storage, and necessary software to perform

its required task. The main features of the architecture are summarized as follows:

¢ Different robotic software or services as navigation, object or voice recognition
algorithms can be used “as a service” for robots. Unlike the pre-programming
of robots that addresses limited use cases, robotic services can be discovered
and invoked dynamically to respond to the various needs of robots, which al-

lows them to adapt to their situations and be more autonomous.

e Robotic services can be obtained and accessed following the search of available

services over the cloud.

e Robotic services are proposed as Web services to benefit from all their advan-
tages as (i) data encapsulation, (ii) service reuse, (iii) and interoperability be-

tween services.

e The solution improves task performance of services by boosting computational

capabilities over the cloud infrastructure.

e The architecture provides full abstraction of system construction. Users are in-
vited to consume robotic services without knowing how the provided solutions

are built.

e From a cloud provider’s point of view, the system architecture is structured as
a layered architecture that is inspired from classical cloud computing architec-
tures [35].

e The cloud layers are hidden from robotic consumers, as it is the case in a cloud
system for computational resources delivery between providers and consumers
[35].

There are three levels in the cloud side:

1. The Physical level: It represents the set of physical resources, such as storage

servers, network equipments...etc.

2. The Virtual level: It contains virtual machines, which enables to provide mul-

tiple applications on multiple instances to serve a large number of customers.
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Robotic Services
P :«G\ .
A Search || Service il o
& g Module || descriptions !i!'| | 8 _
> S e 2O
I 3 ¢ (55
- N, Virtual layer =
@ T\ | (] (V) (V] ... J>
- ( Hypervisor
Physical layer

Figure 4.1: RSaaS System overview.

3. The Robotic Services level: In this layer, the robotic software are exposed as Web
services. Both of virtual and robotic services layers constitute the Virtual robotic

layer.

The collaboration of RSaaS architecture’s components is presented in Figure 4.2.
We distinguish a set of modules to define the RSaaS architecture. These modules are

highlighted in the following.

4.3.2 RSaaS virtualization and service model

In order to help robots to perform their required tasks, users can interact with the
virtual robotic resources of the cloud, through a Web interface, similarly to SaaS of-
terings. The cloud provider offers this virtual layer to customers that guarantee the
promised SLA. This can be based on pay-per-use mode that covers duration of use,
quantity and quality of resources. The cloud provider takes the responsibility of
installation, control, maintenance, etc, in which all the computational resources are

hidden from consumers.

The cloud virtual layer is constituted by a set of ROS Virtual Machines (ROS-
VMs) as shown in Figure 4.2. ROS-VMs are similar to virtual machines but with
specific tools. This provides a robotic operating system that is virtually executed in

the cloud environment. They are considered as robotic platforms where each one
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collects multiple robotic services. Such services enable to run corresponding ROS
codes that perform robot tasks. The system applies a dynamic attribution of ROS-

VMs according to service demand requirements.
Principally, a ROS-VM is composed by:

e An operating system (Ubuntu).

Robot Operating System (ROS).

Robots APlIs.

A set of Packages: A package, which is developed for robotic tasks perfor-
mance, contains source code for ROS nodes. These codes are encapsulated,

reused, and interoperable robotic services. They are proposed as web services.

4.3.3 RSaaS cloud actors

Cloud actors are intended to use, manage, and monitor the provided cloud resources
for keeping the system in good operating conditions, and to prevent any possible
failures. Mainly, these actors and the main features of their responsibilities are pre-

sented as follows.

RSaaS Client

At the client side, users can interact with the robotic resources of the cloud, through
a Web interface, to help their robots performing their required tasks. Hence, there

are two kinds of clients:

e Robot Owner: A Robot Owner is the end user that wants his connected robot
to accomplish a specific task. The robot owner makes an agreement with the
service provider by signing a service contract SLA that describes the Cloud-
Client features. The service contract is based on the achievement of the follow-

ing tasks:

— Search for candidate services: Authorized users are invited to access the
external web application for searching services remotely. According to
their requests, a list of candidate services will be displayed by the search

engine.
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- Select and execute best web service: Selecting and executing the best web
service among the search results by the user enables the performance of
desired robotic tasks.

— Establish Robot-Cloud connection: At the client side, a private network
must be configured for service invocation that requires an establishment
of robot connection to the cloud, across the public network, in order to

enable robots to receive action orders.

e Robots: This is the main actor. By being connected to the cloud, robots would
be able to use the suitable service to perform their required tasks of locomotion,

grasping, object recognition, etc.

RSaaS Cloud Administrator

The RSaaS Cloud Administrator plays an effective role in providing, and managing
the cloud computing resources for users and service providers. He manages the
entire cloud infrastructures and platforms. The responsibilities of a Cloud Adminis-

trator are:

e Resources Provisioning: This includes the resource allocation of ROS virtual
machines for certified customers, with a dynamic attribution according to the
demand.

e Resources Monitoring: This comprises the supervision of the system behavior
during execution including the platforms, the network management and secu-

rity.

e Network Management: Encompasses the configuration of the network and its

security. This comprises:

— User-Cloud connection: Includes the network configuration about the lo-

cations of hardware and the client settings.

— Robot-Cloud connection: Which enables the connection of robots to the

ROS-Cloud platform for executing the desired services.
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RSaaS Robotic Service Provider

Different web services can be available for use according to the multiple robotic tasks.
As presented in Figure 4.2, each service is created and provided by a Robotic Service

Provider. Its responsibilities can be summarized as follows:

e Setting pre-required tools: This step covers the installation, and the configu-
ration of all the required development tools and APIs on Ubuntu-based ROS-
VMs.

e Developing ROS programs: This operation includes the creation of packages,

nodes, compilation of codes to ensure the proper functioning of ROS codes.

e Publishing services: This procedure enables the services to be available and

dynamically discovered through their service interface and requirements.

RSaa$S Robotic Service Manager

The RSaaS Robotic Service Manager is the supervisor and manager of the cloud ser-
vice provided to end users, and has the following responsibilities.

e Establishing SLA contracts: In which responsibilities and features about the

provided cloud service are identified.

e Managing the RSaaS Engine: This is assured through the data flow monitoring
with the robot owner. It comprises also web service data extraction and setting

up of the computing environment for service invocation.

4.3.4 RSaasS life cycle process for service provisioning

The main focus addressed in this thesis targets the development of full SOA life cycle
process for ROS-based service provisioning. This requires the definition of service

requirements for the publication and discovery phases.

Service description and publication

Defining the requirements of the robotic service meta data is the first important issue
that needs to be considered for response to criteria-driven queries. From a software
engineering point of view [6], these requirements are viewed as key elements for

robotic application characterization and architecture modelling of service-oriented
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systems in robotics. Thus, in the first step in the life cycle process, we define the ROS-
based service requirements. This definition expresses the key features that charac-
terize the ROS web service from ROS itself. We consider ROS web services as SOAP
web services due to their completeness in service implementation, as presented in
subsection 2.4.3 of chapter 2. The Robotic Service Provider makes services available
and accessible by publishing the WSDLs of services. We also add a semantic de-
scription to these services by exploiting the opportunities of semantic web services
using OWL-S. The description leverages the semantic notations for expressing ROS

web service specifications based on the OWL language and ontologies.

Dynamic service discovery

Finding the appropriate service that can match the user request will provide a major
impact on clients’ satisfaction. Robots will be able to perform different tasks by the
search of available services. This will offer, for both software developers and users,
the opportunity to provide an abstraction of any platform requirements or robotic
software. This is due to the service discovery process that is intended to carry out
the appropriate service for robots, according to the matching of the requested task

with robotic service features.

To cope with dynamic discovery queries of services in RSaaS system, runtime
discovery is needed to assign different tasks to robots through accessing the suitable
service. ROS web services can have similar or different functionalities for different
kinds of robots. In such cases, the RSaaS search engine focus on matching strategy
that intended to retrieve the most satisfied ROS web services. Finally, the list of can-

didate services is ranked according to their score of similarity.

Dynamic service invocations

By selecting the best service, the system allows the invocation and access to the web
service remotely. It invokes the web service dynamically according to the extracted
data by parsing WSDL files (web service name and its operations with the inputs).
The communication between client codes and web services is ensured through SOAP

messages.

In addition, the service invocation requires the configuration of the network to
enable the connection of the robot, and the launching of robot’s ROS nodes, which

ensure the proper functioning of the service.
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4.4 Experimental settings

The list of tools and ROS technical requirements that have been used to develop the

system are summarized below.

4.4.1 Technical robotic tools

We hosted our robotic requirements in the cloud environment of Synchromedia [134],
in which we use virtual resources hosted on cloud servers across the internet. A
number of VMs of different usages (applications, authentication, web) were created
for our research team. The experiments of this work were performed on a VM that
has 3 GB of RAM memory, 4 processors, 100 GB of disk space, and Ubuntu server
14.04.

For a remote access to the graphical desktop of the VM, we used the open source
X2Go?Client under Windows and Ubuntu. All session configuration details (includ-
ing the Host, Session type, etc.) have been identified carefully at the first time of

creating a new session with X2Go.

The NAO robot

The case study for developed packages was performed using real NAO robot [135]
(see Figure 4.3), with the potential of solution reuse using simulated robots. NAO
is the first humanoid robot built by “Aldebaran”? society. Currently, it is used in dif-
ferent countries around the world as a particular platform for the fields of research
and education. The NAO robot was designed to have many senses for natural inter-
action to reproduce human behaviors. It can perform different functionalities such

as moving, speaking, thinking, etc.

NAO with ROS

On the Ubuntu 14.04, we installed the full desktop installation of ROS Indigo
distribution. In addition, to use NAO with ROS?, it is necessary that:

2X2Go Website: https://wiki.x2go.org.
3In 2016, Aldebaran brand name became “SoftBank Robotics”.
*NAO with ROS: http://wiki.ros.org/nao.
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58cm in height

Two 2D cameras 25 degrees of freedom

Speech recognition and
P g 7 touch sensors

dialogue in 20 languages

Open and fully programmable J 4 directional
microphones and speakers

platform

Figure 4.3: The NAO robot.

e The Nao packages should be installed to have the required components for
getting started with the robot. Hence, the needful commands that meet our

ROS version were applied.

e The NAOgi SDK should be set up as well. We used SDK version 2.1.4.13~

linux64°.

All basic actuators and sensor publishers for NAO become up into a running state,
after launching nao_full_py.launch® file of nao_bringup package by the fol-

lowing command:
e roslaunch nao_bringup nao_full_py.launch

Moreover, the NAO'’s IP (NAO_TP) and the IP of roscore’ (ROS_MASTER_URT)
must be exported, when starting the robot bringup command, to establish a correct

network connection between the robot and ROS’s computer.

To launch NAQqj, the following command should be run in a another terminal:
e ~/naogi/naogi-sdk-2.1.4.13-1inux64/naogi

To ensure its proper functioning, the NAOgqi library path should be added to
PYTHONPATH with the following command:

°Logged in and Downloaded from: https://community.ald.softbankrobotics.com/.

5With the ROS distributions, the launch file name can be different. For instance, in ROS hydro we
use nao_full.launch instead of nao_full_py.launch

"The roscore IP: is the IP of the computer where the ROS Master is running.

53


https://community.ald.softbankrobotics.com/

Chapter 4. Robotic Services as a Service approach

Nouvelle session E=Hon
__ =

1 EAppIicatiuns Menu [ radhia@sapp2: ~ 1 /home/radhia/catkin_ws/...

radhia@sapp2: ~
File Edit View Search Terminal Help
Hidden method setStiffnesses getCycleNumber: 2098

Hidden method setStiffnesses getCycleNumber: 2089
Hidden method setStiffnesses getCycleNumber: 269

Hidden method setStiffnesses getCycleNumber: 209
fhome/radhia/catkin_ws/src/nao/launch/nao full_py.launch http://localhost:11311
Hidden method setStiffnesses getCycleN| Fle Edt View Search Terminal Help
Hidden method setStiffnesses getCycleNi[INFO] [WallTime: 1522747774.866307] Changes recorded but not applied
is subscribed to the RO
Hidden method setStiffnesses getCycleN i B & n listener created on tcp:/
: TransportServer will listen
Hidden method setStiffnesses ge leNi.162.8.69
gimessagi sports r: TransportServer will listen on: tcp://127
Hidden method setStiffnesses getCycleN|.0.0.1:33763
[INFO] [WallTime: 1522747774.930317] reconfigure changed
Hidden method setStiffnesses getCycleNi[INFO] [WallTime: 1522747774.930563] Changes recorded but not applied as nobody
is subscribed to the ROS topics.
Hidden method setStiffnesses getCycleNi[INFO] [WallTime: 1522747774.971189] reconfigure changed
[INFO] [WallTime: 1522747774.971448] Changes recorded but not applied as nobody
is subscribed to the ROS topics
[INFO] [WallTime: 1522747774.994689] Connecting to NaoQi at 127.0.0.1:9559
on listener created on tcp
r: TransportServer will listen on: tcp://207

qi

.162.8.69:42849
gimessaging.transportserver: TransportServer will listen on: tcp://127

.0.0.1:42849

[INFO] [WallTime: 1522747775.085944] reconfigure changed

[INFO] [WallTime: 1522747775.087284] Changes recorded but not applied as nobody

is subscribed to the ROS topics

Figure 4.4: The Output of running NAOgqi and NAO bringup package under ROS via X2Go.

e export PYTHONPATH=/TheNaogilLibraryPath/1lib:${PYTHONPATH}

Figure 4.4 displays the output of the command launching the NAO (nao_bringup)
and the NAOqi as well, which is needed to be running in order for the launch file to

work.

4.4.2 APIs and ROS packages

We develop the NAO codes using rosjava library, which implements ROS with

Java language, after its installation.

To start working with rosjava packages, we need to to create and build catkin
packages. This can be built as a standalone project, however, it is recommended
touse a catkin workspace in which multiple packages can be built together. We

used the following commands to create and build a catkin workspace:
e mkdir -p ~/name_ws/src
e cd ~/name_ws/src
e source /opt/ros/indigo/setup.bash
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e catkin_init_workspace
e cd

e catkin_make

In this workspace, we create and build each catkin package using the follow-

ing commands:

e cd ~/name_ws/src

e catkin_create_rosjava_pkg name_pkg
e cd

e catkin_make

e source devel/setup.bash

Instead of running execution commands from the terminal and manipulating
ROS codes using the text editor, we used the rosjava library under Ec1ipse® IDE en-
vironment. We used Eclipse for Java EE Developers (jee-oxygen version) with
JDK 8. The tutorial [136] is a helpful source to start working with rosjava under

Eclipse, which is familiar to us as java developers.

To use rosjava in Eclipse, we have to create firstly in Eclipse a “Java Project” or
“Dynamic Web Project” as needed. Then, we need to “Configure Build Path” in order to
“Add External JARs” of rosjava that are found in the package created in: name_ws/src/

name_pkg/rosjava_project/build/install/rosjava_project/1ib’.

The execution of rosjava class from Eclipse is done using the toolbar of Eclipse by

the following instructions:

e Run — Run Configuration, then, we choose Java Application — New — [in the

tab “Main” we choose our rosjava project for Project, and ROSRun - org.ros

forMain class]then [inthe tab “Arguments ” we write name_pkg.name_class]|

— Apply — Run.

8Eclipse Desktop IDEs: https://www.eclipse.org/ide/.
9In case of using a “Dynamic Web Project”, we must copy these JARs also in WebContent /WEB-
INF/1ib of the project.
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Now, by launching your robot, you can see it executes the desired action of code.

We translate the codes to SOAP Web services automatically, using the server
Apache Tomcat!’(apache-tomcat-7.0.85 version), to keep instances of WSDL
files in the database and to avoid their recreation. To develop the ROS domain on-

tology and ROS service ontology, we used the Protégé editor [137].

In addition, the following java APIs were used for system development:

e WSDL4J: Used for parsing WSDL documents.

e std_srvsand naogi_msgs'!: Used respectively for defining “std_srvs” and
“naoqi_bridge_msgs” rosjava messages of appropriate web services. We rewrite
the jar file “naoqi_msgs” into “naoqi_bridge_msgs” with the necessary modi-
fications to make the version compatible with ROS Indigo version. Information
about ROS messages of developed web services are listed in subsection 5.5.1 of
chapter 5.

4,5 Conclusion

In this chapter, we presented our proposed approach for Robotic Services as a service
(RSaaS) concept, in which the solution aims to offer a full abstraction of any platform
requirements or software. The RSaaS combines the benefits of both cloud computing
and web services. A user can search for an appropriate service that respond to his
robotic request, which is assured by the service discovery process. The following
chapter aims to introduce the definition of this life cycle process.

10 Apache Tomcat: http://tomcat.apache.org/.
Urosjava_messages: https://github.com/rosjava/rosjava_mvn_repo/tree/master/org/ros/
rosjava_messages.

56


http://tomcat.apache.org/
 https://github.com/rosjava/rosjava_mvn_repo/tree/master/org/ros/rosjava_messages
 https://github.com/rosjava/rosjava_mvn_repo/tree/master/org/ros/rosjava_messages

- Chapter5

ROS Web service description and

discovery
51 Introduction . .. ... .. ... ... it 58
52 Generalscope . . . . .. . i it e e e e e e 58
5.3 ROS Web Service (ROS-WS): Requirements and discovery . . . . . ... .. 60

5.4 ROS Semantic Web Service (ROS-SWS): Description and discovery . ... 68
55 Casestudy . . ... ... it e e e e 72
56 Conclusion . ......... ..t e e e 89

57



Chapter 5. ROS Web Service description and discovery

5.1 Introduction

In this chapter, we present in details the two contributions that address the life cy-
cle process of ROS-based web service. The first contribution of ROS Web Service
(ROS-WS) relies on SOAP-based services and defines a set of characterization re-
quirements. The second contribution adds a semantic layer to ROS-WS on the basis
of OWL-S ontology and designs the ROS Semantic Web Service (ROS-SWS).

The motivation as well as related works of the context of our work are described
in section 5.2. In section 5.3, we introduce the ROS-WS definition and ROS-WS dis-
covery process with its flow of actions. Section 5.4 presents the cycle process pro-
posed for ROS-SWSs. This includes the ROS-SWS description, domain ontology, and
ROS-SWS discovery engine. Finally, we present in section 5.5 the ROS-WS/ROS-SWS

implementation, case study, and obtained results.

5.2 General scope

The main aim of ROS-WS/ROS-SWS contributions is the development of full cycle
process for ROS Web Services. We highlight in this section the scope about ROS-WS
and ROS-SWS.

5.2.1 Motivation and related works

The general scope of our work targets the drawback of service-oriented solutions, in
particular for ROS-based systems, by filling the gap between ROS Web services and
their discovery process.

In that regard, we import in the first place a definition of functional meta data
to ROS web services [5], [91], [121], which was proposed in [128]. The ROS-WS
definition describes the robot task representation from ROS requirements to present
a characterization of such web services. For finding these services, we compute the
similarity score between sentence embeddings of each service and user query using

sentence-BERT [7], by reinforcing the training dataset.

Secondly, we propose a semantic description ROS-SWS that build the ROS Web
Service as single-semantic unit, which expresses its ability through a ROS domain

ontology of properties and capabilities.
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5.2. General scope

The decription and discovery of ROS-WS and ROS-SWS are based mainly on high-
level semantic concepts of ROS messages [138] and independent of any case study

or robots.

5.2.2 Message and service types in ROS

The type of messages and services in ROS are data structures that are stored in “msg”
and “srv” ROS packages respectively. Both of these packages combine a set of com-

mon message and service types that share a common context of use.

ROS provides a standard naming manner for the type of messages: pkg_name/ms
g_file_name and services type: pkg_name/srv_file_name. For instance, ge-
ometry_msgs/Twist refers to Twist message type that is defined in the pack-
age geometry_msgs, which provides messages for geometric primitives. Each ROS

message or service can contain one or more fields'.

Tiddietal. highlighted in [ 138] the high-level semantic concepts of ROS messages
and their fields, which improve the accessibility to ROS. Each ROS message defini-
tion has illustrative names of fields and a description about their use. This allows
to extract capabilities and to identify how to parametrize this capability to achieve
the robot behavior, as shown in Figure 5.1. For example, it is possible to derive the
capability of “Movement” from data fields such as velocity or acceleration, in which

these are the parameters of this robot behavior [138].

This proposition gives an abstraction to the previous technical realization of on-
tology capabilities that relies on hardware/software architectures of robots such as
[103,104] and [139,140].

We consider accordingly the message and service ROS types as key aspect that
define the characterization of ROS-WSs and ROS-SWSs.

5.2.3 Distinguishing Robot-Service compatibility

In both ROS-WS and ROS-SWS search engines, we display the search findings after
distinguishing the robot-service compatibility and availability. This is due to the

convenient property of code reuse between robots offered by ROS. Therefore, we

1See geometry_msgs/Twist Message: http://docs.ros.org/en/api/geometry_msgs/html/msg/
Twist.html.
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Figure 5.1: Mapping ROS components to capabilities [138].

collect the compatible service according to the ROS requirements. Each ROS-based
robot has its own communication mechanisms through its list of own topics and
services. Thus, we can determine the possibility of using codes by different robots

across their communication mechanisms.

To that end, both of the robot name and task query must be indicated by the user.
By specifying the name of the selected robot, a matching of the registered Topic/Ser-
vice (T/S) of robot with those of web services is carried out. As shown in Figure 5.2,
we consider ROS topics (T) and services (S) as the condition factor of proper choice
of candidate services related to each robot registered in the database. A published
web service that provides the same name of topics (T) or services (S) of the selected

robot is considered as compatible service.

5.3 ROS Web Service (ROS-WS): Requirements and dis-

covery

Like any traditional web service, a ROS Web Service (ROS-WS) is an interoperable
software that can be accessed using standard Internet technologies. It could be seen
as a function that requires a set of inputs and provide an action as output. As a result
of web service execution, a robot will be able to perform different tasks. We present

in this section the set of requirements that characterize the ROS-WS based mainly on
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Robot Owner Search Engine

Select the Request for Match T/S of
robot's name a service robot with T/S of
web service
List of T/S
of robot [Else]
[Compatible
services]
Apply semantic
textual similarity

Figure 5.2: UML activity diagram for distinguishing Robot-Service compatibility.

types of messages and services in ROS, which provide semantic information about
ROS use.

5.3.1 ROS-WS requirements

We define the representation of ROS-WS, in SOAP format, as a set of “Functional
Requirements”. The specification of ROS-WS enables the service search and their use
depending on the users’ needs. We present in Figure 5.3 the ROS-WS metamodel. Its
core structure comprises three main parts: ROS Requirements, WSDL Requirements,
and Registry Requirements, which are composed of the following elements:

ROS Requirements

The ROS Requirements are the several ROS data that are used to generate a robotic
task of the web service. This includes:

e Node: Which refers to the ROS process that performs a robotic task. Generally
the name is explicitly referring to the task.
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o Message type: Messages describes the communication of nodes. Their message

types are important data structure that characterize the robot action.
Topic: Which express the transport mechanism for message publication.

Service: This refers to possible synchronous communication between nodes
through request/reply mechanism, which is similar to the notion of remote

procedure call.

Service Type: Each service has an associated service type.

WSDL Requirements

The WSDL Requirements are the set of web service data that are obtained by the web

services’ WSDL description, which enables the communication with client applica-

tions. Mainly, these requirements are:

Service Name.
WSDL location: We can access WSDL documents due to their links of URLs.

Operations: The operations are the public methods of services that client appli-
cations can invoke. An operation refers to the ROS method that enables a node

to perform a robot behavior.

Inputs: The inputs are the parameters used in each web service operation. They
represent the set of ROS message fields that parametrize the desired task of the

robot.

Output: The output is the action of a ROS capability, which can be derived from
message fields.

Registry Requirements

The Registry Requirements are the set of requirements that are indicated in the service

repository by the providers of services, in order to describe their services.

Category: The category of services is a kind of robotic tasks that share the same
context of use. Thus, it classifies the set of services according to such context.
For example, “object recognition” category includes different services from the
category of “grasping”, which collects the services that enable the robot to

grasp objects.
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e Description: A description is intended to provide everything relative to the use
of services for users. It is obtained from the description and names of fields of

ROS messages and services.
o Keywords.

o Predefined Input Values: In some cases, a list of predefined values must be de-
termined in input fields to ensure the correct use of web services. These val-
ues depend on ROS specification of messages fields. For instance, the field
joint_names []ofnaogi_bridge_msgs/ JointAnglesWithSpeed? mes-
sage, which controls the defined NAO joints, requires a set of predefined val-
ues for the joints of head, left arm, left leg, right leg, and right arm as follows’:
HeadYaw,HeadPitch, LShoulderPitch,LShoulderRoll,LElbowYaw, LE1—-
bowRoll, LWristYaw, LHand, RShoulderPitch, RShoulderRoll, RE1-
bowYaw,RElbowRoll,RWristYaw, RHand, LHipYawPitch, LHipRoll, LHip—
Pitch, LKneePitch,LAnklePitch,RAnkleRoll,RHipYawPitch, RHipRoll,
RHipPitch, RKneePitch, RAnklePitch, LAnkleRoll1.

In addition, to define the services among others, an Identifier (ID) is a unique

information that is generated for this purpose.

5.3.2 ROS-WS discovery

The request-service matching is applied according to the user query that denotes his
needs. We briefly present in the following the SBERT model that we have used and

the training dataset.

Overview of semantic textual similarity with Sentence-BERT

Semantic Textual Similarity (STS) is a fundamental task for modeling and under-
standing the meaning in numerous research applications such as question answer-
ing, semantic search, and machine translation. STS estimates the semantic equiv-
alence of two sentences by measuring their meaning similarity [141]. The STS re-
search area has been evolved from earlier methods of lexical semantics and basic
syntactic similarity to deep learning models [141]. One of more recent and per-
formed models is Sentence-BERT (SBERT) [7], which is designed based on BERT

2See the case study in section 5.5.
3NAO - Joints: http://doc.aldebaran.com/2-1/family/robots/joints_robot.html.
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(Bidirectional Encoder Representations from Transformers) model [142]. BERT was
introduced to pretrain deep bidirectional representations by conditioning all layers

on both the right and left environment.

BERT shows that the need for task-specific architectures which are heavily-engineered
is reduced [142], however, it requires that sentences are fed into the network [7]. To
overcome the massive computational overhead of this case, SBERT imported a mod-
ification to the pretrained BERT network by using siamese and triplet networks to
create embeddings of sentences that are semantically meaningful [7]. To derive a
fixed sized sentence embedding in SBERT model, a pooling operation is added to
the output of BERT. On the other hand, siamese and triplet networks were created
for fine-tuning BERT for updating the weights so that the embeddings produced are
semantically meaningful. Given two sentence embeddings u and v, their comparison

can be computed with cosine-similarity as illustrated in Figure 5.4.

1.1

+

cosine-sim(u, v)

/\

u v
A A
pooling pooling
4 4
BERT BERT
)
Sentence A Sentence B

Figure 5.4: Similarity score computation and SBERT architecture at inference [7].

Applying Sentence-BERT and continue training with ROS-kit reinforcement

The service discovery process is relying on a similarity study for determining the set
of suitable services. In order to illustrate the flow of actions of the service discovery
process, we used the UML activity diagram, as shown by Figure 5.5. We compute
the similarity score between sentence embeddings of each service and user query

using sentence-BERT, by reinforcing the training dataset.
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/
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Figure 5.5: UML activity diagram for applying Sentence-BERT.

We used the pre-trained model bert-base-nli-stsb-mean-tokens [7,143]
for generating sentence embeddings for the descriptions of each query and web ser-
vices. The model was first fine-tuned on NLI dataset, then fine-tuned on STS bench-
mark (STSb). This strategy has improved the performance of BERT, which is shown
by Spearman’s rank correlation between the cosine-similarity of the sentence embed-
dings [7].

To continue the training in our case, we propose to continue training on this fine-
tuned model according to ROS messages (and services) and KIT dataset, by follow-
ing the sentence pairs in STSb.

STS benchmark (STSb) dataset

STSb* dataset [7,141] is a collection of 8,628 sentence pairs that is generally used to
evaluate supervised STS systems. The sentence pairs are obtained from three cate-
gories: news, captions, and forums. Each pair of sentences in the dataset is annotated
with a score that denotes the semantic meaning of sentences. The score ranges from

0 which indicates that the two sentences are completely different to 5, which denotes

4STSbenchmark: http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark.
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the opposite.

KIT dataset

The KIT Motion-Language Dataset [ 144 ] combines human motion and descriptions
thereof in natural language, and was used in human-robot communication appli-
cations (e.g. [145]). Although this different context, the set of its terms of descrip-
tions match significantly the robot tasks. Thus, we used a set of sentences of the
KIT dataset to describe the robotic tasks because we did not find a robot dataset of

sentence pairs for semantic robot tasks similarity.

ROS-kit reinforcement

The main purpose of ROS-kit reinforcement phase is to determine the relation be-
tween ROS descriptions and robot tasks. We extend the kit dataset with ROS as
training data to fine-tune our network. By following the scores of sentence pairs in

STSb, we generate a set of sentence pairs with scores as follows:

(Score, ROS_description, Robot_task)

For ROS descriptions,weinvolve a set of most common descriptions given by
ROS messages and services including some common_msgs® and others. For robot
tasks on the other side, we extend kit dataset using “robot” word in each sentence

instead of words like “person” or “human”.

We annotated each sentence pair with a score of their semantic relation. Table 5.1
illustrates an example of ROS-kit dataset. The two given ROS descriptions are ob-
tained from geometry_msgs/Twist message and naogi_bridge_msgs/CmdPo
seService service respectively. We generate 370 sentence pairs that were splitted

into train, dev and test.

Matching queries with services

We compute the similarity score of sentence pair of service-query by calculating the
similarity between their embeddings. For each pair, we compute the degree of sim-
ilarity between sentence embeddings of the service SEs and sentence embeddings

of the query SEg using the common measure cosine similarity [7], as shown in Fig.

Shttp://wiki.ros.org/common_msgs.

67


http://wiki.ros.org/common_msgs

Chapter 5. ROS Web Service description and discovery

Table 5.1: A sample of ROS-kit dataset

Score Sentence 1

Sentence 2

Clarification

5 Twist expresses veloc- robot moves forward a There is a semantic equivalence.
ity in free space broken brief distance in a fast Twist enables the control of
into its linear and an- walk and stops walking speed
gular parts

0 Twist expresses veloc- A robot sits downona Twist does not enable a sitting
ity in free space broken low platform task. Meaning completely differ-
into its linear and an- ent
gular parts

5 Command pose as ser- A robot walks forward There is a semantic equivalence.
vice CmdPoseService enables the

walking control

3 Command pose as ser- robot moves forwarda CmdPoseService enables the

vice

brief distance in a fast
walk and stops

walking control, however, it
does not enable the control of

velocity

5.5. The measure ranges between 0, which indicates the total dissimilarity, and 1 that

denotes the opposite.

54 ROS Semantic Web Service (ROS-SWS): Descrip-

tion and discovery

The ROS Semantic Web Service (ROS-SWS) contribution is designed to enhance the
syntactic description of ROS-WS and to add a semantic layer to these services. We
present in the following the ROS-SWS description and discovery.

5.4.1 OWL-S Profile extension for ROS-SWS

OWL-S is an ontology that makes a service semantically described. It consists of
three parts: the service profile, the process model, and the grounding
[28]. The “service profile” is used to describe the services properties and capabili-
ties for automating web service discovery. As it is is the scope of this paper, the
focus of our work is to make the ROS capabilities as a part of the OWL-S profile
ontology.

Indeed, OWL-S Profile enables adding additional attributes and parameters via
the “ServiceParameter” class [28] as an expandable list of properties that may accom-

pany a profile description (e.g. [146], [147]). Thus, we used this class to define the
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OWL-S profile extension for ROS-SWS as illustrated in Figure 5.6. It defines the
“ROSParameter” class as a kind of ServiceParameter, in which the rosParameter
property points to the value of a parameter within the proposed “ROSCharacteris-
tic” ontology. The core structure of ROSCharacteristic ontology defines the following

properties:

L
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H [} i .
. h 5 A ' serviceName
' = > ] emm==P
' + a 1 e "
] ] »
' @ haslnput g &
' o E
I‘ o E
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o o serviceParameterName
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hasOutputs £ R v
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rosParameterName
..... acasp

asServiceType

h
ServiceType

hasService

Figure 5.6: Proposed OWL-S profile extension for ROS-SWS.

hasNode: ranges over instance of the ROS node.

hasMessageType: ranges over instances of message types.

hasTopic: ranges over instances of the used topics.

hasService: ranges over instances of the used services.

hasServiceType: ranges over instances of service types.

By including these ROS Requirements, everything relative to the use of ROS
web services will be provided by their service description. This enables to determine

the ROS process and its communication mechanisms of each robotic task offered by

the service.
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5.4.2 Mapping ROS messages to Inputs/Outputs

In our proposal, we use the convenient property of ROS messages (as highlighted
in subsection 5.2.2 of section 5.2) to define the capabilities and properties
(parameters) of the robotic task and mapping them to service outputs and inputs
respectively. This is because the ROS messages and services control the flow of web
services layer. Every ROS web service is built principally using them as a function
that requires a set of inputs and provide action as output. However, it is not necessary

use the whole fields as properties, which depends on the use context.

5.4.3 ROS capabilities and properties: Domain ontology

To design the domain ontology, we have based on most common components of
ROS messages and services including common_msgs ¢ and others. Initially, we have
defined main concepts (classes) and relations to identify the ontology hierarchy of

both capabilities and properties.

In parallel, during the research review of the ontology modelling of previous
studies, we found that the existing RoboEarth ontology of [ 148] covers the semantic
interpretation of ROS capabilities. The robot capabilities ontology [148] is described
in Semantic Robot Description Language (SRDL) [149], which is mainly based on
robot components (sensors, actuators and control programs). Although this differ-
ent context of implementation, the set of its concepts and terms match significantly

the ROS messages definition. Hence, we extend this ontology to fulfill the outputs.

On the other hand, we did not find any existing ontology that responds the set
of ROS properties for service inputs, therefore, we built our ontology of properties.
The implementation of the full ontology is constructed using OWL language. Figure

5.7 illustrates an overall fragment of the developed ontology using Protégé editor.

5.4.4 Search engine

The RaaS search engine displays the search findings relying on the task query of
inputs and output. According to the user query that denotes his needs, the request-
service matching is applied through the domain ontology. To that end, we used the
four degrees of concept match between Output/Input of request (R) and Output/In-
put of service (S), which are identified as follows [150], [151]:

®http://wiki.ros.org/common_msgs.
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exact: if R of and S are same or if R is an immediate subclass of S.

plug in: If SsubsumesR.

e subsume: if R subsumes S.

fail: amatch is a fail when no subsumption relation between R and S.

The search is applied through two phases successively [150], [151]. Firstly, it dis-
tinguishes the matching between the outputs of the request and those of the services.
In the second step, it applies an input matching of the request and services matched
during the output phase.

5.5 Case study

We outline in this section the proposed solution for the cycle process that was ap-
plied to ROS-WS and ROS-SWS implementation. This includes ROS-WS/ROS-SWS
requirements, ROS-WS/ROS-SWS functioning scenario, and the results obtained.

5.5.1 ROS Web Service experimentation

The experiments were performed over several web services that are generated from
ROS codes on following functional requirements representation. This is made with
the intention of using different services in a real scenario using NAO. We consider

two categories of services:

e Locomotion: Collect the services that enable the robot to move or navigate

around its environment.

¢ Joints motion and Positions: Encompasses the group of services responsible for

the control and the movements of robot joints to constitute new positions.

All the web services in the database were considered in the list of compatible
services for NAO. This is due to the matching of their ROS topics (T) and services
(S) with those of registered (T) and (S) of the NAO. In case of Turt 1eBot robot for
example, services like 52, 54, S6 are considered as non compatible services because
their topics and services are not specific to Turt 1eBot. Thus, these web service can

not be consumed by this robot.
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ROS experimentation

The ROS requirements of the different services are presented in Tables 5.2 and 5.3,
in which we outline the information of each ROS node’, responsible of an action,

according to the communication mode.

Table 5.2: ROS requirements of Topic-based services

Id  Node Topic Message Type

S1  nao_move /emd_vel geometry_msgs/Twist

52 nao_poses /body_pose/goal naoqi_bridge_msgs/BodyPoseActionGoal

S3  nao_postures /body_pose_naoqi/goal naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal
S5  nao_walk /emd_vel geometry_msgs/Twist

S7  nao_navigate /move_base_simple/goal geometry_msgs/PoseStamped

S8 nao_move_pose /cmd_pose geometry_msgs/Pose2D

S11 nao_move_joint /joint_angles naoqi_bridge_msgs/JointAnglesWithSpeed

Table 5.3: ROS requirements of Service-based services

Id Node Service Service Type

S4  nao_move /emd_vel_srv naoqi_bridge_msgs/CmdVelService
S6  nao_move_pose /emd_pose_srv naoqi_bridge_msgs/CmdPoseService
S9  stop_walk_node /stop_walk_srv std_srvs/Empty

S10 move_node /cmd_pose_srv naoqi_bridge_msgs/CmdPoseService

body_stiffn bl td Empt
S12  stiffness_setting_nao /body_stifiness/enable  std_stvs/Empty

/body_stiffness/disable std_srvs/Empty

Each ROS message provides a set of fields. As an example, the message naoqi_br
idge_msgs/ BodyPoseWithSpeed ActionGoal of S3 has has the following components®:

std_msgs/Header header

uint32 seq

time stamp

string frame_id
actionlib_msgs /GoallD goal_id

time stamp

string id
naoqi_bridge_msgs/BodyPoseWithSpeedGoal goal

’Given during program creation by proposition unlike the names of Topics, services and Mes-
sages/Services Type that are obtained from ROS.

8Displayed by rosmsg show naogi_bridge_msgs/BodyPoseWithSpeedActionGoal
command.
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string posture_name
float32 speed

By determining the posture_name and the speed as inputs’ (as shown in the
structure of the message), the robot will perform a predefined posture with the speed
that has been specified.

The postures are the list of predefined values of posture_name field. The pre-
defined values of this input are: {Stand, Sit, StandInit, StandZero, Crouch,
SitRelax, LyingBelly, LyingBack}!%1L,

We started with [136,152] to implement these services using rosjava. We present
in the following the rosjava classes for implementing the S3 service as an exam-
ple of all ROS-WSs implementation. The organization of rosjava classes is made
through three main classes. First, we implement the NaoPostures. java class
that inherits from Properties. java class as shown in Listing 5.1 and 5.2 respec-
tively. The NaoPostures. java class has been realized to implement the node that
publishes the naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal message through the
/body_pose_naogi/goal topic so that the NAO can achieve one of the postures. Any
rosjava class should extend the AbstractNodeMain class that contains the neces-
sary predefined methods. We describe the main instructions of a rosjava code using

a set of comments in the presented listings.

Listing 5.1: Publishing naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal of S3.

package posture;

import org.ros.concurrent.CancellableLoop;
import org.ros.node.ConnectedNode;
import org.ros.node.topic.Publisher;

public class NaoPostures extends Properties {

// onStart refers to the entry point of node
// ConnectedNode is used for defined methodes for publishers and subscribers
public void onStart ( final ConnectedNode connectedNode ) {

// create a publisher for naoqi_bridge_msgs/BodyPoseWithSpeedActionGoal using the topic
body_pose_naoqi/goal
final Publisher<naoqi_bridge_msgs.BodyPoseWithSpeedActionGoal> publisher =
connectedNode . newPublisher ("body_pose_naoqi/goal" , naoqi_bridge_msgs.
BodyPoseWithSpeedActionGoal. _TYPE ) ;

%It is not necessary to use all the message fields in some cases.
UNAQO’s Predefined postures: http://doc.aldebaran.com/2-1/family/robots/postures_
robot.html.
We identified this list through the related ROS packages that have been installed.
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// CancellableLoop is used to publish the message and sleep in a loop
connectedNode . executeCancellableLoop (new CancellableLoop () {
protected void setup () {
}
protected void loop() throws InterruptedException {
// create a new message
naoqi_bridge_msgs.BodyPoseWithSpeedActionGoal pose = publisher.newMessage() ;
if ( getPosture_name().equals("Crouch" )]
getPosture_name () .equals ("LyingBack" ) ||
getPosture_name () .equals("LyingBelly" ) ||
getPosture_name () .equals("Sit" ) ||
getPosture_name () .equals("SitRelax" ) []|
getPosture_name () .equals ("Stand" ) ||
getPosture_name () .equals("StandInit" ) ||
getPosture_name () .equals ("StandZero" )
) A
// set the parameters of the message by the indicated posture and speed
pose. getGoal () . setPostureName (getPosture_name()) ;
pose.getGoal () .setSpeed (getSpeed () ) ;
// publish the message
publisher . publish (pose);
}
else
System.out. println ("the posture is not defined");
Thread . sleep (1000); }

B

Listing 5.2: Properties.java class of S3.

package posture;

import org.ros.node.AbstractNodeMain;
import org.ros.namespace.GraphName;

// any rosjava class should extend the AbstractNodeMain class
public class Properties extends AbstractNodeMain {

protected String posture_name ;
protected float speed ;

public String getPosture_name() {
return posture_name;

}

public void setPosture_name(String posture_name) {
this .posture_name = posture_name ;

}

public float getSpeed() {
return speed;

}

public void setSpeed(float speed) {
this .speed = speed ;
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}

public GraphName getDefaultNodeName ( ) {
// return the default name of the node

return GraphName.of( "nao_postures" ) ;

}

To execute the postures and see the results on our robot, we used the Postures-

NAO. java class that utilizes the method execute of the rosjava NodeMainExecu-

tor class, as presented in Listing 5.3.

Listing 5.3: Execute the postures of S3 on Nao robot.

package posture;

import
import
import
import

import

public

org.ros.node.DefaultNodeMainExecutor ;
org.ros.node. NodeConfiguration;
org.ros.node. NodeMainExecutor ;

com. google .common. base . Preconditions ;
java.net.URI;

class PosturesNAO ({

public void applyPosture(String posture, float speed) {

NaoPostures postureNode = new NaoPostures();

postureNode . setPosture_name (posture);

postureNode. setSpeed (speed) ;

NodeMainExecutor nodeMainExecutor = DefaultNodeMainExecutor.newDefault() ;

/1l

indicate the ROS_MASTER URI

URI masterUri = URI. create ("http://sapp2:11311");
// indicate the NAO_IP, in case of simulation NAOIP = 127.0.0.1

String robotIP = "xxx.xxx.xxx.xxx";

NodeConfiguration postureNodeConfiguration = NodeConfiguration.newPublic(robotIP ,

masterUri) ;

Preconditions.checkState (postureNode != null);

nodeMainExecutor. execute (postureNode , postureNodeConfiguration);

}

In case of Service-based services as presented in Table 5.3, we implement client

classes instead of publishing messages. We give an example of S9 client class in List-

ing 5.4. There is no exchanged data between the client and the service with the ROS

service type std_srvs/Empty of S9. The Empty service type of the service package

std_srvs does not contain fields. Executing the code will stop your walked robot,

by enabling the communication with the robot like Listing 5.3.
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Listing 5.4: S9 example of client class in case of service communication.

package stopService;

import org.ros.node.AbstractNodeMain;

import org.ros.namespace.GraphName;

import org.ros.node.ConnectedNode;

import org.ros.node.service.ServiceClient;

import org.ros.node.service.ServiceResponseListener;
import std_srvs.EmptyResponse;

public class CallStopService extends AbstractNodeMain {

public GraphName getDefaultNodeName () {
return GraphName.of( "stop_walk_node" ) ;

}

public void onStart(final ConnectedNode connectedNode) {

ServiceClient<std_srvs.EmptyRequest, std_srvs.EmptyResponse> serviceClient = null;
try {
serviceClient = connectedNode.newServiceClient("stop_walk_srv", std_srvs.Empty. TYPE);

} catch (org.ros.exception.ServiceNotFoundException el) { el.printStackTrace(); }
std_srvs.EmptyRequest pose = serviceClient.newMessage();

serviceClient. call (pose, new ServiceResponseListener<std_srvs.EmptyResponse>() {
public void onFailure (org.ros.exception.RemoteException arg0) {

}
public void onSuccess (EmptyResponse arg0) {

}
1)

ROS-WS experimentation

All the implementation details are encapsulated by the Web Services’ WSDL descrip-
tion, which enables the communication with client applications using the host ad-
dress of each Web service. The following WSDL document (See Listing 5.5) describes
the web service that transported the previous presented ROS message of S3, using
the topic /body_pose_naogi/goal as stated in Table 5.2. We generate it automatically
from the class PosturesNAO. java as provided by Eclipse for generating a web ser-

vice using Apache Tomcat. The service requires posture and speed as inputs.
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Listing 5.5: WSDL File of S3

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://posture" xmlns:apachesoap="http://xml.apache.org/
xml-soap" xmlns:impl="http://posture" xmlns:intf="http://posture” xmlns:soapenc="http:
//schemas .xmlsoap .org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org
/2001 /XMLSchema ">
<wsdl:message name="applyPostureResponse">
</wsdl:message>
<wsdl:message name="applyPostureRequest">
<wsdl:part name="posture" type="xsd:string">
</wsdl:part>
<wsdl:part name="speed" type="xsd:float">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="PosturesNAO">
<wsdl:operation name="applyPosture" parameterOrder="posture speed">
<wsdl:input message="impl:applyPostureRequest" name="applyPostureRequest">
</wsdl:input>
<wsdl:output message="impl:applyPostureResponse" name="applyPostureResponse ">
</wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="PosturesNAOSoapBinding" type="impl:PosturesNAO">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="applyPosture">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="applyPostureRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://posture” use="encoded" />
</wsdl:input>
<wsdl:output name="applyPostureResponse ">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://posture” use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="PosturesNAOService">
<wsdl:port binding="impl:PosturesNAOSoapBinding" name="PosturesNAO">
<wsdlsoap:address location="http://localhost:8080/ROS_WserviceNAO/services /
PosturesNAO" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

For accessing the needed Web service, client applications can parse the WSDL
documents to determine the following data: (i) the Web service name and its oper-
ations, (ii) the input message of each operation, (iii) the part of the message, which

indicate its structure (the name and the type of parameters).
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StandZero Crouch o SitRelax
Figure 5.8: Some NAQO'’s postures execution when invoking the Web service.

Listing 5.6 shows the Request Envelope in case of invoking the S3 Web service,
which meets the needs of the user, with posture = Sit and speed = 1 as param-

eters.

Listing 5.6: SOAP Request Envelope of S3 service invocation

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns0="
http://posture” xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.
org /2001 /XMLSchema—instance ">
<soapenv:Body>
<ns0:applyPosture>
<posture soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="
xsd:string ">Sit</posture>
<speed soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="
xsd:float ">1</speed>
</ns0:applyPosture>
</soapenv:Body>
</soapenv:Envelope>

The execution of the different postures when invoking this Web service is illus-
trated with NAO in Figure 5.8. We can see the running node'? of the invoked service
in Figure 5.9 thanks to the rqt_graph command line.

12The node is called nao_postures as named in the class Properties. java.
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Figure 5.9: The running node “nao_postures” of the invoked Web service.

ROS-SWS experimentation

Table 5.4 summarizes the set of Inputs and Outputs of the different developed ser-
vices. We have added S13, S14, 515, and S16 for ROS-SWSs (that require naogi_bridge
_msgs/BodyPoseActionGoal,naogi_bridge_msgs/JointAnglesWithSpeed,
naogi_bridge_msgs/BodyPoseWithSpeedActionGoal and geometry_msgs
/Twist respectively) in comparison with the services presented in Tables 5.2 and
5.3.

Mapping ROS components to Inputs/Outputs was accomplished following the
definition of each used ROS message or service and their fields. For example, we
have outlined for S3 “PostureProperty” and “SpeedProperty” as inputs, based on its
message fields, and “BodyPostureMotionCapability” as output, by linking them to the
ontology concepts as shown in Figure 5.7. The following OWL-S document (See
Listing 5.7) describes the ROS-SWS of S3.

Listing 5.7: OWL-S profile for ROS-SWS of S3

<profile:Profile rdf:about="http://www.owl-ontologies.com/Ontology1613388520.owl#
ProfilePosturesNAOService ">
<profile:textDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Different motions like standing up and sitting down, with a speed, are provided by
this service</profile:textDescription>
<profilethasInput>
<process:Input rdf:about="http://www.semanticweb.org/hp/ontologies/2021/0/
DomainOntology . owl#PostureProperty " />
</profile:hasInput>
<profilethasInput>
<process:Input rdf:about="http://www.semanticweb.org/hp/ontologies/2021/0/
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Table 5.4: Inputs and Outputs of ROS-SWSs

Id Input Output Id Input Output
S1 OrientationProp-  NavigationCapa- S9 - StopWalkingCapa-
erty bility bility
S2  PoseProperty PostureMotionCa- 510 — NavigationCapa-
pability bility
S3  PostureProperty, PostureMotionCa- 511 JointNameProp- BodyMotionCapa-
SpeedProperty pability erty, JointAn-  bility
gleProperty,
SpeedProperty
S4 SpeedProperty ForwardWalking- 512 - BodyStiffness-
Capability Capability
S5 XProperty, YProp- MovementVeloci-  S13 HelloProperty HelloMotionCapa-
erty, ZProperty tyControlCapabil- bility
ity
S6 PositionProperty MovementPoseC- S14 JointAngleProp- LeftArmMotion-
ontrolCapability erty Capability
S7 SpeedProperty, NavigationGoal- S15 SpeedProperty, SitRelaxMotionCa-
OrientationProp-  Capability SitProperty pability
erty
S8 XProperty, YProp- MovementPoseC- S16 BackwardWalking-
erty, ThetaProp- ontrolCapability VelocityCapability- Capability
erty Property

DomainOntology . owl#SpeedProperty " />

</profile:hasInput>

<profile:thasOutput>

<process:Output rdf:about="http://www.semanticweb.org/hp/ontologies/2021/0/

DomainOntology . owl#BodyPostureMotionCapability " />
</profilethasOutput>

<profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string ">

PosturesNAOService</profile:serviceName>

<pr0file:serviceParameter>
<ROSParameter rdf:ID="ROSParameterPosturesNAOService">
<rosParameterName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>ParameterPosturesNAOService</rosParameterName>

<rosParameter>

<ROSCharacteristic rdf:ID="ROSCharacteristicPosturesNAOService">

<hasNode>

<Node rdf:ID="nao_postures" />

</hasNode>
<hasTopic>

<Topic rdf:ID="/body_pose_naoqi/goal"/>

</hasTopic>

<hasMessageType>

<MessageType rdf:ID="naoqi_bridge_msgs/BodyPoseWithSpeedActionGoal" />

</hasMessageType>
</ROSCharacteristic>

</rosParameter>
</ROSParameter>

</profile:serviceParameter>
</profile:Profile>
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5.5.2 Search evaluation metrics: Precision and recall

To measure the search performance, the precision and recall of the services returned

were considered. These evaluation metrics are denoted as [153]:

e Precision: It refers the ability of identifying the most precise services. It is de-
fined as the number of relevant services retrieved (RsR) divided by the total

number of relevant (RsR) and irrelevant services retrieved (IsR).

Number of RsR

1
Number of RsR + Number of IsR x 100

o Recall: Tt refers to the capability of retrieving the maximum number of services
that match or are relevant to a query. It is defined as the relevant services re-

trieved (RsR) divided by the total number of existing relevant services (Rs).

Number of RsR 8
Number of RsR + Number of Rs not retrieved

100

5.5.3 ROS-WS search results

In addition to the URL of the service, the available services are provided with a de-
scription and a set of keywords to describe their features. We give descriptions for
the services of the case study, according to the description and names of fields of

their ROS messages and services, as summarized in Table 5.5.

The computed similarity score of sentence pair embeddings for search results was
presented for the used pre-trained and continue-trained model (presented in section
5.3.2) to evaluate their performance. In addition, an evaluation of tf-idf performance

was also carried out. tf-idf is briefly introduced in the following.

tf-idf (term frequency - inverse document frequency)

t f-idf is a numerical statistics that is designed to estimate how significant a word is to
documenting a collection or corpus. It is widely applied to generate corresponding
weight vectors of each service’s content and user query, or between a set of items as
text documents. The ¢ f-idf weighting is given by the following equation [154]:

tf-idfiq = tfiq < idf;
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Table 5.5: Given descriptions for developed services

Class Category Id

Description of the service

S1  Move the base of the robot by sending velocity commands
S4  Theservice allows you to send a velocity to the walking controller
S5  The service enables the NAO to walk with linear and angular ve-
locities
]
2 S6  The service controls the position and orientation that makes the
g robot pass from one place to another
S
2 8 S7  Through this service, the NAO will move to a given goal
© -
- S8  Command the pose (X, y, theta) of the robot
E S9  Stop walking immediately
=
2 S10 The service provides a change in the location by changing the co-
ordinates
S2  The service allows the robot to perform some body poses like
o w hello and stand postures
o &
£ .2 S3  Different predefined motions like standing up and sitting down,
£3 with a speed, are provided by this service
oy
=fee! S11 This service allows you to change the values of NAO joints: joints
S & of the head, the arms or the legs
S12  Setting NAO stiffness by turning on/off all motors
Where:

e tfiq (term frequency) calculates the number of occurrences of term ¢ in docu-

ment d.

e idf; (inverse document frequency) is calculated as follows:

Where N denotes the total number of documents in the collection, and df; is

idf; = ZOQ(C%)

the number of documents that contain the term t.

To evaluate the t f-idf weighting, we applied a keyword extraction of user query
and services. Then, the t f-idf vectors of each query and services were generated by
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assigning a weight for each query term in the service vector. Using these vectors, the
common cosine similarity was computed as follows. We denote by ) = (¢1, ¢, -, ¢n)
the tf-idf vector of the query, and S; = (s1;, s2j, ..., sn;) the tf-idf vector of the service;

of the collection of services.

Q- S;
C S)= ———
@ 5) = @Sy
Z?:ﬂ]isij

n P} n 2
V2 i @A) D Sij
Queries

The experiments of the discovery process were tested using multiple queries. We
tested a set of queries that target the two categories of services. We present a sample

of 9 used queries for evaluation in the following.

e Queryl. A robot moves straight forward.

e Query2. A robot sits on an approximately 1m high platform.

e Query3. A robot moves his left arm.

e Query4. robot moves forward in a fast jog.

e Query5. A robot is standing relaxed.

e Query6. A robot doing a waving movement with the right hand.
e Query7. a robot walks slowly and stops.

e Query8. A sitting robot is standing up.

e Query9. a robot stands and then walks quickly a few steps forward.

Model-Similarity findings

Figure 5.10 presents the experimental results of cosine similarity measure, according

to the different outlined queries with each web service for NAO.

The computed similarity score of sentence pair embeddings was presented for
both pre-trained and continue-trained model to evaluate their performance, as well
as t f-idf. We denote the used pre-trained model as bertN1iSTSb and the continue
fine-tuned model as -—ROSkit.
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Figure 5.11 gives the precision and recall results for every query according to each
model. We consider the significance of similarity scores that are equal or less than 0.2
negligible. Therefore, we compute the precision and recall measures for similarity

tindings that are equal or higher than 0.3 and 0.4 respectively.

Performance discussion

As we can observe from the finding averages in Figure 5.12, t f-idf performs similar
findings with the precision of 47.96% and the recall of 51.96% compared to the two
similarity cases (equal or higher than 0.3 and 0.4). This is because ¢ f-idf retrieves
the same set of candidate services without taking into consideration the semantic
meaning. Most of their similarity scores are obtained due to the “robot” term that
appears in the query and services containing the same word. Almost the rest of the
words in each query are considered as ambiguous words, therefore, it is expected to

perform significantly worse without this term in the query.

On the other hand, bertN1iSTSb model provides a level of semantic. In the
similarity case where the scores are equal or higher than 0.3 and 0.4 respectively, the
average of precision is 43.27% and 51.85%, while the recall is 63.21% and 36.49%. The
decrease of recall is due to topic of sentence pairs in the dataset, which is not able to

give best similarity scores.

Furthermore, the results show that the ROS-kit reinforcement enhances signifi-
cantly the similarity scores, which improves the performance of the discovery pro-
cess. As we can observe, the proposed training enables to: (7) increase the similarity
score values of services, and (ii) indicate the similitude between relevant services
and user requests. The achievement of ~—ROSkit results in the improvement of the

average of precision of recall compared to bertN1iSTSb.

This is because the ROS-kit reinforcement distinguishes the relation between ser-
vices and each query. Thus, the system assigns a score for semantic equivalence
between ROS web services and robotic tasks according to ROS messages functional-
ities. In the similarity case where the scores are equal or higher than 0.3, the aver-
age of precision and recall values is 77.86% and 84.88% respectively. However, their
measures were decreased to 65.08% and 58.44% respectively in the case where sim-
ilarity scores are equal or higher than 0.4. Indeed, the -—ROSkit model is still able
to distinguish candidate services, however, it does not increase the similarity score

of retrieved services in some cases. This is due to ROS-kit dataset that need to add
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Figure 5.12: The average of precision and recall of search results for ROS-WS.

not only the specified definition given by ROS messages, but also those terms that

indicate the same meaning in order to be more exhaustive in the future.

5.5.4 ROS-SWS search results

We present in the following the search results for ROS-SWSs.

Queries

The experiments of the semantic search process were tested using multiple queries.
We tested 21 queries of inputs and outputs as presented in Table 5.6.

Search discussion

Figure 5.13 describes the recall and precision of the three matching degrees of search
and their total for every query. Both of the obtained precision and recall of exact
degree are better than the plug in and subsume degrees, which is reflected on their

average.

The average of precision and recall of search results for ROS-SWS is given in Fig-
ure 5.14. The recall average of total candidate services based on the ROS domain

ontology is 71.9%, while the precision is 63.75%.
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Table 5.6: Search queries for ROS-SWS discovery.

Query Input Output Query Input Output
Q1 PoseProperty MovementPoseC- Q12  GoalCapabili- NavigationGoal-
ontrolCapability tyProperty Capability
Q2 JointProperty, GripperMotion- Q13  PostureProperty = PostureMotion-
SpeedProperty Capability Capability
Q3 XProperty, ForwardWalking- Q14  PathProperty Collision-
YProperty, Capability FreeNaviga-
ZProperty tionCapability
Q4 SitProperty SitMotionCapa- Q15  GoalCapabil- localizationCapa-
bility ityProperty, bility
VelocityCapa-
bilityProperty,
DurationCapa-
bilityProperty
Q5 PoseProperty, BodyMotionCa- Q16  OrientationProp- BackwardWalk-
PathProperty pability erty ingCapability
Q6 BehaviorProp- BodyMotionCa- Q17 VelocityCapabili- HelloMotionCa-
erty pability tyProperty pability
Q7 SpeedProperty, LeftLegMotion- Q18 JointNameProp- ArmMotionCapa-
JointAngleProp-  Capability erty bility
erty
Q8 PathProperty NavigationCapa- Q19  SpeedProperty HeadMotionCa-
bility pability
Q9 OrientationProp- NavigationCapa- Q20  GoalCapabili- ForwardWalking-
erty bility tyProperty Capability
Q10  XProperty StopWalkingCa- Q21  XProperty, MovementVeloc-
pability YProperty ityControlCapa-
bility
Q11  PathProperty, EnvironmentEx-
SpeedProperty, plorationCapabil-
OrientationProp- ity
erty

5.6 Conclusion

This chapter focused on the designed approaches that enable to automate the ROS
web services use. The work exploits firstly the opportunities of SOAP web services
technologies to provide a service description for ROS-WS. Users can obtain the suit-
able robotic service by displays the search findings, according to a service-query
matching score using SBERT. On the other hand, we designed a second contribution
that brings a semantic layer to ROS-WS and defines the ROS-SWS. ROS-SWS charac-
terizes the scope and capability of each service by expressing itself through a ROS
domain ontology of capabilities and properties.
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6.1 Conclusion

The trend towards shifting robotic applications into service-oriented solutions is
growing. Various service delivery concepts and models have been proposed. We
have presented a model categorization of the research literature on this topic into:
Robot as a Service (RaaS), Cloud-enabled Robotic Services (CRS), Multi-Robot-based
Services (MRS), and Robotic Service Composition Middlewares (RSCM). However,
considerable diversity can be observed between proposals. The majority of works
regard web services as a technique for building software components, and concen-
trate on how these services may be utilized in each case study, instead of developing
an architectural style. As a result, there are two key points to consider. First, het-
erogeneity of robotic service representations and accessibility, in which previous re-
search do not fully describe the service capability and characterization of the offered

robotic functionality. Second, a lack of service discovery methods.

This thesis exploits the opportunities of web services technologies in terms of the
life cycle process towards ROS-based robotic service provisioning. It is drawn on
the foundation of two major contributions. The first entails presenting an approach
for robotic services delivery in a cloud environment, as described in chapter 4. Ac-
cording to a defined representation, on-demand robotic tasks are expressed as ROS
web services and delivered over a cloud infrastructure as a CRS solution. The sec-
ond contribution consists of proposing a solution to define and locate such services.
It focuses on designing an approach that enables to automate the ROS web services
discovery and selection on the basis of their definition. By displays the search find-
ings, users may find the most appropriate service for their robots based on the result
of a service-query matching score. As stated in chapter 5, this contribution is divided
into two main contributions. The initial contribution of ROS Web Service (ROS-WS)
is based on SOAP web services and defines a set of ROS-WS characterization require-
ments. The ROS-WS search engine uses sentence-BERT to generate sentence embed-
dings in order to estimate the most suitable service of a desired task according to
the user’s query. In this context, we reinforce the training dataset by distinguishing
the relation between ROS and robot tasks. The second contribution extends ROS-WS
with a semantic layer based on the OWL-S and designs the ROS Semantic Web Ser-
vice (ROS-SWS). The description of ROS-SWS expresses itself through a ROS domain
ontology of capabilities and properties to handle service discovery requests.
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6.2 FutureWork

There several potential challenges and perspectives for future research. We listed

some of them in the following.

6.2.1 Quality of Service and ROS2

QoS aspects are main requirements for the characterization of robotic applications in
service-oriented systems [6]. In the future, we aim to improve the service descrip-
tion and discovery by considering the QoS requirements that can meet the user’s
criteria. We plan to study and implement the solution in ROS 2 [155] that supports
QoS policies.

6.2.2 Resource allocation in robotic service composition

As outlined by authors of [111], service discovery and selection are the key func-
tionalities that should be extended within the robotic middleware of service compo-
sition. This can offer a flexible mechanism to respond the user’s needs of complex
tasks leading to knowledge sharing. In this regard, the resource allocation in such
systems (e.g. [125]) is a fundamental challenge. The dynamic allocation of needed
computing resources that offload the computation intensive tasks of robots requires
QoS issues to be resolved. Future work should involve a comprehensive study for
validating the service representation and the strategy of service discovery, within

the service composition process, by taking resource allocation aspect into account.

6.2.3 Fog computing in robotic service provisioning: Fog Robotics

Robotic service provisioning over the cloud faces the challenge of network latency
[62,63] and ensuring QoS [156] requirements. Network latency, which refers to the
delay of cloud-robot communication that affect the response time of robot tasks, can
be caused by QoS of the performance and network criteria such as cost and loss in
the transmission of data packets. Indeed, this can cause serious problems especially
for real-time applications such as search and rescue applications (e.g. [76]). One of
the relevant computing forms that can be used to improve these issues is fog com-
puting [77]. This emerging concept was introduced in robotics recently and named
“Fog Robotics” [157]. Tanwani et al. define it as “an extension of Cloud Robotics that
distributes storage, compute and networking resources between the Cloud and the Edge in
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a federated manner” [158]. Fog robotics represents an architecture in which storage,
networking, control and decentralized computing are closer to robots [157]. Due
to this proximity, it can improve the real-time performance of data processing and

networking. Fog robotics need to be addressed in the future of SOA-based solutions

(e.g. [72]).
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