People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research
Mohamed Khider University - Biskra
Faculty of Exact Sciences and Sciences of Nature and Life
Computer Science Department

Order Number:

THESIS

In Candidacy for the Degree of
DOCTOR 3" CYCLE IN COMPUTER SCIENCE

Option : Artificial Intelligence

TITLE

ROS-based Solution for Robotic Services in

Cloud Computing

Presented by Radhia BOUZIANE
Defended on: 07/06/2022

In front of the jury composed of:

Mr. Soheyb AYAD Associate Professor at University of Biskra
Mr. Labib Sadek TERRISSA Professor at University of Biskra

Mr. Jean-Francois BRETHE Professor at University of le Havre, France
Mr. Okba TIBERMACINE Associate Professor at University of Biskra
Mr. Saber BENHARZALLAH Professor at the University of Batna 2

Mr. Rachid SEGHIR Professor at the University of Batna 2

Academic year : 2021/2022

President
Supervisor
Co-supervisor
Examiner
Examiner

Examiner

Dedicated to my dear parents and all my family.

Acknowledgement

First and foremost, praises and thanks to Allah.

I would like to express my gratitude to my supervisor Pr. Terrissa Sadek Labib for

his patience, continuous support, and guidance throughout this work.

I also thank all the members of the jury Dr. Ayad Soheyb, Dr. Tibermacine Okba,
Pr. Benharzallah Saber, and Pr. Seghir Rachid for accepting to review and evaluate this
work. Special thanks to Dr. Ayad for his advice, help, and knowledge.

I would also like to thank Pr. Brethé Jean-Frangois for the discussions and helpful

comments about this work.

I thank the LINFI laboratory members and all those who helped me in some way

for realizing this work.

Finally, many thanks go to my parents and family for their support and encour-

agement.

ii

Abstract

Robot Operating System (ROS) is becoming a widely-used environment for devel-
oping robot software systems. It provides unique features such as message-passing
between processes and code reuse between robots. The new trend in ROS-based
robotic systems is facing the development and delivery of effective services by com-

bining the advantages of both cloud robotics and web services.

Cloud robotics is the way that allows robots to overcome their limitations of pro-
cessing and knowledge by boosting computational and cognitive capabilities. On
the other hand, as an implementation of Service-Oriented Architecture (SOA), web
services allow mainly different ROS codes to be discovered over the internet for their
reuse. However, the characterization, description, and discovery of the ROS service
capability for the offered robotic functionality are still issues that are not fully ad-

dressed.

In this context, we focus in this thesis on developing an architecture for robotic
software provisioning to both software developers and robots by exploiting the op-
portunities of ROS, web services, and cloud robotics. We propose a complete SOA
approach for cloud robotics, in which ROS-based robotic tasks are defined as web
services. The approach focuses on defining the service cycle process of describing,
discovering, and selecting services. Two characterizations for ROS web services are
proposed. The service characterizations describe the semantic representation of the
robot task from ROS itself. In each case, we present a strategy that allows users to

discover the relevant robotic service that can match their queries and robots.

Keywords: Robot Operating System (ROS), Cloud robotics, Service-Oriented Archi-

tecture (SOA), Web services, Semantic web services, Robotic service discovery.

iii

Résumé

Robot Operating System (ROS) devient de plus en plus I’environnement le plus util-
isé pour le développement de systémes logiciels de robots. Il fournit des fonction-
nalités uniques telles que la transmission de messages entre les processus et la réu-
tilisation de code entre robots. La nouvelle tendance des systémes robotiques basés
sur ROS est confrontée au développement et provision de services efficaces en com-

binant les avantages de Cloud Robotics et des services Web.

Le Cloud Robotics désigne la maniere qui permet aux robots de surmonter leurs
limites de traitement et de connaissances en promouvant les capacités de calcul et
cognitives. D’autre part, en tant qu'implémentation de I’Architecture-Orientée Ser-
vices (SOA), les services Web sont principalement destinés a découvrir des codes
ROS sur Internet pour leur réutilisation. Cependant, la caractérisation, la descrip-
tion, et la découverte de capacité d'un service ROS sur la fonctionnalité robotique

offerte ne sont pas complétement adressées.

Dans ce contexte, nous nous concentrons dans cette these sur le développement
d’une architecture pour la fourniture de logiciels robotiques aux développeurs de
logiciels et aux robots en exploitant la technologie et le concept de ROS, services Web
et de Cloud Robotics. Nous proposons une approche SOA compléte pour le Cloud
Robotics, dans laquelle les taches robotiques basées sur ROS sont définies comme des
services Web. L'approche se concentre sur la définition du processus de cycle de ser-
vice pour la description, la découverte, et la sélection des services. Deux caractérisa-
tions des services web ROS sont proposées. Les caractérisations de service décrivent
la représentation sémantique de la tache du robot a partir de ROS lui-méme. Dans
chaque cas, nous présentons une stratégie qui permet aux utilisateurs de découvrir

le service robotique pertinent qui peut correspondre a leurs requétes et robots.

Keywords: Robot Operating System (ROS), Cloud Robotics, Architecture-Orientée
Services (SOA), services Web, services Web sémantiques, Découverte de services robotiques.

iv

asl

7ol 3 Aoladi yushail awly Blad le Aeiniws Ao (ROS) ©gs g 3 Juddd allad pooi
O 395 pladiil Sale) g Slbaall oo JAla 1 5o jed Jhoe Buba 32 Ol jus H2 92 942 D92 9)
RS 9 o slad dauandl Lealanil IS (e ROS (e Geadlall 4 g1 9)31 Aedad ¥l 4l 95 0L 91 9)31
el oo el Olens g Aulowad) Gligs g 331 (o J5 Ll e (o peend! IS (o Wlad Sleus
O 42 yaollg dxtlact) 398 le il O g g) U moend 1 A ylatl dolowad) O g2 9 1)
(bl JS o gl Oleas gl (6 55T Al (e A aetl g Aobusd! O judll 5o el I
e ROS G Zolsd) gl pdl caline Glissal ((SOA) deasd! diodd Laties ,dad Sy
deus BALAGEl g s g g palilad wisd Ol S e g Lgeladiul Bale) Jai e ca Y
U @) G ONSLRN (e JI55 Y A g g Il Aads ol (ol I Lgi yud g dendedl ROS
Jeles JSin LgimTlas

AR P PYPRS I PIBS (IEVE PV WSS UL T PR (PR RSV SV (PR (VA
O g9 019 csdl Oleus 9 ROS Lt e JMakwl M (oo Sl ga g pl19 el o) ($)9kas (o
pleadt can yad @l oo Aulond| Gl g3 9 U SOA e (o Julso gt 7] 30 p a0 Anlownd!
Ao 3593 Adee S Lo gl 35 o co g Oleus LT e ROS e Aa3Lat 48 g g I
Slound (i 53 71581 @3 Oledindl HLisl g BLAISS) g s g e J5 o2 Adiadel) oo ol
ROS I35 (re O 339) daged AV Jiaid! s 53 Zoddndl Olans 53 p 943 ROS o ol
Gl A g3 g 1 Aenin) LGSR (s dinield et Auonedl Y] Wl JE5 B pud) Awdl
2635 59 95 9 il ludinl e GUaTT O (San

(SOA) Syo s8I dxall onlband) = Bgg) ((ROS) gg) 1R85 ol :duLidall Ol
g9 e asd) o) S YA agh o loss agh = laas

Contents

List of Figures ix
List of Tables xi
List of Listings xii
List of Abbreviations xiii
1 Introduction 1
1.1 Context e e e e e 2

1.2 Problemstatements 3

1.3 Contributions e 3

1.4 Thesisstructure e 4

2 Fundamentals 6
21 Introduction 7
22 Worldofrobots e 7

2.3 Robot Operating System 9
231 OVerview o e e e e e e e 9

232 ROSconcepts 9

2.3.3 Difficulty inlearningROS 11

2.4 Service-Oriented Architecture and Web services 12
241 Service-Oriented Architecture (SOA) 12

242 Webservices. o o i e e e e 13

24.3 Semantic Webservices 14

2.5 Opportunities of cloud computing 15
2.5.1 Cloud computingbasics 15

252 SOA and cloud computing 17

2.6 Cloud Robotics: Anoverview 18
27 Conclusion e e e 20

3 Service-Oriented Robotic Architectures

31 Introduction
3.2 Service-oriented roboticmodels 00000
32.1 RobotasaService(RaaS)

3.2.2 Cloud-enabled Robotic Services (CRS)

3.2.3 Multi-Robot-based Services (MRS)
3.24 Robotic Service Composition Middlewares (RSCM)

3.3 Description, discovery, and applications of robotic services
34 Discussion e
3.41 Deployment model and Service Level Agreements

3.4.2 Representation and description of robotic services

3.4.3 Deficiencies in SOA implementation: Robotic service discov-

EIY AP -« « v e e e e e e e e e e e e

3.44 Robot Operating System and case studies

35 Conclusion L

Robotic Services as a Service approach

41 Introduction

42 Highlights
421 Robotic Services as a Servicescope
422 Virtualizationconcept

4.3 Robotic Services as a Service architecture
431 Overallsystem
4.3.2 RSaaS virtualization and servicemodel
433 RSaaScloudactors
43.4 RSaaS life cycle process for service provisioning

44 Experimentalsettings
441 Technical robotictools
442 APIsand ROSpackages

45 Conclusion

ROS Web Service description and discovery

51 Introduction

52 Generalscope
5.2.1 Motivation and related works
5.2.2 Message and service typesinROS

vii

5.2.3 Distinguishing Robot-Service compatibility
5.3 ROS Web Service (ROS-WS): Requirements and discovery
531 ROS-WSrequirements
532 ROS-WSdiscovery
5.4 ROS Semantic Web Service (ROS-SWS): Description and discovery .
54.1 OWL-S Profile extension for ROS-SWS
54.2 Mapping ROS messages to Inputs/Outputs
5.4.3 ROS capabilities and properties: Domain ontology
544 Searchengine
55 Casestudy
5.5.1 ROS Web Service experimentation
5.5.2 Search evaluation metrics: Precisionand recall
553 ROS-WSsearchresults
554 ROS-SWSsearchresults
56 Conclusion e

Conclusion and Future Work

6.1 Conclusion L

62 FutureWork o o
6.2.1 Quality of Serviceand ROS2
6.2.2 Resource allocation in robotic service composition

6.2.3 Fog computing in robotic service provisioning: Fog Robotics .

Bibliography

viii

91
92
93
93
93
93

96

List of Figures

21
2.2
2.3
24

3.1
3.2
3.3
34

4.1
4.2
4.3
44

51
52
53
54
55
5.6
57
5.8
59

Componentsofarobot. 8
SOA Architecture. L o 12
NIST basics of cloud computing. 16

Scope of controls between providers and consumers in a cloud sys-
tem. For instance, a middleware layer enables PaaS consumers to de-
velop their application software. On the other hand, this layer is hid-

den from SaaS consumers and managed by IaaS consumers or PaaS

providers [35].. L 16
Service-oriented roboticmodels. 00000 23
RaaS in cloud environment [64]., 24
Layered multi-robots cooperative architecture [102]. 28

Historical overview of the reviewed works of the service-oriented robotic

models. 37
RSaaS System overview. 46
The proposed RSaa$S architecture. 47
The NAOrobot. 53
The Output of running NAOqi and NAO bringup package under ROS

viaX2Go. . .o 54
Mapping ROS components to capabilities [138]. 60

UML activity diagram for distinguishing Robot-Service compatibility. 61
ROS Web service (ROS-WS) metamodel. 62
Similarity score computation and SBERT architecture at inference [7]. 65

UML activity diagram for applying Sentence-BERT. 66
Proposed OWL-S profile extension for ROS-SWS. 69
The ROS Domain Ontology. 71
Some NAQ's postures execution when invoking the Web service. . . 79
The running node “nao_postures” of the invoked Web service. 80

ix

5.10 Similarity results with search queries for ROS-WS. 85

5.11 The precision and recall of search queries for ROS-WS. 87
5.12 The average of precision and recall of search results for ROS-WS.. . . 88
5.13 The recall and precision of search queries for ROS-SWS. 90
5.14 The average of precision and recall of search results for ROS-SWS. . . 90

List of Tables

21

3.1
3.1
3.1
3.1

51
52
53
54
5.5
5.6

Overview of cloud-based projects and architectures in robotics 19
Comparison with state-of-the-art frameworks 32
Comparison with state-of-the-art frameworks (continued) 33
Comparison with state-of-the-art frameworks (continued) 34
Comparison with state-of-the-art frameworks (continued) 35
A sample of ROS-kitdataset 68
ROS requirements of Topic-based services 73
ROS requirements of Service-based services 73
Inputs and Outputs of ROS-SWSs 81
Given descriptions for developed services 83
Search queries for ROS-SWS discovery. 89

Xi

List of Listings

51
52
53
54
55
5.6
5.7

Publishing naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal of S3. . . 74
Propertiesjavaclassof S3. oL 75
Execute the postures of S3on Naorobot. 76
S9 example of client class in case of service communication. 76
WSDLFileofS3 77
SOAP Request Envelope of S3 service invocation 79
OWL-S profile for ROS-SWSofS3 80

Xii

List of Abbreviations

Al
Amazon EC2
API
BERT
CAS
CoAP
CPU
CRS
Daa$
FIL
HTTP
IaaS
IDE
IFR
IOPE
IP

ISO
Java EE
JDK
KIT
KVM
LAN
MQTT
MRDS
MRS
MySQL

Artificial Intelligence

Amazon Elastic Compute Cloud
Application Programming Interface
Bidirectional Encoder Representations from Transformers
Circular Area Search

Constrained Application Protocol
Central Processing Unit

Cloud-enabled Robotic Services
Discovery as a Service

Federated Imitation Learning

HyperText Transfert Protocol
Infrastructure as a Service

Integrated Development Environment
International Federation of Robotics
Inputs Outputs Preconditions and Effects
Internet Protocol

International Organization for Standardization
Java Enterprise Edition

Java Development Kit

Karlsruhe Institute of Technology
Kernel-based Virtual Machine

Local Area Network

Message Queuing Telemetry Transport
Microsoft Robotics Developer Studio
Multi-Robot-based Services

My- Structured Query Language

Xiii

NIST
NLI

OpenRAVE

OWL
OWL-S
PaaS
PHM

QoS
RAaaS
Raa$
RAM
REST
RILaa$S
ROS
ROS-SWS
ROS-VMs
ROS-WS
RPC
RSaa$
RSCM
RSi-Cloud
RSNP
Saa$S
SBERT
SDK

SE

SLA
SLAM
SOA
SOAP
SRDF
SSH

National Institute of Standards and Technology
Natural Language Inference

Open Robotics Automation Virtual Environment
Web Ontology Language

Web Ontology Language for Services
Platform as a Service

Prognostic and Health Management
Quality of Service

Robotics and Automation as a Service
Robot as a Service

Random Access Memory
Representational State Transfer

Robot Inference and Learning as a Service
Robot Operating System

ROS Semantic Web Service

ROS Virtual Machines

ROS Web Service

Remote Procedure Call

Robotic Services as a Service

Robotic Service Composition Middlewares
Robot Service initiative -Cloud

Robot Service Network Protocol

Software as a Service

Sentence-BERT

Software Development Kit

Sentence Embedding

Service Level Agreement

Simultaneous Localization and Mapping
Service-Oriented Architecture

Simple Object Access Protocol

Semantic Robot Description Format
Secure Shell

Xiv

STS Semantic Textual Similarity
STSb STS benchmark

tf-idf term frequency - inverse document frequency
UAV Unmanned Arial Vehicles
UDDI Universal Description Discovery and Integration

UML Unified Modeling Language
UNR-PF Ubiquitous Network Robot Platform
UPnP Universal Plug and Play

URDF Unified Robot Description Format

URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

W3C World Wide Web Consortium
WSDL Web Services Description Language
WSMO Web Service Modeling Ontology
XaaS Everything as a Service

XML Extensible Markup Language
YARP Yet Another Robot Platform

XV

- Chapterl

Introduction

0 T ' 5 "« 2
1.2 Problemstatements i i i i i it e e e e e e e e e e e
1.3 Contributions v v v v v it e

1.4 Thesisstructure v v v v i i e e e e et et e e et e et et e e

Chapter 1. Introduction

1.1 Context

Cloud computing has brought a significant shift in the accessibility and utilization of
robots because of technological advancements in processing, storage, and commu-
nication. This relevant innovation in robotics field is known as “Cloud Robotics”.
Cloud robotics allows robots to overcome their processing constraints, share infor-
mation, or acquire new skills [1]. It describes a new generation of robotics that use
cloud computing to improve task performance, by boosting computational and cog-

nitive capabilities and enabling knowledge sharing.

The development of robot software systems within this context has been widely
built recently using “Robot Operating System” (ROS). This is due to its open-source
robotic system that provides various features, including low-level device control, ab-
straction of hardware, and message passing between processes [2]. Nevertheless, as
robotic systems development may require challenges of implementation complex-
ity [3,4], understanding ROS requires thorough learning for achieving desired robot
tasks. Thus, designing software that deliver reusable components in robotic sys-
tems has been receiving much attention using Service-Oriented Architecture (SOA).
SOA presents an architectural style of designing software systems that can be ac-
complished using web service technologies. It provides encapsulated, discoverable,
reusable, and loosely coupled application functions distributed in a network. By
encapsulating ROS implementation details and offering loosely coupled application
functions, SOA and web services provide a step to the response of ROS manipulation

issue [5].

However, implementing SOA in robotics in general is influenced by the devel-
opers’ background [6], which can restrict the scope of SOA. By studying the state-
of-the-art of service-oriented solutions in robotics, a diversity of research proposals
can be observed in many levels of both system conception and development. Most
studies have focused on SOA as a mechanism that adapts in each case study of the
various robotic fields, rather than building an architectural style. This has affected

the SOA life cycle process of dynamic service discovery.

2

1.2. Problem statements

1.2 Problem statements

The problem addressed in this thesis targets the development of service-oriented
robotic services for ROS-based robots and cloud robotics. At first, we seek to study
SOA adaptation for robotic services development and delivery. This includes SOA-
based robotic evolution of research directions, trends, and service delivery models
in cloud robotics. Thus, this first part can be determined by the following research
question:

e RQ1. How can SOA be applied to the development of robotic services, and particularly,
to the delivery of robotic services in cloud-based systems?

By tackling the first problem, the second issue of this thesis has been arisen. It
studies the whole life cycle process of applying SOA by calling the “robotic services”
concept into question. This issue involves the description, discovery and selection
mechanisms of such services. Therefore, the second research question addressed in
this thesis is:

o RQ2. What are the key characteristics of robotic services?
Indeed, this main research question is divided into the two following questions:

e RQ2.1. What is a robotic service? How the robotic service is represented or described?

e RQ2.2. How can a robotic service be discovered and consumed to complete a robot task?

1.3 Contributions

In this thesis, we carried out a comparative analysis that targets the service-oriented
solutions in robotics, and we provide a literature categorization. Based on the review
results, the thesis’s main contributions may be summarized into two principal axes.
In the first contribution, a complete SOA-based architecture for cloud robotic service
provisioning has been proposed. The architecture addresses the idea of Robotic Ser-
vices as a Service (RSaaS) using ROS. It supports the automatic search of services
that deliver various robotic tasks, which allows users to assign different on-demand
skills to their robots. We consider the ROS services as web services and aim to im-

prove the task performance of services by boosting computational capabilities. The

3

Chapter 1. Introduction

system architecture is structured as a layered architecture that is inspired from clas-

sical cloud computing architectures.

The second contribution focuses on defining the elements and cycle process of
ROS-based robotic services. Two solutions are proposed for this definition, which
presents a characterization of these services that describes the robot task representa-
tion from ROS itself. In the first one, we define the functional meta data of ROS Web
Service (ROS-WS), by considering ROS-WSs as SOAP (Simple Object Access Proto-
col) web services due to this protocol’s completeness of architecture elements. The
architecture system allows also users to obtain and access the relevant ROS-WS for
their robots, according to the score assigned to a service-query match using similar-
ity measures. To that end, the discovery engine uses the computationally efficient
sentence-BERT [7] to generate sentence embeddings. This allows the system to es-
timate the most suitable service of a desired task according to the user’s query by
calculating the similarity between their embeddings. In this context, a reinforce-
ment of training dataset has been proposed by distinguishing the relation between
ROS requirements and robot tasks. The second one exploits the opportunities of se-
mantic web services using the Ontology Web Language for Services (OWL-S), and
brings a semantic layer to ROS-WSs. We define a ROS Semantic Web Service (ROS-
SWS) description that expresses itself via a ROS domain ontology of capabilities and

properties to handle the dynamic discovery of services.

1.4 Thesis structure

The remainder of this thesis is structured as follows:

e Chapter 2 introduces the fundamental basics of ROS, SOA, web services and
cloud robotics. It summarizes as well an overview about architectures and

projects in cloud robotics.

e In Chapter 3, we present a comparative analysis about service-oriented solu-
tions in robotics that examine the SOA-based modelling architectures, delivery

models and discovery of robotic services.

e Chapter 4 presents our first contribution for Robotic Services as a Service ap-

proach. We present the overall cloud architecture, actors and system modules.

4

1.4. Thesis structure

e Chapter 5 presents the second contribution for the cycle of ROS web services.
It is drawn on two main parts. The first part defines the ROS-WS requirements
and proposed solution for their service discovery. The second part introduces
the ROS-SWS description and ROS domain ontology of capabilities and prop-
erties for the discovery process. The chapter outlines also the case study and
experiments.

e Chapter 6 concludes this thesis and summarizes some potential challenges and
future research.

- Chapter?2

Fundamentals

2.1
2.2
2.3
24
2.5
2.6
2.7

Introduction L e 7
Worldof robots v v v i i i e e e e e e e 7
Robot Operating System 9
Service-Oriented Architecture and Web services 12
Opportunities of cloud computing, 15
Cloud Robotics: Anoverview i ittt nnnnn.. 18
Conclusion it ittt ittt e 20

2.1. Introduction

2.1 Introduction

This chapter presents the fundamental concepts linked to our work and an overview
of cloud robotics architectures. It begins by summarizing the world of robots in sec-
tion 2.2 and outlining the features of this work’s core element, the Robot Operat-
ing System (ROS), in section 2.3. Next, we briefly introduce section 2.4, the scopes
of Service-Oriented Architecture (SOA) and Web services. Section2.5 presents the
basics of cloud computing and its relation with SOA. Finally, section 2.6 gives an

overview of cloud robotics projects and architectures.

2.2 World of robots

Robotics is an interdisciplinary field that interests in designing and applying robots.
It benefits from many disciplines including mechanical engineering, electrical and
electronic engineering, computer science and others [8]. From a historical point of
view, the origin of robotics goes back to science fiction. In 1921, the term robot was
coined through the czech word ‘robota’ meaning ‘labor” in the play Rossum’s Univer-
sal Robots. A number of stories that popularize the idea of robotics was subsequently
published. By the late 1950s, the concrete transition to reality and development of

first industrial robot has been occurred [9], [10].

As reported by the ISO 8373:2012 definition [11,12], a robot is an “actuated mech-
anism programmable in two or more axes with a degree of autonomy', moving within its
environment, to perform intended tasks”. It consists of an integrated set of hardware
and software components that build the whole machine. Figure 2.1 summarizes the
seven main components of a robot as described by author of [8]. Robots can be fixed
or mobile. Thus, various kinds of mobile robots can be distinguished due to their

motion mechanism in the three environments: terrestrial, aquatic and aerial [13].

The evolution of robots showed an enormous expansion in several areas of mod-
ern human society. This is because robots provide a set of positive effects such as
improved worker safety, and increase of manufacturing productivity and quality,
which has been shown especially during the COVID-19 pandemic [14]. Robots are
classified by their intended application into industrial and service robots [11] [14]:

! Autonomy is the robot capability of performing tasks, on the basis of sensing and current state,
without the intervention of humans.

Chapter 2. Fundamentals

f It consists of the links, joints, and 1
i other structural elements of the
i robot /

This include: (i) The operating
system. (i) Software calculates the
necessary motions of each joint. (i)

e

mmmmm———————————————————— Programs developed to use the robot

{ Itis the part that is connected to or its peripherals for specific tasks

! lastjoint (hand) of manipulators. N0/ N !
E It performs required tasks 5

It determines how the robot's

\ joints must move to achieve the
| desired location and speeds, and
"""""""""" - ~ oversees the coordinated actions
i The controller sends signals =" ofthe controller and the sensors
i to the actuators, which in turn

1
i move the robot's joints and links ,i

’
|
1

It receives its data from the

Sensors are used to collect information processor, controls the motlons of
the actuators, and coordinates the

about thg |nterngl state of 'the robot or to motions with the sensory feedback
communicate with the environment information

Figure 2.1: Components of a robot.

Industrial robots: Industrial robots were the first kind of invented robots, and have
known a large use through the years. Unimate, the first industrial robot with mag-
netic drum and six degrees of freedom?, has been put on an assembly line in 1961
[10]. At present, industrial robot applications comprise numerous processes and
manufacturing activities such as handling, welding, assembly, painting, and pro-

cessing® [15].

Service robots: Service robotics encompass a broad range of professional and do-
mestic applications for humans, excluding industrial automation applications [11,
16]. The degree of autonomy for service robots can be distinguished to partial,
including human robot interaction, or full in which human intervention is not re-
quired [14]. The practical need of using service robots is growing. In accordance
with the last statistics of the International Federation of Robotics (IFR), sales of ser-
vice robots have been increased considerably in 2020 [16]. This increase has known
an additional demand for some robot applications due to the global pandemic in-

cluding medical, hospitality, professional cleaning, and logistics.

?Degrees of freedom are the set of coordinates used to describe a pose of a mobile robot or an end
effector. Further information can be found in [13].
3This includes material removal processes like grinding, deburring, milling, and drilling.

8

2.3. Robot Operating System

2.3 Robot Operating System

Robot Operating System (ROS) is considered as the main axis of this thesis. The work
does not use ROS just as a tool for system implementation, since it relies principally

on it. We present in this section the main features about ROS.

2.3.1 Overview

ROS [2] is an open-source meta-operating system that is widely used in robot appli-
cation developments nowadays. It was initially developed by the Stanford Al Labo-
ratory in 2007, and its development was continued at the robotics research institute

“Willow Garage” in collaboration with more than 20 institutions by the year 2008 [17].

ROS provides several features such as abstraction of hardware, low-level control
of device, and message passing between processes®. Although the existing of some
similar aspects between ROS and other robotic frameworks such as MRDS [18] and
YARP [19], there are many reasons to prefer ROS [2], [20]. ROS is designed for
supporting code reuse in robotics development and research. Primarily, a ROS code
can be worked with many robots by changing the data related to every robot. Robots
that we can use with ROS are multiple such as Nao, TurtleBot, PR2, and many other
robots’. In addition, ROS provides a large set of tools for building, visualizing, and
performing simulation. There are also many available and ready to use packages for

some robots like SLAM that is used for performing autonomous navigation.

2.3.2 ROS concepts

We present below the three levels of ROS concepts.

Computation Graph level

The Computation Graph is the network of processes in ROS. This level’s concepts are

summarized in the following.

e Nodes: The main feature about ROS is the Node. Nodes are processes that

carry out computation and constitute the ROS distributed framework. ROS

4ROS is officially supported on Ubuntu.
SRobots using ROS: https://robots.ros.org/.

9

https://robots.ros.org/

Chapter 2. Fundamentals

libraries gives the ability to program the nodes in many languages including
Python, C 4++ and Java. Itis possible to display information about nodes due to
the rosnode command-line tool. For instance, the command rosnode info

node_name gives the set of information about a particular node®.

e Master: The Master in ROS could be seen as a manager node that allows nodes
to find each other and exchange messages. This is done due to its XMLRPC-
based API enabling nodes to store and retrieve each other information. We

usually use the roscore command to run the master.

e Parameter Server: It is a part of the Master, which provides a central location to

store data.

e Messages: The communication between nodes is done via messages. A message
is data structure that comprises some field types. This includes standard prim-
itive types such as integer, boolean, string, etc, and arrays of primitive types.

e Topics: Topics look like buses, in which the messages can be exchanged between
nodes. They are based on “publish/subscribe” transport system. A node can
publish a message through a topic, so that an interested node will subscribe to
this topic. For interacting with topics, ROS provides the rost opic command-
line tool. The command rostopic pub topic_name msg_type data,for

example, publishes data to a given topic.

e Services: ROS provides also a “request/reply” transport system via services. A
client can call a service by sending a request message, from a node that acts as s
server, and awaits the reply. We can discover information about active services

using the rosservice command-line tool.

e Bags: Message data in ROS are stored in a file called a bag, which can be used
for recording and playback.

Filesystem level

The Filesystem level comprises the resources stored on the disk, which are organized
as follows:

6To run a node, we generally use the command rosrun package_name node_name.

10

2.3. Robot Operating System

e Packages: The main unit of ROS software organization is the packages, which
contain runtime nodes, a ROS library, configuration files, etc. The main direc-
tories and files in a ROS package are: src, scripts, msg, srv, package.xml, CMake-
Lists.txt.

o DPackage Manifests: A package manifest is a file in XML format called “package.xml”.
It describes the package metadata like its name, version, authors, and depen-

dencies.

e Message types: The ROS message descriptions are stored in files with . msg ex-

tension in the msg directory of a package.

e Service types: The definition of ROS service types is stored in files with .srv
extension in the srv directory of a package.

o Metapackages: A metapackage in ROS is used to reference related packages. It

contains only the package manifest.

e Repositories: A repository is a collection of packages.

Community level

The ROS Community Level covers the set of sources that enable the knowledge and
software to be exchanged and reused between communities. This is mainly given by
the ROS Wiki pages [2] and its other forums and sites such as ROS repositories, and
ROS Answers’.

2.3.3 Difficulty in learning ROS

The main drawback about ROS is the difficulty in learning and in starting with sim-
ulation and robot modeling [20], which can be noticed by ROS users. Indeed, even
with the ROS huge command-line tools and wiki pages, it is difficult to learn ROS
and use it. A user will spend a lot of time in learning and discovering new skills, or
in testing existing examples to obtain desired actions for his robot, which make the
possibility of developing robotic application quickly very hard. Therefore, this is the

main reason why SOA is introduced towards improving the ROS software use.

’ROS Answers: https://answers.ros.org/questions/.

11

https://answers.ros.org/questions/

Chapter 2. Fundamentals

2.4 Service-Oriented Architecture and Web services

Web services were regarded as an acceptable manner for implementing the archi-
tectural style “Service-Oriented Architecture” over the last twenty years. These two

concepts are briefly presented in the following.

24.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture, or SOA, is an approach that provides distributed sys-
tems, based on usage of software components called “services”. It allows mainly
these services to be discovered over the internet, through published interfaces. As
defined by the W3C [21], SOA is “a set of components which can be invoked, and whose
interface descriptions can be published and discovered”®.

Service
| description

{Service Registry)
1." . T
Find Publish

¥ .- Service

Service - Bind And / Service

Consumer / Invoke \ Provider| service
- . description

Figure 2.2: SOA Architecture.

The main integrated components in SOA architecture are illustrated in Figure
2.2 [23]. As shown in the figure, the service provider makes services available and
accessible to service consumers’, by publishing the interfaces of services via a service
registry. The relation between consumers and providers of services may be specified
and guaranteed by a formal agreement, known as Service Level Agreement (SLA),
in order to ensure the Quality of Service (QoS) criteria [24,25]. The QoS includes
many characteristics about the service and performance criteria such as response

time, availability, security, throughput, etc.

In the context of SOA, a service is “a discrete unit of business functionality that is
made available through a service contract, which specifies all interactions between the service

consumer and service provider” [24]. Services are described by many characteristics,
like [24]:

8There are many other definitions for the term SOA. A set of additional definitions are listed in [22].
9In SOA, a service consumer is a software or other services that need a service.

12

2.4. Service-Oriented Architecture and Web services

e Encapsulation: All the internal implementation of service operations is hidden

from its published interface.

e Loose coupling: This refers to the dependency degree between modules. There

are few dependencies within loosely coupled services.

e Autonomy: Autonomy means that services are independent from each other in

terms of deployment, modification, and maintenance.

e Reuse: Service reuse deals with the sharing of building blocks of software,

which is the main SOA aspect for process construction.

e Dynamic discovery and binding: Services are discoverable entities. The service
consumer can be dynamically routed and bound to the proper service provider,

by inquiring the service registry for a service that matches its criteria.

2.4.2 Web services

Web services are considered as a way for SOA implementation. Independent of
any programming language or platforms, web services offer a distributed comput-
ing technology for the integration of the heterogeneous applications over the Inter-
net [23]. Thus, they offer loosely coupled application components enabling interop-
erability and reuse of services. In general, realization types of web services encom-
pass two major ways of service implementation [24], [26]. The choice for the way of
service implementation is depending on use aspects as presented in the comparison
below [25].

The first type are the services that agree with Simple Object Access Protocol (SOAP)
and Web Services Description Language (WSDL). SOAP web services are also re-
ferred to as WS-*. WS-* implementation has great support for QoS such as security
and availability. Furthermore, it defines many standards including: (i) an infras-
tructure for service composition'?, (ii) transactions, (iii) service discovery, and (iv)

reliability.

As a protocol, SOAP is a form of XML specification that relies on HTTP and RPC
for the transmission of messages. A SOAP message is structured in an envelope and

a body in XML format. SOAP offers an interoperability between applications due

19SOAP can use the Business Process Execution Language (BPEL) which allows, among others, to
compose web services.

13

Chapter 2. Fundamentals

to this standardization of messages in which the implementation features are not

mandated.

The second type are those described as Representational State Transfer (ReST
or REST) style services. REST is a client-server based architectural style, where the
information network is identified and addressed by a URI scheme. The communi-
cation between an HTTP client and server is accomplished using a small operations
collection known as: read, create, update, and delete operations. REST is a stateless pro-
tocol and meant to be self-descriptive, in which REST interfaces gives only a syntactic

interoperability between services.

On top of HTTDP, only few characters are used for the exchange of messages in
REST contrary to SOAP. Therefore, REST performs better than the SOAP structured
messages in case of systems that exchange lots of messages. However, unlike SOAP,
REST is more suitable for read-only functionality that requires minimum QoS re-
quirements. Ultimately, SOAP expresses “completeness” while REST expresses “sim-
plicity”.

2.4.3 Semantic Web services

Existing Web service description standards such as WSDL that employ XML struc-
tures to describe the services” functionality are syntactic structures. This might pro-
vide a certain level of ambiguity, in which the same structure may be read in different
ways by various users. To address this issue, semantic web services bring the appli-
cation of semantic web technologies to the description and use of web services. A
semantic Web service is a web service that is described using semantic annotations in
a well-defined language such as ontologies''. It enables the services to have an inter-
pretable interface and to facilitate the automation of specific tasks such as discovery,
selection, invocation and composition [27]. There are several ontology description
languages for semantic Web services have been developed. The well-known lan-
guages are Ontology Web Language for Services (OWL-S) [28], which is based on
the OWL language, and WSMO [29].

1 An ontology provides a way of defining a specific domain’s core concepts and features.

14

2.5. Opportunities of cloud computing

2.5 Opportunities of cloud computing

Basically, from a technological development perspective, cloud computing is a com-
bination of different research axes. It combines a set of technologies such as grid
computing'?, virtualization'®, and even SOA [30-32]. Thus, cloud computing is a
logical continuation of a number of computer technologies [33]. The final cloud
computing definition and its main assets have been published by the NIST in 2011,
in [34].

2.5.1 Cloud computing basics

As given in [34], cloud computing is “a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction”. The NIST determines three
major elements (characteristics, deployment models, service models) that compose
the cloud model as presented in Figure 2.3.

Primarily, cloud computing is distinguished by five basic characteristics that de-
scribe its scope. For enabling pooling of computing resources, consideration had
been given to multi-tenant model'* to serve the numerous consumers as often as
needed. This is made using different physical and virtual resources. The provision
of resources is elastically built to rapidly scale inward and outward proportionate.
Thus, from point of view of a consumer, the capabilities appear to be unlimited.
Resource usage can be measured by the consumption of storage, processing, band-
width, or active user accounts based on “pay-per-use” basis that determine the con-

sumer charges.

As shown in Figure 2.3, there exist four deployment models for cloud infras-
tructure functioning: private, community, public, and hybrid. As their names in-

dicate, each model is distinguished depending on how a cloud consumer may be

12Grid computing is a distributed computing form that combines networked computers acting with
each other to perform very large tasks.

B3Generally, virtualization refers to the process of creating multiple Virtual Machines (VMs) on a
single physical device. This allows to run multiple instances of operating systems on one computer
system concurrently. For more information see section 4.2.2 of chapter 4.

4Multitenancy enables sharing of resources among consumers to support many concurrent users
at once.

15

Chapter 2. Fundamentals

On-d dself-|Z= . e 0 Software as a
L Dn-gemandse .\«_—l — Private cloud =2 — .
service A Service (SaaS)

Broad network @ || Platform as a Service @

FEEESS — Community cloud e'_\e (Paas) o)
Resource pooling —— | e] || Infrastructure as a

P g-)] Service (laaS)
Rapid elasticity —— Hybrid cloud © % .

— Measured service

Figure 2.3: NIST basics of cloud computing.

allowed to access the computing resources. The NIST definition comprises three
models for service provisioning: (i) Software as a Service (SaaS), (ii) Platform as a
Service (PaaS), and (iii) Infrastructure as a Service (IaaS), in which providers and
consumers of cloud systems share the control of available resources, as illustrated in
Figure 2.4 [35]. However, Everything as a Service (XaaS) [36] has also been intro-
duced as an exhaustive denotation to express other emerged service models. These
models are briefly highlighted in the following.

Cloud Consumer

w
©

Application Layer A

PaaS
laaS

Middleware Layer

SaaS

PaaS

Operating System
Layer

IaaS

Cloud Provider

Figure 2.4: Scope of controls between providers and consumers in a cloud system. For in-
stance, a middleware layer enables PaaS consumers to develop their application software. On
the other hand, this layer is hidden from SaaS consumers and managed by IaaS consumers
or PaaS providers [35].

16

2.5. Opportunities of cloud computing

Software as a Service

The services provided to users with SaaS encompass applications and data as Web-
based applications. In a SaaS environment, the provider is basically responsible for
everything about storage, system monitoring, and so on [37]. There are many SaaS
providers such as Outlook.com, Google Drive, and Salesforce.com.

Platform as a Service

PaaS provides an operating system with platforms of development and database
to the customers. Examples of PaaS providers can be given by Windows Azure and
Google App Engine.

Infrastructure as a Service

IaaS offers basic services such as computing power, storage, networking, and oper-
ating systems, where the customer can construct his environment above. A well-
known Iaa$S provider is Amazon EC2 [37].

Everything as a Service

There are various emerging delivery models that has been identified, in the course
of time, to provide anything “as a Service” via the internet. XaaS, the acronym for
Everything as a Service [36], covers not only the above three known models but also
any kind of provided computing services. This encompass a wide variety of comput-
ing resources or capabilities including applications, tools, data, communication and
so on. For instance, Discovery as a Service (DaaS) [38], Robot as a Service or RaaS
(see section 3.2.1 of chapter 3), and PHM (Prognostic and Health Management) as

a Service [39] are illustrations of XaaS concepts.

2.5.2 SOA and cloud computing

Indeed, one of the key elements in architecting and delivering cloud services is SOA
[40]. SOA constitutes one of the major assets of the cloud technology. As described
in [41], “SOA is to offer services which are based on open standard Internet services and vir-
tualisation technology and have been running in a different environment, grid offers services
from multiple environments and virtualisation, and cloud combines both” .

17

Chapter 2. Fundamentals

SOA guides business process management for creating, organizing, and reusing
the computing components. It provides independent, reusable application func-
tions as services. On the other side, cloud computing is more technical model that
addresses many technical details, which services a bigger and more flexible plat-
form [32,42]. The five characteristics defined by the NIST for cloud computing [34]
must be satisfied in a cloud computing service, but they considered as optional fac-
tors in SOA services [32].

Thus, the relationship between cloud computing and SOA can be compared with
the relationship between web services and SOA [32,43]. SOA can be used without
or with web services. Similarly, cloud computing uses SOA, however, it is possible

to implement cloud computing without having an SOA [43].

2.6 Cloud Robotics: An overview

With the rise of the World Wide Web and Internet, many initiatives have been re-
volved around the connection of robots to the global network. Robot teleoperation
via internet browsers, remote computing for robot control, and networked robotics'
received much attention since the 1990’s [1]. Over the last decade, the focus of
robotic systems development is oriented to the integration of cloud computing prop-
erties, where robots can meet their needs as an on-demand solution. This refers to
“Cloud Robotics” term that was announced for the first time in 2010, in [44], by

James Kuffner [1].

Various projects (e.g. the European Union funded “RoboEarth” [45] and “RAPP”
[46] projects) and architectures (e.g. [47-57]) have been designed and developed
around the cloud robotics topic. Indeed, two fundamental goals were addressed:
(i) knowledge sharing among robots, and/or (ii) offloading robotic computational
tasks to the cloud. However, diversity of proposals can be observed from one work
to another. This is mainly related to the various robotic fields and case studies on
one hand, and to the variety of used technology innovation, including architecture
styles, protocols, and frameworks on the other hand. We summarize the scope of a

sample of these different works in Table 2.1.

As stated in [62,63], there are some challenges and issues in cloud robotics that

should be addressed. This includes: (i) Resource allocation and scheduling, (if)

5Networked robotics is the study that aims to communicate the robots with each other.

18

An overview

2.6. Cloud Robotics

-ardurexa Surarip-jas
©)M PalLIaA 9T SUIILIOSe pue JIomaurerj ay],

‘wryjrIode ururesy paje
-19paj e Sursn ‘way} 10§ spepow apmS Surureay sonpoid pue s30qoI [ed0]
woIj 93 Pa[mouy] SNodua3019)3Y SNy 0} PrO Y} SIA[GRUD }] “IOM SIY}
UI PIdNPOIIUL SeM SO[I0OI PO I0§ YIomaurery SUILLIES] UOHE)IWI Uy

Surures| uonyeyrwg

[9¢] 114

"SyuauwI
-2A0W $}0qod Terysnpur ue jo uondumsuod A31aus
105 uonezrwiur (11) ‘(sorerado uewny 1oy Jusw
-uoxraua ayes Jurpraoid 10j) ased syse} A[quuiasse
UI [OI)U0D 30401 SUI[-U() (1) “@d1A10s Surunydeyy (1)

“Toke] pnop ay) Yim 1a4e|
201n0sa1 [ed1SAYd © $)09UU0D UYITYM “TOAISS [BD0] © Aq Pa[puey SI WoisAS
uononpoid ajoym ayj Jo uorsiaradns pue UOHEUTPIOOD Y], “Surmioeyn
-uewr snoymbign 1oy uoryesridde sonoqox pnop e padofaasp e 312 Suem

Sur
-mpejnuew pnopd

“OLIRUDIS 900[] 33 YOI J Y3 Ul poy
-110A A[[ejuswiniodxe usaq ALY SIIAIIS UORIRIP
uorsiod pue Suruue[d-A10309fer} NI SUNILIOS]Y

‘Appuapuadapur NJA ©
Sursn sauTyORW [ENIIIA JO SIINUI0D PIJIIUU0DIAUT U0 uni sjred wajsAs
3UL °10qOI [eLISNPUT J0J JOIU0d paseq-pnop e pasodoid sioyme ayy,

,, 9IIAIDG
e se Jonuo)) 1040y,

‘SUWI9)SAS Juswx
-98euew pue d30qOI [BN}IIA Y30q I0§ PNO[D SJCALL]

‘dIeMPIeY PUE S3INJEdJ SJ0OI JO UOTORNSIE Uk I9JJO 0} PAULJP SeM Joke]
J0qOY] TENIIIA Paseq-pnop vy -aanjddinpre Sunndurod pnopo Tesrssepd Aq
paxdsur st Jey3 21n309)1ydIe SON0qoI pno mau e pasodoad sioyne oy,

‘orreuads uorssarddns axyy
-plIm e ur senI[iqeded JusIshIp UM S)0qol Bnu
Sursn pojuswe[dwr sem adAjojord woyshs ayr

'sAemayed era geer £q s30qo1 pajod]
-3s 0) paudIsse aq 0} SYSL}-qNS JO }3S B OJUI PIPIAIP SI XSk} Yok 'Spnopd
srdnmu 03 Suofaq Je) S30qOI 03 SYSe} JO Uone3a[op Puk UOHRZI[eNIIIA
[eas[romIau syroddns yorym ‘arnjoainpore geel ue syuasard sprom sy

[s7]

‘suoryedridde asayp jo sopdurexs are 030
‘SMaU Jnoqe uorjeuLIojur SurArg ‘spustiy pue Arurey
M £10393ed sty 3undauuo)) ‘sjoqor Jursn ‘ofe
pIo jo asoyj Aqrerdadsa “ystr uorsnioxa je aydoad jo
Spaau ayj 3199w 0} papuajur are suonyedridde JIv

‘[19] uo punoy aq ued 21NIPAIYDIE J IV INOJE UOHLUWLIOFUT IOY}IN]
‘[09] @8p11gso1 pue sad1A19S qQOA JOH SSOIOE $)0qOI JUSI 9} Aq PazI[nn
aq ued woped JIVy pnop oyl ‘suoneordde onoqor jo L1earep pue
uonean a3 31oddns o3 wrrogyerd aremijos adimos-uado ue sapraoid J IV

a1y
-D9nIe $O130qOI
pnop paxeke|

suorned
-1idde onoqor 10y geey

,,SULIOY
Jeld st s30qoy,

[97]
309loxd

ddvd

“UONNIAXA Sk} J0qoI 10§ A30[03U0
ue se Suo[oe pue s309(qo noge AIengedsoa sapra
-oad 31 [6g] qogmouy], waisAs Zurssadord
a8paymow oy} uo paseq st uonejuasardar a3pa
-[MOWY "senIAnde A[Iep IR} Ul suewny }sisse
JeY} S}0QOI DIAISS 0} POJUSLIO dIe YReHOqoy
jo 98pomouy Juueys JO SUOIIRIISUOWD(]

‘[8¢] ,emddey,,
parred wroprerd sonoqor pnopod adinos-uado ue urpraoxd Aq uoneinduiod
AABIY PEO[JJO 0} S}0qOI U3} SMOJ[e I} ‘OS[Y ‘S[epowr uonrudodar 303(qo
pue a3papmowy sey ‘sdewr ‘s309(qo noqe eyep sapnour Sy ‘aseqeiep
PaINQLISIP B SSOIOE ‘Blep ISNAI Pue dIeYS 0} SJ0qOI SA[RUD Y}IegOqoy

§10q01 10§ (MMM)

[c7]
309loxd

LM OPIM PHOM,, [31eFOqoy

Apms ase)/suonedriddy

MBIIAIAQ

JO BapI 3y} SSAIPPY

oM

SO130OI UT S2IN309)IYdIe pue s30(oxd paseq-pnopd Jo MITAISAQ :1°C d[qel,

19

Chapter 2. Fundamentals

Data heterogeneity and their exchange between robots and cloud platforms, (iif)

Data privacy and security, and (iv) Network latency.

2.7 Conclusion

This chapter outlined our thesis’s main axes: ROS, SOA, web services, and cloud
robotics. We have presented specifically the fundamental concepts and definitions
that are related to these concepts. We have also introduced the cloud robotics domain
by presenting a set of its architectures. The use of ROS will be presented more in
chapters 4 and 5. The following chapter aims to present a review that underline the
Service-Oriented Robotic Architectures.

20

- Chapter3

Service-Oriented Robotic Architectures

31 Introductionttt 22
3.2 Service-oriented roboticmodels L o o oL 22
3.3 Description, discovery, and applications of robotic services 29
34 Discussion e e e 36
35 Conclusion ittt e e e e e e e e 39

21

Chapter 3. Service-Oriented Robotic Architectures

3.1 Introduction

In this chapter, we investigate the works discussing the use of SOA, Web services
and cloud computing concepts, as main sources of robotic services. We carried out a
comparative analysis that targets their objective, scope, architecture, robotic service
design, application and evaluation criteria. The review process starts with keywords
such as (“Robotic” OR “Robot” OR “Cloud Robotics”) AND (“Services” OR “Service-
Oriented” OR “Discovery”) AND (“Architecture” OR “System” OR “Software” OR “Ap-
proach” OR “Applications” OR “Middleware”). The identified and selected articles for
this review shows that the works in this area are published with different research
proposals that are diverse in many levels of both system conception and develop-

ment.

Through a comparative analysis, this chapter is drawn on three main axes. In
section 3.2, we propose a classification of the literature of service-oriented robotic
architectures into four main models. Then, we conduct a comparison about the de-
scription, discovery, and applications of robotic services for exhaustive state of the art
of each proposed model in section 3.3. Furthermore, the main issues of the reviewed

works are discussed in section 3.4.

3.2 Service-oriented robotic models

The ongoing efforts to define and improve the research of SOA and cloud-based
robotic solutions result in the appearance of various studies. Preliminary work in
this field focused primarily on designing flexible software for robotic systems, and
it grows vaster for further improving existing problems and developing new ap-
proaches. However, a huge diversity can be observed from one study to another.
Indeed, it is difficult for readers to identify and follow the comprehensive analysis of

the domain due to the heterogeneous scopes, architectures, and used technologies.

To address this issue, we conducted in this chapter a global overview on the emer-
gence and evolution of research directions. We classify the existing service-oriented
approaches and architectures for robotic service delivery based on the scope of each
proposal. Therefore, we identify four major service models as illustrated in Figure
3.1. The diversity is revealed in the significant difference between the propositions

with regard to the provision of robotic services, which is introduced through the as-

22

3.2. Service-oriented robotic models

Robots in client]

__iMany works appeared
Architectures of cooperation | __aroundRaas |
and communication Robots in server
Wideuse of SOA_| | Multi-Robot-based Services Robot as a Service . Side |
and web services (MRS) (Raas) | | | Wide use of SOA
Proposals of some Service applications for multi- Access to robots as an on- and web services
discovery process robot research demand service Lack of service
Appearance of some discovery proposals
cloud architectures | Reorientation towards|
Rohotic service the cloud paradigm |
(RSrelieson | models
cloud computing Wide use of

web services

side Cloud-enabled Robotic Services| | Robotic Service Composition | | . . ¢
Different nterpretations, | | (CRS) Middlewares (RSCM) | |
for robotic services Delivering robotic services asan| | Service composition in robotic Focus on service compasition |
“Lack of use of SOA on-demand service systems | rather than discovery process |

and web services Appearance of distributed

cloud environments

Lack of service
discovery proposals

Figure 3.1: Service-oriented robotic models.

pects of each category. We review the key concept, contribution and related works

of each model as follows.

3.2.1 Robot as a Service (Raa$S)

As the “Robot as a Service (RaaS)” term indicates, this concept reflects on the use,
and the access to the robots as an on-demand service throughout the Internet. Users
at the client side can manipulate their server-side robots by handling robotic software
such as algorithms of robot navigation remotely. SOA and web services technologies
have played a significant role in building the background fundamentals of RaaS,

which has known a significant growth in its implementation.

RaaS concept was invented for the first time by Chen et al. in [64] with the inten-
tion of building a kind of robot that has the function of the SOA architecture as cloud
units, as shown in Figure 3.2. As a proposed implementation of this idea, users were
able to manipulate robotic services and applications remotely, using the robotic en-
vironment MRDS. Subsequently, various initiatives were taken around the design of
RaaS.

23

Chapter 3. Service-Oriented Robotic Architectures

= AD‘)
RaaS umit ;

__ . Intemmet and
- EE Cloud
By SaaS.PaaS.laaS

08 & drivers : .
J C OnunInIcatIon
Hardware

L. A

0OS & dnvers

7
.\

| Hardware

A

Figure 3.2: RaaS in cloud environment [64].

The concrete application of this model was given initially through the remote
laboratories and remote monitoring of robots [5, 64-69]. However, quite recently,
Raa$ implementation was oriented to provide more flexible services by offloading
computational capabilities, storage, and communication of various applications to
the cloud using SOA [54,70-72], or without it [73-76].

In [54] for instance, Du et al. introduced the idea of “Robot Cloud” that integrates
RaaS into the cloud platform. As the authors pointed, unlike James Kuffner’s cloud-
enabled robotics (see section 2.6 of chapter 2), the work’s objective is to form robots as
an integral element of the cloud computing service. Robots can communicate with
one another, instead of acting as separate entities capable only of exchanging data
with remote servers. The authors develop a prototype, using the popular Google

App, and a mechanism of scheduling robot services that adopts the benefits of SOA.

Recent study [72] uses RaaS to facilitate the seamless integration of robots into a
cloud robotic system that enables the switching between several tasks using shared
data. The mechanism is conducted by transmitting the surrounding environment
information sensed by the robot to a fog' service node in order to receive the anal-
ysis result and the control information. More recent studies have also focused on
network communication improvement for the effective control of robots by empha-
sizing on several protocols including ROSLink and MAVLink [71], MQTT and CoAP
[78], REST [79], and WebSocket protocol for implementing a ‘plug-and-play” solu-
tion [80].

'Fog computing [77] is considered as a form of computing that enables computing, storage, net-
working closer to the users.

24

3.2. Service-oriented robotic models

3.2.2 Cloud-enabled Robotic Services (CRS)

Unlike RaaS model, some of the architecture designs push the vision of obtaining and
consuming hosted services for robots, rather than accessing and controlling them.
We refer to this group as the “Cloud-enabled Robotic Services (CRS)”. Similarly to
works that support the cloud robotics paradigm, this approach adopts particularly
on the same process in data exchange and acquisition between robots and clouds.
The cloud storage provides a service for robots where the data about tasks, environ-
ments, users, etc., are available and remotely accessible over a network, usually the

internet.

Works based on this approach are quite diverse. Heterogeneity of the proposals
is mainly related to robotic services representation and how these services can be
used or accessed. For instance, the interpretations of the robotic service concept are

outlined by the following contributions:

RSi-Cloud

For providing more useful and attractive services, Kato et al. proposed “RSi-Cloud”
in [81], in order to combine current internet services with robot services. RSi defines
robot services as “information services and physical services provided via computer net-
works”. This definition consists of providing robot services on the cloud, and robot
applications on the robots using RSNP protocol. Numerous services may be pro-
vided to different robots due to service profiles classification. Another implementa-

tion of this proposition can be found in [82].

Cloud Networked Robotics

This research [49] is intended to overcome the limitations that cannot be met alone
or in conjunction with networked robotic services. As reported in [49], robotic ser-
vices were considered as “systems, devices, and robots with three functions: sensation,
actuation, and control”. The work’s attention was to gather logically such devices to
create a cloud of robots via network connectivity in order to achieve an integrated
system for supporting daily activity using the available resources on demand. Using
the Ubiquitous Network Robot Platform (UNR-PF) [83], as a layer of intermediary
between the service application and robotic components, a case study in a shopping

mall was released in order to enable multi-location robotic services in daily activities.

25

Chapter 3. Service-Oriented Robotic Architectures

Robotic Service as a Service (RSaaS)

Under the name of “Robotic Service as a Service” (RSaaS), authors in [84] distin-
guish the model in which “the robotic system deliver high-order services to the end-users
to complete a robot task”. Examples of this model are given by social robots that inter-
act with users who need news, information, etc., by connecting to the cloud. RSaaS
model can be given by the RAPP project [46] (see Table 2.1 of chapter 2).

Robotics and Automation as a Service (RAaaS)

An implementation of this concept is presented in [85]. “RAaaS was introduced in [1],
and it is the robotics equivalent model of SaaS. In RAaa$S the software modules are stored on
a central cloud server and provided to the users/robots over the internet” [85]. A SaaS-
based architecture was also proposed in [86] who intend additionally to make the
source code publically available for users as a PaaS Implementation. The proposed
framework is applicable to systems with a single or multi robots, where robots are

linked to a JavaScript-based cloud server via use of web sockets.

Robot Inference and Learning as a Service (RILaaS)

Authors in [87] introduced a RILaaS platform for offering user-based inference in or-
der to deploy models of deep learning. It distributes the queries for trained models
either over cloud or edge” based on their resource consumption. RILaaS experiments
were presented for serving deep models of both grasp planning and object recogni-

tion as a service.

SOA-based architecture

Initiatives around providing reusable robotic services in CRS with SOA can be found
in [88], [89], [90], [91]. In [91], a web service-based layered cloud robotics architec-
ture that is inspired by [50] was proposed. The approach integrates web services
technologies to describe robot packages as an on-demand solution. In [92], Oliveira
et al. developed a tool that enhances service cataloging and discovery for ROS. The
search strategy is built on the basis of a semantic taxonomy with common vocabu-

laries that organize knowledge about the domain. The work is presented without

2Edge and fog computing share the concept of computation to the edge of the network, but [77]
provides a distinction, in which fog computing further involves computing, networking, storage, and
control.

26

3.2. Service-oriented robotic models

integration of cloud computing technologies, nevertheless, it can be considered as a

step for cloud services search.

By developing respectively context-aware and emotion-aware dialogues for the
development of robot dialoguing services to achieve natural human-robot interac-
tions and enhance user experiences, a cloud-based SOA is adopted in [93] and [94].
The proposed frameworks target two types of dialogue services: (i) domain-specific
dialogues that provide knowledge services of a certain domain through a question-
answering manner between the user and the robot, and (ii) task-specific dialogues
that accomplish a given task’s objective by iteratively performing human-robot dia-
logues to adapt to the user’s purpose or preference in relation to the task’s goal.

3.2.3 Multi-Robot-based Services (MRS)

Multi-robot research is the study that focuses on the cooperation of robots with each
other to perform tasks, which would be difficult or impossible to be accomplished
by individual robots. We refer to service-oriented applications in such systems as
“Multi-Robot-based Services (MRS)”. The main addressed aspects in MRS are as

follows:

Cooperation architecture in MRS:

One of the challenges in MRS is to design an architecture that has the ability to
provide a common way to deal with the heterogeneous hardware and software of
robots. Thus, this is an essence of bringing SOA into this sector in diverse applica-
tion domains such as collaboration of mobile service robots (e.g. [95], [96]), robotic
swarm system (e.g. [97], [98]), and UAV (Unmanned Arial Vehicles) applications
(e.g. [99-101]).

A layered multirobots cooperative architecture with SOA was introduced by Cai
etal. [102], as shown in Figure 3.3. At the start of the multi-robot cooperative serving
process, a service applicant provides its service descriptions to the layer of service
translation in order to get standard descriptions. Therefore, this layer is in charge of
translating dissimilar communication language into corresponding service descrip-
tion with a uniform format, which allows multi-robots to interact with one another.
Then, the standard descriptions are sent to SOA interface layer, where the descrip-
tions and additional application data will be packaged and submitted to service reg-

istry center. When the application is received by the service registry center, it will

27

Chapter 3. Service-Oriented Robotic Architectures

Standard SOA 1ntertace
T l Semce registry lay er ! T
' Service database

Service IGOIStl'\ center
/ Cooperative service layer \ Cooperative service layer \
Standard SOA interface ' Standard SOA 1ntertaceA

Scr\ ice translation layer’ ' Ser\rce translation lay er '

' Service invocation layer A ' Semce invocation layer ‘

V

obot with heterogeneous interface,
sensors, actuators, communication

Z

obot with heterogeneous mterface,
sensors, actuators, communication
\ and system structure etc. / \ and system structure etc.

Service consumer robot Service provider robot
Figure 3.3: Layered multi-robots cooperative architecture [102].

send the information and service licenses of the most appropriate providers to the
service applicant to connect with.

In [103] and [104], authors aim to develop a web-based entity that uses service
robots represented as collections of web services to create and execute plans for com-
pleting tasks provided by a user. A centralized control architecture, used for the allo-
cation in the shortest possible time of numerous robots, was presented. To represent
the task knowledge, OWL-S was combined with Prolog and ROS Python using dif-
terent ontology-based knowledge representations.

Communication and Service scheduling in MRS:

The communication in MRS refers to applications of networking that allow robots
to dynamically discover each other. The framework of distributed coordination of a
robot swarm [105], and the middleware for mobile robots inside a fleet in an ad-hoc
network [106] are examples of this application that exploit the Universal Plug and
Play (UPnP) for service discovery protocol.

The robots” communication with the cloud was addressed in [107]. The aim of
the study was to introduce a SOA architecture that is distributed on cloud to address

the issue of localisation in cooperative multi-robot systems. Differently, Zhou et al.

28

3.3. Description, discovery, and applications of robotic services

in [108] proposed an algorithm of Circular Area Search (CAS) for the scheduling

problem of regional service in SOA cloud platform for multi-robot service.

Some authors, as in [109] and [110], address the issue of cloud-based multi-
robotic services in real-time applications such as fire emergency management, which
necessitate instantaneous responses and transmission of data between robots and the
cloud. The solutions exploit the concept of Edge Cloud [77] to address mainly the
communication latency constraint, via the execution of the latency sensitive and ser-

vices requiring a high level of computation closer to the work environment.

3.2.4 Robotic Service Composition Middlewares (RSCM)

Robotic Service Composition Middlewares (RSCM) are the set of development plat-
forms that address the issue of service composition for robotic systems. Service com-
position “consists of creating new complex services by combining the existing atomic services
that cannot satisfy the needs of complex robot tasks” [111].

Multiple works have been designed around RSCM by exploiting the web service
architecture, using OWL-S to describe knowledge about services semantically. This
includes development platforms for robot action sequences [97,98,112-114], [103,
104], and those that enable robots to utilize heterogeneous resources in ubiquitous

computing [115-117] and ambient intelligence [118-120] environments.

In a different context, cloud-based architecture for RSCM have focused on pre-
senting architecture for distributed and virtualized environments [121], [122], [123],
[124], [125]. This involves different context of applications including scheduling
[121], resource allocation [125], integration of robots in ambient [120] and cyber-
physical [124] systems, and others [103,104].

3.3 Description, discovery, and applications of robotic

services

In the context of the service reuse principle, discovery is critical [26]. Reuse of ser-
vices requires us to find the services that exist, and to examine them to decide if they
perform the functions required, provide the appropriate qualities of service, are reli-
able, and so on [24]. Therefore, the first step toward service reuse and consumption

is discovery [26]. For this purpose, The service must be published along with a col-

29

Chapter 3. Service-Oriented Robotic Architectures

lection of descriptive data to be effectively searched in response to criteria-driven
queries [26,126]. This information consists of (7) functional meta data that describes
what the service is capable of, and (ii) QoS meta data that encompasses behavioral

characteristics, limitations, and interaction requirements [126].

Generally, there are two forms of discovery: manual process and automatic pro-
cess called “runtime discovery” [126]. Runtime discovery provides programmatic
interfaces into service registry repositories that build programs and services capa-
ble of issuing dynamic discovery queries [126]. However, Rosen et al. [24] pointed
out that service discovery does not necessarily have to be based on a repository, but
should provide mainly:

e A catalog of available services.

e Ability of identifying potential services through sophisticated search capabili-
ties.

e Capabilities for examining a service in order to identify if it is appropriate for
the desired usage.

e Metrics on service usage.

In robotics, there is only few researches that have addressed the issue of service
discovery as a research axis, such asin [105] and [92]. However, most of the works of
RSCM model that have focused on web service composition have indicated a search
process, by using ontologies for identifying the services to compose. Also, service
discovery for robots has been announced in some works of MRS model to dynam-
ically discover each other. On the other hand, there is a lack of service discovery
proposals in both RaaS and CRS models.

To highlight this issue, a comparative analysis with the reviewed papers of differ-
ent models is given in the initial and continued parts of Table 3.1. The comparison

is made according to:

1. Model: That targets the model of each work according to the four identified

service models to define the scope and focus of works.

2. Software process: The software process encompasses the details of software
proposals and system design. This includes the service representation, its re-
quirements and meta data, service description language, communication pro-

tocol and the discovery process, in which we have indicated if the similarity

30

3.3. Description, discovery, and applications of robotic services

criteria between services and compatibility of services with different robots are

discussed or no.

3. Cloud deployment: Respectively, cloud deployment outlines: (i) the cloud ser-
vice model, i.e. SaaS, PaaS or IaaS, (ii) the way of realizing the cloud solution,

and (iii) the robot-cloud communication mechanism.

4. Case study and Robotic tools: Which summarize the experimental robotic set-

tings, including the robotic system, case studies and the used robots.

5. Experimental analysis: That describe how the results are evaluated according

to the evaluation criteria and comparison with other works.

As we can observe from the parts of Table 3.1, each solution is addressed with
different aspects, thus, there is no standard use in the the software process from the
conceptual perspective, among others, the representation of robotic services (e.g.
[92], [122]). Additionally, each study targets specific scope factors and it has its own
data and conditions of implementation for building the service-based middleware,
in which the experimental results are discussed. Therefore, this is the reason behind
the absence of experimental comparison criteria, contrary to domains that provide
benchmarks and standard data for comparison and validation. Nevertheless, it is
essential to emphasize that ROS is among the most widely used frameworks, in par-
ticular, for service robots, which provides a standard development framework for

robotic software, and allows reuse of codes between.

31

Chapter 3. Service-Oriented Robotic Architectures

sango|
—/21008 -e1p ogmads
Ayrerruarg —/Surures] dea(q - joseye(] - - -[Se}/urewro(] AD [#6]
uorjejaxdioyur uonyejardioyur (Taan sa0y
180 180 dVOS) IAdN dHOqoy -I2jUr SIOIAIS GIM 1Aasm s PM SID [16]
(uonrenday) SIaYl0
G0 eued ad4) yser, uo Awouoxe} pue samqupe A
‘uoneyardiojur paseq ur-3npJ yoress pasodoxd yum -enb “aopraoxd ‘od4y S9p0od
I9S] pue YdIeas aul-uQ — Aroysodaz aur-up ‘uondissp ‘oureN - 3j0qo1 Aul-up Nk
IS IBM}JOS
- - - - - /AQYN S0waI pajsoHy SO (e8]
SpIomAa
uonjejardiojur pue uopnejardisjur £30 (sddwy) suon
1980 19sn) - -[oyuo a3paymowy uondrsaq - -eoridde pajsoy D [97]
- - - - - - - seey [og]
sysey} Jo
- - ISTY - - — somds :uorssN Seey [6/]
unyjrodre aoerd s30q0Y]
UOT}eULIO] UOT}eurLIO] -JOMIR]A 9DIAISG 10J [OpOIA uondrdsa(]
uoneo) -ur aduasaid ,sj0qoy ISHY ‘Aroysoday sjoqoy peyrun pausdisaq - sonpowrgee; geey [9/]
sjoqoi sj0qo1 SIA[OS
jo Jje)g jo AS1ous Tenpisay - - - TASM -way)y s1oqoy Seey [$6]
- - ISHI/dIVOS - - —/1ASM dIAIS PP seey [1/]
a8e101s
ssadoxd [0o0301d 3pamouy elep uondisep uonejussaidor
UonId[Rg AISA0DSI(HOROTUNWIWOD) MIAIG LRI /syuswarmbay DIAISG DIAISG
[POIN 3IOM

ssao01d aremijog

SYIOMIWIRT) }18-93}-J0-93e)s Y3m uostredwo)) :1°¢ d[qel,

32

3.3. Description, discovery, and applications of robotic services

san3o[erp UoEPUSWWO

SSO /90UBULIOf (10113 parenbs ueawr j001) -D9I jueINEISAI pue /IIMSUE WA Sunnduwod |97
-19d pue sdue)SK] SSO ‘SOIIPWI SdOUBWIIONS] -uonsanb 1oj sjasejep jo asn sSOd — -rexed pnop ayearrg - [v6]
- - uonemdruew jJ0qoI 10§ SYseL sOd - pnop ajearry geeg [16]
- synsax £10A0081(] sanIeUOnOUN Uone3IARN] sOd - - - [ze]
I9AISS Pnop
[01u0d SO 9JOWdI I9A0 ddUeW
- sIsATeue sromjau pnopD) joqoa pue uondodrad josysel, /AVA NdA -1ojod suwm-Tesy geeg [cg]
UOTSN[OX3 JO YSII J& wrojyerd arem
- - a7doad 105 suoneoridde Tewog SO adpugsoy -yos oaomos uwadp geeq [97]
(uonyernuurs) a3puiq
douewroyred sarx suonerados[a) snosu spuew -sOy ‘HISS
-opooleny Terrdg -eynuurs jo Aypenb ‘Aiqerey -wod paads jo uoneradosiay sSOd JOMO0GOM TOAISS [EIFUSD JI[qN] - log]
uon
- — -emdiuew auoIp I0j SyseL SO - - - lez]
(103085 Aelop) sgee] (uorssaxddns a11) Geey 3S0Y 0} Sauryd
— [emass Junerapsy jo 350D adAjojoid andsar pue yoresg - - -ew paseq-NV1 Seel [9/]
Surmnpayos
uo spedur ‘Burmpayods
dAISNPX2 sA Surmpayds aurduy ddy s[8o0n
— pesodoxd jo oduBWLIONd] - - - Sumsn adfiojory geeq [#¢]
Sur
Ademooe 3ur Supyoen sawmpear NUriSOY SHOMISU puk sdueW
— e ‘edouewrrojrad swr-Tesy paseqg-auoi sSOd /MUITAVIN -1ojiad sum-Tesy geeg [1/]
uon
BLIS)LID BLIS)LID wo)sAs -BOTUNUIWOD uonezI[eal [Ppour
uostredwo)) uonenyeag Apnjsase) onoqoy pno-10qoy] pnorD pnop
oM
sIsATeue Teyuawradxy S[00} d130qOY pue Apmys ase)) juswfordep pnopD

(panunuod) SyIOMaIWeIy JIe-3}-JO-33€)1s YIIm uostredwo)) :1°¢ S[qeL.

33

Chapter 3. Service-Oriented Robotic Architectures

ao11d uornoaxa
pue uonemp ‘Ayqe

91008 500 - dVOS - 1o “Ayiqepreae ;500 1dsm OIAIS PIM INDST [ST]
- - AN Ansiday - - IAISODIN NDSI [¢71]
-/ (s[1o2 Jo x1yeun)
(uonenday) aseqeje(] a8ew] /o01AI0S
SO —/Burprew-gdol - /ASopouo yyser SoD ‘uondmdseq —/SIMO gemodnuewds WOSY [zzi]
(oseqerep
[EUOT)e[aI-UON]) sordoy pue sapou
Jwreu s[epow ysey ‘sa8esped gOy ‘uon
apou sOY spromAay dVOS pue uonouny -duosap ‘spromAey TASM IATS PPM INDSY [121]
(uonyeynday) IAISS [F11
S0D Sunprew-gJOI LSHA/IVOS A3or03u0 e, S0D ‘uondusa(S IMO gPmonuewpS NDSY ‘CI1]
0D “Aey
- - - pnopD a8pg -op Aduapuadap ereq - syse;onoqoyl SAN [6071]
3DTAIDS oM Se
JDIAIIS UOTJeZI
snje;s ‘oureu -[e207T /S9AJ9S
- SWEU 10q0Y] dVOS 1adn /aseqereq ‘A0 ‘ssaIppe] TASM/- -way s10qoy SN [£01]
(3uryorewr
ydei3 amrediq
S21008 -paseq JX3U0D) JOIAITIS
Sunyprey Sunpyew-gJ0I1 Judan A30[0JUD J0QOY UOILULIOJUI }XJU0D) S-IMO gamonuewag QN [S0T1]
a8e103s
ssadoxd [oo030xd 3pamouy ejep uondmosap uonejussardox
uon3[ag AI3A00SI(OT)EDTUNWIWIOY) MIAING PN /Sjuswarmbay JDIAISG JDIAISG
[POIN 3IOM

ssao01d aremijog

(panunuod) SyIOMIWeI] JIe-3}-JO-91€3s Y3Im uostredwo)) :1°¢ S[qeL.

34

3.3. Description, discovery, and applications of robotic services

Surssanoxd moppyrom ur o)

- ‘somjpwr poyjewr uorsodwo)) S901AI9s uonTU30031 303l SO - pnop ayearry geeg [cz1]
aumy
Suruuni ‘erroino
yuowrdoeas(g SjnsaI pue yoriguadQ Aq
pue juawhordaq oouewrojrad wLIsSAs NVIS VIS - J93D0G g pnop ajearry geeg [¢71]
uonIudoda1 paseq
souewroyrad uonru -uorsip “Surpring dejn/jusw
— -300a1 2oey pue urdiow depy -UOITAUS SWOY Ul SSRIAIPDY SOV /- - pnopajeatry geeg [zz1]
yoriguadQ Aq
- SI0MIBU UO UOISSNISI(] (uonedraeN) Surpimq depy SO — Jmqg pnop aealg Sees [1z71]
(HAVY
juswuor -uadQ) [F11
- — -TAUS SWOY UI SaNIANDE A[re@ore[nuig - - - 711l
S92IN0S
(saanpal -a1 upndwod jo raqunu Jur (uony
-qo Jo uonyeziwy -Area ‘sse} jo Idqunu Jur -e[nuirs) A1030ej JIEWS Ul 9IA
-do) souewioprsy -Area ‘pnop a8ps :Jo pedwy -19s JusweSeurw Aousdiowy - - pnopD 98pa - [601]
uoneZI[edo]
I0J 9OIAISS S} JO ddueW uon
-I0JI9J ‘SJUSI® JO JIdquInu 30qo1 aIq “BISION, QTEMNA
— 9y} 03 Zurpiodde JuISsadOI] -OU JOWAI B JO UOLLZI[ed0] - - pue pnop aearry gees [£071]
$30qo1 Jo
Supreunyjew uo spedur] wrems 3ursn (s1oAraIns 3ur
- ‘ooueunioyrod Jupjewnyojely -UoIeas) ondsal pue dIeag - - - - [eor1]
uon
BLIS)LID BLIS)LID wa)sAs -EDTUNWIWOD uonezI[eal [Ppour
uostredwo)) uonenyeag Apnjsase) onoqoy pno-10qoy] pnorD pnop
SIOM
sIsATeue Teyuawradxy S[00} d130qOY pue Apmys ase)) juswfordep pnopD

(panunuod) SyIOMaIWeIy JIe-3}-JO-33€)1s YIIm uostredwo)) :1°¢ S[qeL.

35

Chapter 3. Service-Oriented Robotic Architectures

3.4 Discussion

As illustrated in Figure 3.4, the trend towards introducing service-oriented solutions
in robotics has been receiving much attention in the literature, and has been evolved
alot in the last five years. In the remainder of this section, we discuss the review find-
ings and research issues of the conducted analysis on both cloud and SOA-related

aspects.

3.4.1 Deployment model and Service Level Agreements

Although there has been numerous research around the design of cloud-based SOAs
in robotics, the integration of the cloud and its service models in such systems from
the aspects of architecture modeling, resource virtualization and implementation
process was not highlighted until 2017 [54], [121], [91], [125], [109], [71]. Instead
of implementing a remote intercommunication with robots via Internet under the
name of cloud, the set of studies that has been conducted accordingly has turned
the “robotic service” concept into more powerful service models by providing Soft-
ware, Platforms and Infrastructures as an on-demand service through virtualized

computing resources.

As presented in the continued parts of Table 3.1, realizing the cloud solution in
each study was conducted following the private deployment model [34, 35]. The
exclusive access and usage of the computational resources are given to local users
in order to establish the set of local case studies. The concern of researchers is the
validation of the used technology innovation without any consideration of shared
concerns between different cloud consumers that belongs to different organizations
or the general public. The cloud architecture implemented through the public net-
work shown in Figure 3.4 are presented in a real-time performance and networking
over internet privately, which is not related to the cloud deployment model. The
approach proposed in [91] addresses the issue of collaborative multi-clouds system
that is comprised of many providers, but its implemented solution needs an empiri-

cal validation in this context.

During the review, we found that this way of system architecting among the ma-
jority of researchers has influenced significantly the SLA [35] contract definition and
use. At present, there is a lack of SLA management in SOA-based cloud robotics sys-

tems. Generally, the set of QoS requirements of the on-demand service offerings is

36

3.4. Discussion

. o - M- - L]] L L2 » 3

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Non-Cloud SOA _ REST Web
I:l architecture _(-‘1011(1 architecture architecture Service
O Cloud {:} HIp lemgnted tlu'(?ugh SOAP Web Semantic Web
architecture the public network Service Service

Figure 3.4: Historical overview of the reviewed works of the service-oriented robotic models.

defined in a given SLA, which leads to a regulated relationship between the service
provider and consumers [91], [125]. Thus, SLAs are highly required and need to be
addressed to specify the terms fulfilled by cloud providers, especially in multi-cloud

environments.

3.4.2 Representation and description of robotic services

Robotic services are varied. Robotic service denotation is used in PaaS [54] and
IaaS [76] to refer to the computing resource offered by the service model. In SaaS, it
is generally understood to mean software components [71], [85], [91], [123], [125]
such as algorithms and applications of navigation, object and voice recognition, or it

can refer to entities like images [122], dialogue services [93], [94], or deep learning

37

Chapter 3. Service-Oriented Robotic Architectures

models [87]. Different technology styles have been considered for service deploy-
ment implementation including SOAP [5], [71], [91], [121], REST [5], [71], [79],
microservices® [78], [123], OWL-S [103,104], and others, as outlined in Table 3.1.

The most used standard format for describing the service is WSDL. WSDL pro-
vides a description that includes the name, address, operations, inputs and outputs
of the web service. Nevertheless, there is a need to describe and standardize more
the content of the service, and keeps the aspect of the encapsulation. Robotic ser-
vices should provide more information about their capability, which characterize
their functionality and applicability on the different types of robots. In that regard,
exploiting the semantic descriptions and strategies that have been widely used in
RSCM frameworks (see Table 3.1) may offer an improvement to the definition and
description of cloud robotic services (e.g. [124]).

3.4.3 Deficiencies in SOA implementation: Robotic service discov-
ery gap

Service implementation in the matter of SOA life cycle process in robotics still has
several deficiencies. Most of the studies have focused on SOA as a mechanism that
provides service encapsulation and loose coupling between system modules. How-
ever, there is less focus in the literature on the dynamic discovery for enabling the
reuse of services. Despite the interest of introducing SOA, this drawback affects the
implementation of services as discoverable entities, which is the fundamental scope

and focus of service-oriented architecture style.

Research on service discovery has been investigated in some earlier work of MRS
(e.g.[105],[96]), RSCM (e.g. [120],[114]), and in [92]. It has taken many initiatives
and modeling techniques that involve semantic technologies and ontologies to cover
the underlying background of MRS and RSCM models. But the research has known
a lack in the recent and cloud-based systems as shown in Table 3.1. For instance,
authors of [54] proposed a scheduling algorithm of robots based on the customer’s
request. In [76], a discovery mechanism that targets the use of IaaS for robots when
needed was proposed. [93] and [94] adopted deep learning for the answer searching

and selection mechanisms in dialogue services between the user and the robot.

3Microservices are small and independent processes that can communicate together to build com-
plex applications.

38

3.5. Conclusion

As presented in 3.3, service discovery is the phase that enables the service con-
sumers to find relevant services by offering a list of candidate services, through
matching the set of descriptive information of published services with the consumers’
criteria. Hence, there is a lack of this scope in the cloud-based service-oriented ar-
chitectures. Some authors have discussed the impact that service discovery offers to
use the available robotic services, especially, for the future issue of service composi-
tion [123], [111], [125]. Nevertheless, there is a gap that lies in the absence of sophis-
ticated search capabilities for identifying potential cloud robotic services provided
by different service providers that can help users to find relevant services. This in-
volves the capability of examining the published robotic services, which can be even
similar, depending on: (7) the needs of service consumers, and (ii) the compatibility
between the service and the various kinds of robots. Indeed, the problem of finding
relevant cloud services that can respond the needs of robots remains a challenge that

is not fully addressed.

3.4.4 Robot Operating System and case studies

As shown in the continued parts of Table 3.1, ROS is the most used robotic frame-
work. This is due to the set of ROS benefits including its compatibility with many

robots due to its development support for software reuse.

The set of case studies and used robots (see Table 3.1) in cloud-based SOA robotic
solutions show that they are implemented to support service robotics in a variety of

environments where mobile robots are employed, and less use in the industry [124],
[127].

3.5 Conclusion

SOA is considered as a key element for providing services over the internet in robotics
applications, which have known a growing shift into cloud-based architectures. In
this chapter, we have proposed a classification of research proposals in the liter-
ature of this area. We propose the following service model: Robot as a Service
(RaaS), Cloud-enabled Robotic Services (CRS), Multi-Robot-based Services (MRS),
and Robotic Service Composition Middlewares (RSCM). This classification is made
according to the provisioning and delivery of robotic services as well as the architec-

ture of different approaches. In addition, we have conducted a comparative analy-

39

Chapter 3. Service-Oriented Robotic Architectures

sis that examines the software modelling and experimental deployment of the pre-

sented works.

The result of the study shows that the works are diverse in many levels of both
system conception and development. From a conceptual point of view, we have no-
ticed that the web services technology have been widely used in robotic services
representation. However, the standardization of representation and robotic services
discovery have not received enough attention. The next chapter will present the the-

sis’s contribution axes.

40

- Chapter4

Robotic Services as a Service approach

41 Introduction i i i e 42
42 Highlights i i e e 42
4.3 Robotic Services as a Service architecture 44
44 Experimentalsettings it 52
45 Conclusionttt e e e e e e 56

41

Chapter 4. Robotic Services as a Service approach

41 Introduction

The development of on demand software for robotic service provisioning is grow-
ing. By the encapsulation of implementation details and offering loosely coupled
application functions, the use of SOA provides a solution to the response of software
development problem for robots. However, as presented in section 3.4 of chapter 3,

there are a set of issues about service-oriented solutions.

In this chapter, we present the first contribution addressed in this thesis based on
the defined issues in the previous chapter. We present our proposed architecture as
“Robotic Services as a Service” (RSaaS) approach. To that end, we highlight firstly
the scope of RSaaS in section 4.2. Next, we present the actors, architectural elements
and modules that build the RSaaS architecture in section 4.3. The experimental set-

tings that have been used to develop the system are summarized in section 4.4.

4.2 Highlights

Unlike traditional robots that use a large number of devices for storage, calculation
and processing, they can use less expensive and more effective hardware due to
cloud robotics. Based on that, our proposed solution addresses the drawback about
SOA implementation in cloud robotics systems for service provisioning. We present

in this section the main items that are addressed by our proposals.

4.2.1 Robotic Services as a Service scope

The change in the form of service distribution, which has been introduced by cloud
computing into robotics, motivated our proposed solution for robotic services deliv-
ery. Our work aims to propose an architecture for delivering “Robotic Services as a
Service” (RSaaS) to the robots as a CRS model (see subsection 3.2.2 of chapter 3), by

leveraging the advantages of cloud robotics and web services.

Indeed, we notice in the first place that there is a lack of using classical cloud
computing architecture, which is based mainly on virtualization concept, in SOA-
based works. The studies that has been conducted accordingly have designed the
cloud solutions as client-server model for remote intercommunication with robots
via Internet. This influenced the real aspect of cloud computing that provides pow-

erful service models by providing Software, Platforms and Infrastructures as an on-

42

4.2. Highlights

demand service. For this reason, we addressed this issue and we proposed an ar-
chitecture firstly in [91], by extending the cloud robotics solution of [50] with web
services technologies.

We proposed subsequently the detailed architecture of this work in [128] that fo-
cus on providing a complete SOA-based architecture for service provisioning. The
proposed approach extends the architecture [91] that has discussed the service search-

ing topic mainly without a particular mechanism.

The proposed approach [128] presents a full SOA-based approach, in which robotic
ROS tasks are considered as web services, according to a defined representation, that
are hosted, virtualsed, and delivered over a cloud infrastructure. The idea of host-
ing robotic software is also addressed in [85]. However, the work does not consider
robotic services as web services, and does not discuss how the software can be virtu-
alsed and discovered. The addressed aspects of CRS-based works are different from
our contribution, which is more focused on the SOA context, technologies, methods
and tools. We denote this approach by “Robotic Services as a Service” or “RSaaS”.
Although this denotation is given by the taxonomy proposed in [84], our definition
presents another approach for RSaaS. Indeed, according to [84], RSaaS refers to user
service that are obtained from the cloud using robots, which can be given by the
RAPP project [46] or dialogue-based systems [93,94] (see CRS model in subsection
3.2.2 of chapter 3).

4.2.2 Virtualization concept

Cloud computing has becoming increasingly used paradigm. This is mainly shown
by the numerous cloud providers that are engaged in the creation and delivery of
various computing services. Indeed, “virtualization” is the engine that enables this
paradigm change in computing, and in particular, “machine virtualization” [129]. Vir-
tualization abstracts some physical component into a logical object, in which we can
acquire a higher level of utility from the resource. [130]. It creates the artificial view
that many computers are one computing resource or that a single machine is many

individual computers [131].

Instead of owning the computing resources, cloud computing applies virtual-
ization to enable consumers to access them as a service using cloud data centers.

Virtualization allows the computer systems” hardware resources to be divided into

43

Chapter 4. Robotic Services as a Service approach

a number of different execution environments known as Virtual Machines (VMs).
VMs can be classified based on how much functionality they implement of the tar-
geted machines' [132]. Each VM can act as a complete system to execute the user
applications in isolation with other VMs. A VM is defined in [133] as “a complete
compute environment with its own isolated processing capabilities, memory, and communi-
cation channels”. Accordingly, there are several benefits of virtualization for enabling
cloud computing, including execution isolation, easier management, and enhancing
reliability [129].

For hosting a VM, everything a VM needs in terms of CPU, memory, storage and
network bandwidth is provided by a physical machine or a server. The VMs are
managed within the physical machine by a layer of software anointed VM Monitor
(VMM), or as it is commonly called a hypervisor. A hypervisor resides below the
virtual machines (guests) and above the hardware (host) [130,132]. There are two
categories of hypervisors that are generally named [129,130]:

Type 1: A Type 1 hypervisor does not require an operating system since it runs
directly on the physical hardware. It has direct access to hardware resources, and
the guest does not affect the hypervisor on which it is running. VMWare ESX, Xen,
and XtratuM are some examples of Type 1.

Type2: Type2hypervisorsrunatop a traditional operating system. They are straight-
forward to install and deploy because the operating system handles most hardware
configuration tasks, such as networking and storage. Examples of Type 2 can be
given by the KVM, VMware Workstation, VirtualBox, etc.

4.3 Robotic Services as a Service architecture

The RSaa$ solution provides both of robotic services, which are delivered to be con-
sumed “as a service”, and virtualized computing resources that enable to run these
services, on different instances, according to desired requests. The description of the

architecture will be presented in the following subsections.

IThere are four major levels of virtualization that can be distinguished: full virtualization, para
virtualization, hardware assisted virtualization, and resource virtualization.

44

4.3. Robotic Services as a Service architecture

4.3.1 Overall system

The overall architecture of RSaaS is shown in Figure 4.1. In our design, a robot ben-
efits from the computational resources, storage, and necessary software to perform

its required task. The main features of the architecture are summarized as follows:

¢ Different robotic software or services as navigation, object or voice recognition
algorithms can be used “as a service” for robots. Unlike the pre-programming
of robots that addresses limited use cases, robotic services can be discovered
and invoked dynamically to respond to the various needs of robots, which al-

lows them to adapt to their situations and be more autonomous.

e Robotic services can be obtained and accessed following the search of available

services over the cloud.

e Robotic services are proposed as Web services to benefit from all their advan-
tages as (i) data encapsulation, (ii) service reuse, (iii) and interoperability be-

tween services.

e The solution improves task performance of services by boosting computational

capabilities over the cloud infrastructure.

e The architecture provides full abstraction of system construction. Users are in-
vited to consume robotic services without knowing how the provided solutions

are built.

e From a cloud provider’s point of view, the system architecture is structured as
a layered architecture that is inspired from classical cloud computing architec-
tures [35].

e The cloud layers are hidden from robotic consumers, as it is the case in a cloud
system for computational resources delivery between providers and consumers
[35].

There are three levels in the cloud side:

1. The Physical level: It represents the set of physical resources, such as storage

servers, network equipments...etc.

2. The Virtual level: It contains virtual machines, which enables to provide mul-

tiple applications on multiple instances to serve a large number of customers.

45

Chapter 4. Robotic Services as a Service approach

Robotic Services
P :«G\ .
A Search || Service il o
& g Module || descriptions !i!'| | 8 _
> S e 2O
I 3 ¢ (55
- N, Virtual layer =
@ T\ | (] (V) (V] ... J>
- (Hypervisor
Physical layer

Figure 4.1: RSaaS System overview.

3. The Robotic Services level: In this layer, the robotic software are exposed as Web
services. Both of virtual and robotic services layers constitute the Virtual robotic

layer.

The collaboration of RSaaS architecture’s components is presented in Figure 4.2.
We distinguish a set of modules to define the RSaaS architecture. These modules are

highlighted in the following.

4.3.2 RSaaS virtualization and service model

In order to help robots to perform their required tasks, users can interact with the
virtual robotic resources of the cloud, through a Web interface, similarly to SaaS of-
terings. The cloud provider offers this virtual layer to customers that guarantee the
promised SLA. This can be based on pay-per-use mode that covers duration of use,
quantity and quality of resources. The cloud provider takes the responsibility of
installation, control, maintenance, etc, in which all the computational resources are

hidden from consumers.

The cloud virtual layer is constituted by a set of ROS Virtual Machines (ROS-
VMs) as shown in Figure 4.2. ROS-VMs are similar to virtual machines but with
specific tools. This provides a robotic operating system that is virtually executed in

the cloud environment. They are considered as robotic platforms where each one

46

-21n3da)IyYdIe Geegy pasodoid ayy 7'y oSy

Jojeqysiuiupy

47

4.3. Robotic Services as a Service architecture

92119 230qOoYy

1
I
i pno|o CY
| e
I
! ~ ueyurepy
i saulyoep [enHdIA SO pue
i i - v sbeue|y
“ e
i o
1 i 9
d9pinoid | i 3 :

221198 2130q0Y “ 3 w v

| . : J
*-.ﬁo, i ‘sebexoed Sidv 3] soueuwioylad
d | sjoqoy - S Jyse] sjoqoy
oeAsg ! [sooInIeS | | '8 54 e

[ae M L gs mE
! !) H = M,,K.Wnlvh.&
1 “/ .m
m X

[SdllH | m uonnoaxa i
! pue dn jeg (v ;
I i
1 B
i ﬁbou_moamm_ ﬁ _ uonnoaxy J2UMQ }0qO

ysignd “ ﬁ ~ SMY gl o 2o1A19g pajsanbay 9)0AU| (€) O Joqod
! = rwwlﬂwtw\ pue jo9|9g —-.
=1

| : L I
m i s|npow a|npowl EERTNER o 7
! o Auenuis Aranp sjepipued Cm
| - =l
i Buiyoyen (1)
m 291M9g-)sonbay E :
I -) " _
m aq Jesn - o uonespusyny 3senbaiyse _
“ o h |
“ subugysresg |, 4_ \\\\\\\\\\\\\
m | [episwalo
“ sbeuepy joenu0D _
| vis H
i 19beuep |
! o
I
1
1

1 epis pnoj|o |

Chapter 4. Robotic Services as a Service approach

collects multiple robotic services. Such services enable to run corresponding ROS
codes that perform robot tasks. The system applies a dynamic attribution of ROS-

VMs according to service demand requirements.
Principally, a ROS-VM is composed by:

e An operating system (Ubuntu).

Robot Operating System (ROS).

Robots APlIs.

A set of Packages: A package, which is developed for robotic tasks perfor-
mance, contains source code for ROS nodes. These codes are encapsulated,

reused, and interoperable robotic services. They are proposed as web services.

4.3.3 RSaaS cloud actors

Cloud actors are intended to use, manage, and monitor the provided cloud resources
for keeping the system in good operating conditions, and to prevent any possible
failures. Mainly, these actors and the main features of their responsibilities are pre-

sented as follows.

RSaaS Client

At the client side, users can interact with the robotic resources of the cloud, through
a Web interface, to help their robots performing their required tasks. Hence, there

are two kinds of clients:

e Robot Owner: A Robot Owner is the end user that wants his connected robot
to accomplish a specific task. The robot owner makes an agreement with the
service provider by signing a service contract SLA that describes the Cloud-
Client features. The service contract is based on the achievement of the follow-

ing tasks:

— Search for candidate services: Authorized users are invited to access the
external web application for searching services remotely. According to
their requests, a list of candidate services will be displayed by the search

engine.

48

4.3. Robotic Services as a Service architecture

- Select and execute best web service: Selecting and executing the best web
service among the search results by the user enables the performance of
desired robotic tasks.

— Establish Robot-Cloud connection: At the client side, a private network
must be configured for service invocation that requires an establishment
of robot connection to the cloud, across the public network, in order to

enable robots to receive action orders.

e Robots: This is the main actor. By being connected to the cloud, robots would
be able to use the suitable service to perform their required tasks of locomotion,

grasping, object recognition, etc.

RSaaS Cloud Administrator

The RSaaS Cloud Administrator plays an effective role in providing, and managing
the cloud computing resources for users and service providers. He manages the
entire cloud infrastructures and platforms. The responsibilities of a Cloud Adminis-

trator are:

e Resources Provisioning: This includes the resource allocation of ROS virtual
machines for certified customers, with a dynamic attribution according to the
demand.

e Resources Monitoring: This comprises the supervision of the system behavior
during execution including the platforms, the network management and secu-

rity.

e Network Management: Encompasses the configuration of the network and its

security. This comprises:

— User-Cloud connection: Includes the network configuration about the lo-

cations of hardware and the client settings.

— Robot-Cloud connection: Which enables the connection of robots to the

ROS-Cloud platform for executing the desired services.

49

Chapter 4. Robotic Services as a Service approach

RSaaS Robotic Service Provider

Different web services can be available for use according to the multiple robotic tasks.
As presented in Figure 4.2, each service is created and provided by a Robotic Service

Provider. Its responsibilities can be summarized as follows:

e Setting pre-required tools: This step covers the installation, and the configu-
ration of all the required development tools and APIs on Ubuntu-based ROS-
VMs.

e Developing ROS programs: This operation includes the creation of packages,

nodes, compilation of codes to ensure the proper functioning of ROS codes.

e Publishing services: This procedure enables the services to be available and

dynamically discovered through their service interface and requirements.

RSaa$S Robotic Service Manager

The RSaaS Robotic Service Manager is the supervisor and manager of the cloud ser-
vice provided to end users, and has the following responsibilities.

e Establishing SLA contracts: In which responsibilities and features about the

provided cloud service are identified.

e Managing the RSaaS Engine: This is assured through the data flow monitoring
with the robot owner. It comprises also web service data extraction and setting

up of the computing environment for service invocation.

4.3.4 RSaasS life cycle process for service provisioning

The main focus addressed in this thesis targets the development of full SOA life cycle
process for ROS-based service provisioning. This requires the definition of service

requirements for the publication and discovery phases.

Service description and publication

Defining the requirements of the robotic service meta data is the first important issue
that needs to be considered for response to criteria-driven queries. From a software
engineering point of view [6], these requirements are viewed as key elements for

robotic application characterization and architecture modelling of service-oriented

50

4.3. Robotic Services as a Service architecture

systems in robotics. Thus, in the first step in the life cycle process, we define the ROS-
based service requirements. This definition expresses the key features that charac-
terize the ROS web service from ROS itself. We consider ROS web services as SOAP
web services due to their completeness in service implementation, as presented in
subsection 2.4.3 of chapter 2. The Robotic Service Provider makes services available
and accessible by publishing the WSDLs of services. We also add a semantic de-
scription to these services by exploiting the opportunities of semantic web services
using OWL-S. The description leverages the semantic notations for expressing ROS

web service specifications based on the OWL language and ontologies.

Dynamic service discovery

Finding the appropriate service that can match the user request will provide a major
impact on clients’ satisfaction. Robots will be able to perform different tasks by the
search of available services. This will offer, for both software developers and users,
the opportunity to provide an abstraction of any platform requirements or robotic
software. This is due to the service discovery process that is intended to carry out
the appropriate service for robots, according to the matching of the requested task

with robotic service features.

To cope with dynamic discovery queries of services in RSaaS system, runtime
discovery is needed to assign different tasks to robots through accessing the suitable
service. ROS web services can have similar or different functionalities for different
kinds of robots. In such cases, the RSaaS search engine focus on matching strategy
that intended to retrieve the most satisfied ROS web services. Finally, the list of can-

didate services is ranked according to their score of similarity.

Dynamic service invocations

By selecting the best service, the system allows the invocation and access to the web
service remotely. It invokes the web service dynamically according to the extracted
data by parsing WSDL files (web service name and its operations with the inputs).
The communication between client codes and web services is ensured through SOAP

messages.

In addition, the service invocation requires the configuration of the network to
enable the connection of the robot, and the launching of robot’s ROS nodes, which

ensure the proper functioning of the service.

51

Chapter 4. Robotic Services as a Service approach

4.4 Experimental settings

The list of tools and ROS technical requirements that have been used to develop the

system are summarized below.

4.4.1 Technical robotic tools

We hosted our robotic requirements in the cloud environment of Synchromedia [134],
in which we use virtual resources hosted on cloud servers across the internet. A
number of VMs of different usages (applications, authentication, web) were created
for our research team. The experiments of this work were performed on a VM that
has 3 GB of RAM memory, 4 processors, 100 GB of disk space, and Ubuntu server
14.04.

For a remote access to the graphical desktop of the VM, we used the open source
X2Go?Client under Windows and Ubuntu. All session configuration details (includ-
ing the Host, Session type, etc.) have been identified carefully at the first time of

creating a new session with X2Go.

The NAO robot

The case study for developed packages was performed using real NAO robot [135]
(see Figure 4.3), with the potential of solution reuse using simulated robots. NAO
is the first humanoid robot built by “Aldebaran”? society. Currently, it is used in dif-
ferent countries around the world as a particular platform for the fields of research
and education. The NAO robot was designed to have many senses for natural inter-
action to reproduce human behaviors. It can perform different functionalities such

as moving, speaking, thinking, etc.

NAO with ROS

On the Ubuntu 14.04, we installed the full desktop installation of ROS Indigo
distribution. In addition, to use NAO with ROS?, it is necessary that:

2X2Go Website: https://wiki.x2go.org.
3In 2016, Aldebaran brand name became “SoftBank Robotics”.
*NAO with ROS: http://wiki.ros.org/nao.

52

https://wiki.x2go.org
http://wiki.ros.org/nao

4.4. Experimental settings

58cm in height

Two 2D cameras 25 degrees of freedom

Speech recognition and
P g 7 touch sensors

dialogue in 20 languages

Open and fully programmable J 4 directional
microphones and speakers

platform

Figure 4.3: The NAO robot.

e The Nao packages should be installed to have the required components for
getting started with the robot. Hence, the needful commands that meet our

ROS version were applied.

e The NAOgi SDK should be set up as well. We used SDK version 2.1.4.13~

linux64°.

All basic actuators and sensor publishers for NAO become up into a running state,
after launching nao_full_py.launch® file of nao_bringup package by the fol-

lowing command:
e roslaunch nao_bringup nao_full_py.launch

Moreover, the NAO'’s IP (NAO_TP) and the IP of roscore’ (ROS_MASTER_URT)
must be exported, when starting the robot bringup command, to establish a correct

network connection between the robot and ROS’s computer.

To launch NAQqj, the following command should be run in a another terminal:
e ~/naogi/naogi-sdk-2.1.4.13-1inux64/naogi

To ensure its proper functioning, the NAOgqi library path should be added to
PYTHONPATH with the following command:

°Logged in and Downloaded from: https://community.ald.softbankrobotics.com/.

5With the ROS distributions, the launch file name can be different. For instance, in ROS hydro we
use nao_full.launch instead of nao_full_py.launch

"The roscore IP: is the IP of the computer where the ROS Master is running.

53

https://community.ald.softbankrobotics.com/

Chapter 4. Robotic Services as a Service approach

Nouvelle session E=Hon
__ =

1 EAppIicatiuns Menu [radhia@sapp2: ~ 1 /home/radhia/catkin_ws/...

radhia@sapp2: ~
File Edit View Search Terminal Help
Hidden method setStiffnesses getCycleNumber: 2098

Hidden method setStiffnesses getCycleNumber: 2089
Hidden method setStiffnesses getCycleNumber: 269

Hidden method setStiffnesses getCycleNumber: 209
fhome/radhia/catkin_ws/src/nao/launch/nao full_py.launch http://localhost:11311
Hidden method setStiffnesses getCycleN| Fle Edt View Search Terminal Help
Hidden method setStiffnesses getCycleNi[INFO] [WallTime: 1522747774.866307] Changes recorded but not applied
is subscribed to the RO
Hidden method setStiffnesses getCycleN i B & n listener created on tcp:/
: TransportServer will listen
Hidden method setStiffnesses ge leNi.162.8.69
gimessagi sports r: TransportServer will listen on: tcp://127
Hidden method setStiffnesses getCycleN|.0.0.1:33763
[INFO] [WallTime: 1522747774.930317] reconfigure changed
Hidden method setStiffnesses getCycleNi[INFO] [WallTime: 1522747774.930563] Changes recorded but not applied as nobody
is subscribed to the ROS topics.
Hidden method setStiffnesses getCycleNi[INFO] [WallTime: 1522747774.971189] reconfigure changed
[INFO] [WallTime: 1522747774.971448] Changes recorded but not applied as nobody
is subscribed to the ROS topics
[INFO] [WallTime: 1522747774.994689] Connecting to NaoQi at 127.0.0.1:9559
on listener created on tcp
r: TransportServer will listen on: tcp://207

qi

.162.8.69:42849
gimessaging.transportserver: TransportServer will listen on: tcp://127

.0.0.1:42849

[INFO] [WallTime: 1522747775.085944] reconfigure changed

[INFO] [WallTime: 1522747775.087284] Changes recorded but not applied as nobody

is subscribed to the ROS topics

Figure 4.4: The Output of running NAOgqi and NAO bringup package under ROS via X2Go.

e export PYTHONPATH=/TheNaogilLibraryPath/1lib:${PYTHONPATH}

Figure 4.4 displays the output of the command launching the NAO (nao_bringup)
and the NAOqi as well, which is needed to be running in order for the launch file to

work.

4.4.2 APIs and ROS packages

We develop the NAO codes using rosjava library, which implements ROS with

Java language, after its installation.

To start working with rosjava packages, we need to to create and build catkin
packages. This can be built as a standalone project, however, it is recommended
touse a catkin workspace in which multiple packages can be built together. We

used the following commands to create and build a catkin workspace:
e mkdir -p ~/name_ws/src
e cd ~/name_ws/src
e source /opt/ros/indigo/setup.bash

54

4 4. Experimental settings

e catkin_init_workspace
e cd

e catkin_make

In this workspace, we create and build each catkin package using the follow-

ing commands:

e cd ~/name_ws/src

e catkin_create_rosjava_pkg name_pkg
e cd

e catkin_make

e source devel/setup.bash

Instead of running execution commands from the terminal and manipulating
ROS codes using the text editor, we used the rosjava library under Ec1ipse® IDE en-
vironment. We used Eclipse for Java EE Developers (jee-oxygen version) with
JDK 8. The tutorial [136] is a helpful source to start working with rosjava under

Eclipse, which is familiar to us as java developers.

To use rosjava in Eclipse, we have to create firstly in Eclipse a “Java Project” or
“Dynamic Web Project” as needed. Then, we need to “Configure Build Path” in order to
“Add External JARs” of rosjava that are found in the package created in: name_ws/src/

name_pkg/rosjava_project/build/install/rosjava_project/1ib’.

The execution of rosjava class from Eclipse is done using the toolbar of Eclipse by

the following instructions:

e Run — Run Configuration, then, we choose Java Application — New — [in the

tab “Main” we choose our rosjava project for Project, and ROSRun - org.ros

forMain class]then [inthe tab “Arguments ” we write name_pkg.name_class]|

— Apply — Run.

8Eclipse Desktop IDEs: https://www.eclipse.org/ide/.
9In case of using a “Dynamic Web Project”, we must copy these JARs also in WebContent /WEB-
INF/1ib of the project.

55

https://www.eclipse.org/ide/

Chapter 4. Robotic Services as a Service approach

Now, by launching your robot, you can see it executes the desired action of code.

We translate the codes to SOAP Web services automatically, using the server
Apache Tomcat!’(apache-tomcat-7.0.85 version), to keep instances of WSDL
files in the database and to avoid their recreation. To develop the ROS domain on-

tology and ROS service ontology, we used the Protégé editor [137].

In addition, the following java APIs were used for system development:

e WSDL4J: Used for parsing WSDL documents.

e std_srvsand naogi_msgs'!: Used respectively for defining “std_srvs” and
“naoqi_bridge_msgs” rosjava messages of appropriate web services. We rewrite
the jar file “naoqi_msgs” into “naoqi_bridge_msgs” with the necessary modi-
fications to make the version compatible with ROS Indigo version. Information
about ROS messages of developed web services are listed in subsection 5.5.1 of
chapter 5.

4,5 Conclusion

In this chapter, we presented our proposed approach for Robotic Services as a service
(RSaaS) concept, in which the solution aims to offer a full abstraction of any platform
requirements or software. The RSaaS combines the benefits of both cloud computing
and web services. A user can search for an appropriate service that respond to his
robotic request, which is assured by the service discovery process. The following
chapter aims to introduce the definition of this life cycle process.

10 Apache Tomcat: http://tomcat.apache.org/.
Urosjava_messages: https://github.com/rosjava/rosjava_mvn_repo/tree/master/org/ros/
rosjava_messages.

56

http://tomcat.apache.org/
 https://github.com/rosjava/rosjava_mvn_repo/tree/master/org/ros/rosjava_messages
 https://github.com/rosjava/rosjava_mvn_repo/tree/master/org/ros/rosjava_messages

- Chapter5

ROS Web service description and

discovery
51 Introduction it 58
52 Generalscope i it e e e e e e 58
5.3 ROS Web Service (ROS-WS): Requirements and discovery 60

5.4 ROS Semantic Web Service (ROS-SWS): Description and discovery 68
55 Casestudy it e e e e 72
56 Conclusiont e e e 89

57

Chapter 5. ROS Web Service description and discovery

5.1 Introduction

In this chapter, we present in details the two contributions that address the life cy-
cle process of ROS-based web service. The first contribution of ROS Web Service
(ROS-WS) relies on SOAP-based services and defines a set of characterization re-
quirements. The second contribution adds a semantic layer to ROS-WS on the basis
of OWL-S ontology and designs the ROS Semantic Web Service (ROS-SWS).

The motivation as well as related works of the context of our work are described
in section 5.2. In section 5.3, we introduce the ROS-WS definition and ROS-WS dis-
covery process with its flow of actions. Section 5.4 presents the cycle process pro-
posed for ROS-SWSs. This includes the ROS-SWS description, domain ontology, and
ROS-SWS discovery engine. Finally, we present in section 5.5 the ROS-WS/ROS-SWS

implementation, case study, and obtained results.

5.2 General scope

The main aim of ROS-WS/ROS-SWS contributions is the development of full cycle
process for ROS Web Services. We highlight in this section the scope about ROS-WS
and ROS-SWS.

5.2.1 Motivation and related works

The general scope of our work targets the drawback of service-oriented solutions, in
particular for ROS-based systems, by filling the gap between ROS Web services and
their discovery process.

In that regard, we import in the first place a definition of functional meta data
to ROS web services [5], [91], [121], which was proposed in [128]. The ROS-WS
definition describes the robot task representation from ROS requirements to present
a characterization of such web services. For finding these services, we compute the
similarity score between sentence embeddings of each service and user query using

sentence-BERT [7], by reinforcing the training dataset.

Secondly, we propose a semantic description ROS-SWS that build the ROS Web
Service as single-semantic unit, which expresses its ability through a ROS domain

ontology of properties and capabilities.

58

5.2. General scope

The decription and discovery of ROS-WS and ROS-SWS are based mainly on high-
level semantic concepts of ROS messages [138] and independent of any case study

or robots.

5.2.2 Message and service types in ROS

The type of messages and services in ROS are data structures that are stored in “msg”
and “srv” ROS packages respectively. Both of these packages combine a set of com-

mon message and service types that share a common context of use.

ROS provides a standard naming manner for the type of messages: pkg_name/ms
g_file_name and services type: pkg_name/srv_file_name. For instance, ge-
ometry_msgs/Twist refers to Twist message type that is defined in the pack-
age geometry_msgs, which provides messages for geometric primitives. Each ROS

message or service can contain one or more fields'.

Tiddietal. highlighted in [138] the high-level semantic concepts of ROS messages
and their fields, which improve the accessibility to ROS. Each ROS message defini-
tion has illustrative names of fields and a description about their use. This allows
to extract capabilities and to identify how to parametrize this capability to achieve
the robot behavior, as shown in Figure 5.1. For example, it is possible to derive the
capability of “Movement” from data fields such as velocity or acceleration, in which

these are the parameters of this robot behavior [138].

This proposition gives an abstraction to the previous technical realization of on-
tology capabilities that relies on hardware/software architectures of robots such as
[103,104] and [139,140].

We consider accordingly the message and service ROS types as key aspect that
define the characterization of ROS-WSs and ROS-SWSs.

5.2.3 Distinguishing Robot-Service compatibility

In both ROS-WS and ROS-SWS search engines, we display the search findings after
distinguishing the robot-service compatibility and availability. This is due to the

convenient property of code reuse between robots offered by ROS. Therefore, we

1See geometry_msgs/Twist Message: http://docs.ros.org/en/api/geometry_msgs/html/msg/
Twist.html.

59

http://docs.ros.org/en/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/en/api/geometry_msgs/html/msg/Twist.html

Chapter 5. ROS Web Service description and discovery

 rosModaliy)
\-N_IDS-MDdahh_:/'

N
ros:hasMaodality
__——_I_———--.
< ros:Capability >
?EVDKWBF ros:hasParam
\rgs.Messagff/ < ros:Parameter /
ros:hasFieldType) I.I i \)7__ -

\ ros:hasField res:readsFrom

AN —
x-_-_-__<h_i° f:!_:iflci)
/N

rdfs:label ras:hasValue

¥ Y

"name” "value"

A

NS

Figure 5.1: Mapping ROS components to capabilities [138].

collect the compatible service according to the ROS requirements. Each ROS-based
robot has its own communication mechanisms through its list of own topics and
services. Thus, we can determine the possibility of using codes by different robots

across their communication mechanisms.

To that end, both of the robot name and task query must be indicated by the user.
By specifying the name of the selected robot, a matching of the registered Topic/Ser-
vice (T/S) of robot with those of web services is carried out. As shown in Figure 5.2,
we consider ROS topics (T) and services (S) as the condition factor of proper choice
of candidate services related to each robot registered in the database. A published
web service that provides the same name of topics (T) or services (S) of the selected

robot is considered as compatible service.

5.3 ROS Web Service (ROS-WS): Requirements and dis-

covery

Like any traditional web service, a ROS Web Service (ROS-WS) is an interoperable
software that can be accessed using standard Internet technologies. It could be seen
as a function that requires a set of inputs and provide an action as output. As a result
of web service execution, a robot will be able to perform different tasks. We present

in this section the set of requirements that characterize the ROS-WS based mainly on

60

5.3. ROS Web Service (ROS-WS): Requirements and discovery

Robot Owner Search Engine

Select the Request for Match T/S of
robot's name a service robot with T/S of
web service
List of T/S
of robot [Else]
[Compatible
services]
Apply semantic
textual similarity

Figure 5.2: UML activity diagram for distinguishing Robot-Service compatibility.

types of messages and services in ROS, which provide semantic information about
ROS use.

5.3.1 ROS-WS requirements

We define the representation of ROS-WS, in SOAP format, as a set of “Functional
Requirements”. The specification of ROS-WS enables the service search and their use
depending on the users’ needs. We present in Figure 5.3 the ROS-WS metamodel. Its
core structure comprises three main parts: ROS Requirements, WSDL Requirements,
and Registry Requirements, which are composed of the following elements:

ROS Requirements

The ROS Requirements are the several ROS data that are used to generate a robotic
task of the web service. This includes:

e Node: Which refers to the ROS process that performs a robotic task. Generally
the name is explicitly referring to the task.

61

Chapter 5. ROS Web Service description and discovery

‘[opoureiauwr (SAM-SOY) ITAIIS GIM SO €' I3

Buing :adfy+
buing -aweu+

Buing :adfy+

I L0 7 Bus :enjeppsuyepaid+ | 0 b 7 BuLlg -oWeU

7 anjepindujpauyapald

pRI4 aingupe+ anjeApaulspald+ anjeApauyapald+ anqupe+ Hed
0| Pleu+ -0 ainqupe+ | 0
Bug :pi- , BuLlg :sweu+ -
P S P! soewered+ § ¢ q
adA ebessaw+ | | Bumg sWeu+ | | adAledimest Jaunuap| nduj
> adfy S — . 0 abessapy . ndus
Bulng :uonduosap+ Buiyg -aweu+ L
L b
3
uonduiosag ' # Y fioBayed L.~0] Buns “1epioselawesed+
Bulyg :sweu+ L Buing :aweu+ . J) . Bums -aweu+
aidoy abBessapy 82IAI9G P juswalinbayAnsibay P uonesado
- +0 oylew+ |,
v0 <k Buulg -eweu+ Aﬁ Bulg jyMuIodpu3+ | | Pourtts '
]
Lo Juawasnbayeuonouny adep8ju| |
.0 Buig sWeu+ | 0 g
uopeayoads+ |« Aﬁ | | Bung eoedsaweNobie+
Jaysygnd+ yo8lqoapoN T
suoniuisqg
Sl juswialinbaysoy I juswalinbay1asm

Buing :aweu+

92IMI9SG3MS O

62

5.3. ROS Web Service (ROS-WS): Requirements and discovery

o Message type: Messages describes the communication of nodes. Their message

types are important data structure that characterize the robot action.
Topic: Which express the transport mechanism for message publication.

Service: This refers to possible synchronous communication between nodes
through request/reply mechanism, which is similar to the notion of remote

procedure call.

Service Type: Each service has an associated service type.

WSDL Requirements

The WSDL Requirements are the set of web service data that are obtained by the web

services’ WSDL description, which enables the communication with client applica-

tions. Mainly, these requirements are:

Service Name.
WSDL location: We can access WSDL documents due to their links of URLs.

Operations: The operations are the public methods of services that client appli-
cations can invoke. An operation refers to the ROS method that enables a node

to perform a robot behavior.

Inputs: The inputs are the parameters used in each web service operation. They
represent the set of ROS message fields that parametrize the desired task of the

robot.

Output: The output is the action of a ROS capability, which can be derived from
message fields.

Registry Requirements

The Registry Requirements are the set of requirements that are indicated in the service

repository by the providers of services, in order to describe their services.

Category: The category of services is a kind of robotic tasks that share the same
context of use. Thus, it classifies the set of services according to such context.
For example, “object recognition” category includes different services from the
category of “grasping”, which collects the services that enable the robot to

grasp objects.

63

Chapter 5. ROS Web Service description and discovery

e Description: A description is intended to provide everything relative to the use
of services for users. It is obtained from the description and names of fields of

ROS messages and services.
o Keywords.

o Predefined Input Values: In some cases, a list of predefined values must be de-
termined in input fields to ensure the correct use of web services. These val-
ues depend on ROS specification of messages fields. For instance, the field
joint_names []ofnaogi_bridge_msgs/ JointAnglesWithSpeed? mes-
sage, which controls the defined NAO joints, requires a set of predefined val-
ues for the joints of head, left arm, left leg, right leg, and right arm as follows’:
HeadYaw,HeadPitch, LShoulderPitch,LShoulderRoll,LElbowYaw, LE1—-
bowRoll, LWristYaw, LHand, RShoulderPitch, RShoulderRoll, RE1-
bowYaw,RElbowRoll,RWristYaw, RHand, LHipYawPitch, LHipRoll, LHip—
Pitch, LKneePitch,LAnklePitch,RAnkleRoll,RHipYawPitch, RHipRoll,
RHipPitch, RKneePitch, RAnklePitch, LAnkleRoll1.

In addition, to define the services among others, an Identifier (ID) is a unique

information that is generated for this purpose.

5.3.2 ROS-WS discovery

The request-service matching is applied according to the user query that denotes his
needs. We briefly present in the following the SBERT model that we have used and

the training dataset.

Overview of semantic textual similarity with Sentence-BERT

Semantic Textual Similarity (STS) is a fundamental task for modeling and under-
standing the meaning in numerous research applications such as question answer-
ing, semantic search, and machine translation. STS estimates the semantic equiv-
alence of two sentences by measuring their meaning similarity [141]. The STS re-
search area has been evolved from earlier methods of lexical semantics and basic
syntactic similarity to deep learning models [141]. One of more recent and per-
formed models is Sentence-BERT (SBERT) [7], which is designed based on BERT

2See the case study in section 5.5.
3NAO - Joints: http://doc.aldebaran.com/2-1/family/robots/joints_robot.html.

64

http://doc.aldebaran.com/2-1/family/robots/joints_robot.html

5.3. ROS Web Service (ROS-WS): Requirements and discovery

(Bidirectional Encoder Representations from Transformers) model [142]. BERT was
introduced to pretrain deep bidirectional representations by conditioning all layers

on both the right and left environment.

BERT shows that the need for task-specific architectures which are heavily-engineered
is reduced [142], however, it requires that sentences are fed into the network [7]. To
overcome the massive computational overhead of this case, SBERT imported a mod-
ification to the pretrained BERT network by using siamese and triplet networks to
create embeddings of sentences that are semantically meaningful [7]. To derive a
fixed sized sentence embedding in SBERT model, a pooling operation is added to
the output of BERT. On the other hand, siamese and triplet networks were created
for fine-tuning BERT for updating the weights so that the embeddings produced are
semantically meaningful. Given two sentence embeddings u and v, their comparison

can be computed with cosine-similarity as illustrated in Figure 5.4.

1.1

+

cosine-sim(u, v)

/\

u v
A A
pooling pooling
4 4
BERT BERT
)
Sentence A Sentence B

Figure 5.4: Similarity score computation and SBERT architecture at inference [7].

Applying Sentence-BERT and continue training with ROS-kit reinforcement

The service discovery process is relying on a similarity study for determining the set
of suitable services. In order to illustrate the flow of actions of the service discovery
process, we used the UML activity diagram, as shown by Figure 5.5. We compute
the similarity score between sentence embeddings of each service and user query

using sentence-BERT, by reinforcing the training dataset.

65

Chapter 5. ROS Web Service description and discovery

ROS-kit)
reinforcement Using cosine
\ | similarity

BertNIliSTSb | pooling |>{ SEq
BertNIliSTSb |={ pooling }>{ SEs
/

ROSkit }

Match SEq
and SEs

reinforcement [List of candidate
‘ Rank candidate | services]

services

[Empty list]

Figure 5.5: UML activity diagram for applying Sentence-BERT.

We used the pre-trained model bert-base-nli-stsb-mean-tokens [7,143]
for generating sentence embeddings for the descriptions of each query and web ser-
vices. The model was first fine-tuned on NLI dataset, then fine-tuned on STS bench-
mark (STSb). This strategy has improved the performance of BERT, which is shown
by Spearman’s rank correlation between the cosine-similarity of the sentence embed-
dings [7].

To continue the training in our case, we propose to continue training on this fine-
tuned model according to ROS messages (and services) and KIT dataset, by follow-
ing the sentence pairs in STSb.

STS benchmark (STSb) dataset

STSb* dataset [7,141] is a collection of 8,628 sentence pairs that is generally used to
evaluate supervised STS systems. The sentence pairs are obtained from three cate-
gories: news, captions, and forums. Each pair of sentences in the dataset is annotated
with a score that denotes the semantic meaning of sentences. The score ranges from

0 which indicates that the two sentences are completely different to 5, which denotes

4STSbenchmark: http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark.

66

http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

5.3. ROS Web Service (ROS-WS): Requirements and discovery

the opposite.

KIT dataset

The KIT Motion-Language Dataset [144] combines human motion and descriptions
thereof in natural language, and was used in human-robot communication appli-
cations (e.g. [145]). Although this different context, the set of its terms of descrip-
tions match significantly the robot tasks. Thus, we used a set of sentences of the
KIT dataset to describe the robotic tasks because we did not find a robot dataset of

sentence pairs for semantic robot tasks similarity.

ROS-kit reinforcement

The main purpose of ROS-kit reinforcement phase is to determine the relation be-
tween ROS descriptions and robot tasks. We extend the kit dataset with ROS as
training data to fine-tune our network. By following the scores of sentence pairs in

STSb, we generate a set of sentence pairs with scores as follows:

(Score, ROS_description, Robot_task)

For ROS descriptions,weinvolve a set of most common descriptions given by
ROS messages and services including some common_msgs® and others. For robot
tasks on the other side, we extend kit dataset using “robot” word in each sentence

instead of words like “person” or “human”.

We annotated each sentence pair with a score of their semantic relation. Table 5.1
illustrates an example of ROS-kit dataset. The two given ROS descriptions are ob-
tained from geometry_msgs/Twist message and naogi_bridge_msgs/CmdPo
seService service respectively. We generate 370 sentence pairs that were splitted

into train, dev and test.

Matching queries with services

We compute the similarity score of sentence pair of service-query by calculating the
similarity between their embeddings. For each pair, we compute the degree of sim-
ilarity between sentence embeddings of the service SEs and sentence embeddings

of the query SEg using the common measure cosine similarity [7], as shown in Fig.

Shttp://wiki.ros.org/common_msgs.

67

http://wiki.ros.org/common_msgs

Chapter 5. ROS Web Service description and discovery

Table 5.1: A sample of ROS-kit dataset

Score Sentence 1

Sentence 2

Clarification

5 Twist expresses veloc- robot moves forward a There is a semantic equivalence.
ity in free space broken brief distance in a fast Twist enables the control of
into its linear and an- walk and stops walking speed
gular parts

0 Twist expresses veloc- A robot sits downona Twist does not enable a sitting
ity in free space broken low platform task. Meaning completely differ-
into its linear and an- ent
gular parts

5 Command pose as ser- A robot walks forward There is a semantic equivalence.
vice CmdPoseService enables the

walking control

3 Command pose as ser- robot moves forwarda CmdPoseService enables the

vice

brief distance in a fast
walk and stops

walking control, however, it
does not enable the control of

velocity

5.5. The measure ranges between 0, which indicates the total dissimilarity, and 1 that

denotes the opposite.

54 ROS Semantic Web Service (ROS-SWS): Descrip-

tion and discovery

The ROS Semantic Web Service (ROS-SWS) contribution is designed to enhance the
syntactic description of ROS-WS and to add a semantic layer to these services. We
present in the following the ROS-SWS description and discovery.

5.4.1 OWL-S Profile extension for ROS-SWS

OWL-S is an ontology that makes a service semantically described. It consists of
three parts: the service profile, the process model, and the grounding
[28]. The “service profile” is used to describe the services properties and capabili-
ties for automating web service discovery. As it is is the scope of this paper, the
focus of our work is to make the ROS capabilities as a part of the OWL-S profile
ontology.

Indeed, OWL-S Profile enables adding additional attributes and parameters via
the “ServiceParameter” class [28] as an expandable list of properties that may accom-

pany a profile description (e.g. [146], [147]). Thus, we used this class to define the

68

5.4. ROS Semantic Web Service (ROS-SWS): Description and discovery

OWL-S profile extension for ROS-SWS as illustrated in Figure 5.6. It defines the
“ROSParameter” class as a kind of ServiceParameter, in which the rosParameter
property points to the value of a parameter within the proposed “ROSCharacteris-
tic” ontology. The core structure of ROSCharacteristic ontology defines the following

properties:

L
'
1]
H [} i .
. h 5 A ' serviceName
' = >] emm==P
' + a 1 e "
]] »
' @ haslnput g &
' o E
I‘ o E
Y 2 5
N 7o
o o serviceParameterName
e
hasOutputs £ R v
V =

rosParameterName
..... acasp

asServiceType

h
ServiceType

hasService

Figure 5.6: Proposed OWL-S profile extension for ROS-SWS.

hasNode: ranges over instance of the ROS node.

hasMessageType: ranges over instances of message types.

hasTopic: ranges over instances of the used topics.

hasService: ranges over instances of the used services.

hasServiceType: ranges over instances of service types.

By including these ROS Requirements, everything relative to the use of ROS
web services will be provided by their service description. This enables to determine

the ROS process and its communication mechanisms of each robotic task offered by

the service.

69

Chapter 5. ROS Web Service description and discovery

5.4.2 Mapping ROS messages to Inputs/Outputs

In our proposal, we use the convenient property of ROS messages (as highlighted
in subsection 5.2.2 of section 5.2) to define the capabilities and properties
(parameters) of the robotic task and mapping them to service outputs and inputs
respectively. This is because the ROS messages and services control the flow of web
services layer. Every ROS web service is built principally using them as a function
that requires a set of inputs and provide action as output. However, it is not necessary

use the whole fields as properties, which depends on the use context.

5.4.3 ROS capabilities and properties: Domain ontology

To design the domain ontology, we have based on most common components of
ROS messages and services including common_msgs ¢ and others. Initially, we have
defined main concepts (classes) and relations to identify the ontology hierarchy of

both capabilities and properties.

In parallel, during the research review of the ontology modelling of previous
studies, we found that the existing RoboEarth ontology of [148] covers the semantic
interpretation of ROS capabilities. The robot capabilities ontology [148] is described
in Semantic Robot Description Language (SRDL) [149], which is mainly based on
robot components (sensors, actuators and control programs). Although this differ-
ent context of implementation, the set of its concepts and terms match significantly

the ROS messages definition. Hence, we extend this ontology to fulfill the outputs.

On the other hand, we did not find any existing ontology that responds the set
of ROS properties for service inputs, therefore, we built our ontology of properties.
The implementation of the full ontology is constructed using OWL language. Figure

5.7 illustrates an overall fragment of the developed ontology using Protégé editor.

5.4.4 Search engine

The RaaS search engine displays the search findings relying on the task query of
inputs and output. According to the user query that denotes his needs, the request-
service matching is applied through the domain ontology. To that end, we used the
four degrees of concept match between Output/Input of request (R) and Output/In-
put of service (S), which are identified as follows [150], [151]:

®http://wiki.ros.org/common_msgs.

70

http://wiki.ros.org/common_msgs

5.4. ROS Semantic Web Service (ROS-SWS): Description and discovery

‘A30103u ureWoq SO YT, :£'S 931

L
[i d
/rw.L“_w n:n_.._o_umu.ow_

./.

ey =
¢ Apadoigyoaads)
— s

o T ééwno_l:o_tmol
— ’ e

_.E._Wn_n:n:o_bmr_wm

==

..._H;A_lll htwn_o_n_wmon__.m_uojmﬁ/ : o —) A}twnlo_n_b___nmnmu.._o_l«m_:ﬂv
uo e B T —
—— ;E._Wn_n:n_wnon_ — —
=] — — e —
— —— ! — — S ~ TE— d d mh
_hon_pMI (" Aupadoiguonelusun EE \\llﬁlll&u] \Ixﬂwv\ptw Entﬂ___n_m mul_mlomv..u. .
- T — — — == - — e
o =] ._\.htwn_n:n_..:mn_ T ..E._mn_n:ntﬂ___n_mn_mn_
—_—_ — o S ey J—— _— ﬂ%l.ﬂv- —
—_— \ e — — - S -
ua...__n;.\ T .ﬂ\v.,__ﬂtwnohn_«:_o_x\. m ..mtwno_n_..ﬂ___n_mn_mo__ﬂ_oo_w\rw
—_— T — — T = — ——
o |||]1|]1M‘MH]1| - ./f...ﬂ._wnn:n:uwwnw_
e - — — i
.:...__uom.\. A..ummu_ln_mn_mo.._o_uo__é:.:s:ml_lm_u‘.v
_w._ﬁ.«___nmnmuu:o_«oﬁo__wm,w_ \..m.—.___n_mn_moco_voﬁwmmjmf},.
TEmr—= f.n.u..l.v
{3___nmnm0:o_u05Eh5uw1b|ﬂﬂ|v a___n_mn_mu.._o_uo__e.th.(_ p]
ﬂmc;._. _....ov
r_.E.___n_mn_mo.._o:o_}__h__wmmc_hla
f,.r__ﬂ.___n_mn_moco;o_ar_o:ohob
T —
pﬂmﬂ_._nmnmuco:oﬁxm_wmh..@l
— — == ST NP
¢ Aungedesuonowns 5 } _ - . fB___n_mn_mu:o;oE;uom
S i e S g
-— - rxb___nmnmunuwct;mxuom > -
" ———— - - Lu\|ll|1m‘uu|_\|\l\
ﬂh&:_n_mn_mu.._o_uoﬁ_xommmc_hl_u o — - |‘th|1||| \\
T — ! ﬂwb___nmnmu:o:oﬁ_mnn:ob.
o . — — €5 =
Aungedesusnoppuels - _
T — _..__.auu.___n_mn_mu:o_«mm_bmr_ 3___n_mn_mn_
Aumuu___n_mn_mD:o.«oS.maJ«:mu_uw_}V|ﬂuﬂ|_Uu__ﬂ:_nmnmD:o;oS..mwn_ - . Huull.mluh_ll
T — _ T - R __Ilmn_m uor mN_ImMuuouﬂll
— - = ! (famgedegueneseaot
_ﬂ“h«___nmn_mu:o_uoﬁmml_twu_ﬂv __._._. — |
I - \ ¢ FungedesuonendiuepRoalao
_./\,.\qu___n_mn_muu_m00:0_umm_bmﬂ.V|ﬂuH.|Wumwmuu_ﬂ_nmnmuco_umm_).mzww_n_.._o_u___lnl.mufv ==
S I— D o - |\
E.Em!:n.n_v ﬁa___n_mn_mD_o;:omeon::wEw).oS__.”V ﬂh&___n_mn_muco_um_o_n_unmu.:w..:cn:__:..._m_Ju
— - — — —_ — —
= e
u__._.__.n_o~w,f.|MdH.|Ur\ __ﬂ___n_mn_mD_ohu:ooa_oo_wE:wEwboﬁ_}u
— I —
S
_.Em_s._ommld

71

Chapter 5. ROS Web Service description and discovery

exact: if R of and S are same or if R is an immediate subclass of S.

plug in: If SsubsumesR.

e subsume: if R subsumes S.

fail: amatch is a fail when no subsumption relation between R and S.

The search is applied through two phases successively [150], [151]. Firstly, it dis-
tinguishes the matching between the outputs of the request and those of the services.
In the second step, it applies an input matching of the request and services matched
during the output phase.

5.5 Case study

We outline in this section the proposed solution for the cycle process that was ap-
plied to ROS-WS and ROS-SWS implementation. This includes ROS-WS/ROS-SWS
requirements, ROS-WS/ROS-SWS functioning scenario, and the results obtained.

5.5.1 ROS Web Service experimentation

The experiments were performed over several web services that are generated from
ROS codes on following functional requirements representation. This is made with
the intention of using different services in a real scenario using NAO. We consider

two categories of services:

e Locomotion: Collect the services that enable the robot to move or navigate

around its environment.

¢ Joints motion and Positions: Encompasses the group of services responsible for

the control and the movements of robot joints to constitute new positions.

All the web services in the database were considered in the list of compatible
services for NAO. This is due to the matching of their ROS topics (T) and services
(S) with those of registered (T) and (S) of the NAO. In case of Turt 1eBot robot for
example, services like 52, 54, S6 are considered as non compatible services because
their topics and services are not specific to Turt 1eBot. Thus, these web service can

not be consumed by this robot.

72

5.5. Case study

ROS experimentation

The ROS requirements of the different services are presented in Tables 5.2 and 5.3,
in which we outline the information of each ROS node’, responsible of an action,

according to the communication mode.

Table 5.2: ROS requirements of Topic-based services

Id Node Topic Message Type

S1 nao_move /emd_vel geometry_msgs/Twist

52 nao_poses /body_pose/goal naoqi_bridge_msgs/BodyPoseActionGoal

S3 nao_postures /body_pose_naoqi/goal naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal
S5 nao_walk /emd_vel geometry_msgs/Twist

S7 nao_navigate /move_base_simple/goal geometry_msgs/PoseStamped

S8 nao_move_pose /cmd_pose geometry_msgs/Pose2D

S11 nao_move_joint /joint_angles naoqi_bridge_msgs/JointAnglesWithSpeed

Table 5.3: ROS requirements of Service-based services

Id Node Service Service Type

S4 nao_move /emd_vel_srv naoqi_bridge_msgs/CmdVelService
S6 nao_move_pose /emd_pose_srv naoqi_bridge_msgs/CmdPoseService
S9 stop_walk_node /stop_walk_srv std_srvs/Empty

S10 move_node /cmd_pose_srv naoqi_bridge_msgs/CmdPoseService

body_stiffn bl td Empt
S12 stiffness_setting_nao /body_stifiness/enable std_stvs/Empty

/body_stiffness/disable std_srvs/Empty

Each ROS message provides a set of fields. As an example, the message naoqi_br
idge_msgs/ BodyPoseWithSpeed ActionGoal of S3 has has the following components®:

std_msgs/Header header

uint32 seq

time stamp

string frame_id
actionlib_msgs /GoallD goal_id

time stamp

string id
naoqi_bridge_msgs/BodyPoseWithSpeedGoal goal

’Given during program creation by proposition unlike the names of Topics, services and Mes-
sages/Services Type that are obtained from ROS.

8Displayed by rosmsg show naogi_bridge_msgs/BodyPoseWithSpeedActionGoal
command.

73

Chapter 5. ROS Web Service description and discovery

string posture_name
float32 speed

By determining the posture_name and the speed as inputs’ (as shown in the
structure of the message), the robot will perform a predefined posture with the speed
that has been specified.

The postures are the list of predefined values of posture_name field. The pre-
defined values of this input are: {Stand, Sit, StandInit, StandZero, Crouch,
SitRelax, LyingBelly, LyingBack}!%1L,

We started with [136,152] to implement these services using rosjava. We present
in the following the rosjava classes for implementing the S3 service as an exam-
ple of all ROS-WSs implementation. The organization of rosjava classes is made
through three main classes. First, we implement the NaoPostures. java class
that inherits from Properties. java class as shown in Listing 5.1 and 5.2 respec-
tively. The NaoPostures. java class has been realized to implement the node that
publishes the naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal message through the
/body_pose_naogi/goal topic so that the NAO can achieve one of the postures. Any
rosjava class should extend the AbstractNodeMain class that contains the neces-
sary predefined methods. We describe the main instructions of a rosjava code using

a set of comments in the presented listings.

Listing 5.1: Publishing naoqi_bridge_msgs/BodyPoseWithSpeed ActionGoal of S3.

package posture;

import org.ros.concurrent.CancellableLoop;
import org.ros.node.ConnectedNode;
import org.ros.node.topic.Publisher;

public class NaoPostures extends Properties {

// onStart refers to the entry point of node
// ConnectedNode is used for defined methodes for publishers and subscribers
public void onStart (final ConnectedNode connectedNode) {

// create a publisher for naoqi_bridge_msgs/BodyPoseWithSpeedActionGoal using the topic
body_pose_naoqi/goal
final Publisher<naoqi_bridge_msgs.BodyPoseWithSpeedActionGoal> publisher =
connectedNode . newPublisher ("body_pose_naoqi/goal" , naoqi_bridge_msgs.
BodyPoseWithSpeedActionGoal. _TYPE) ;

%It is not necessary to use all the message fields in some cases.
UNAQO’s Predefined postures: http://doc.aldebaran.com/2-1/family/robots/postures_
robot.html.
We identified this list through the related ROS packages that have been installed.

74

http://doc.aldebaran.com/2-1/family/robots/postures_robot.html
http://doc.aldebaran.com/2-1/family/robots/postures_robot.html

5.5. Case study

// CancellableLoop is used to publish the message and sleep in a loop
connectedNode . executeCancellableLoop (new CancellableLoop () {
protected void setup () {
}
protected void loop() throws InterruptedException {
// create a new message
naoqi_bridge_msgs.BodyPoseWithSpeedActionGoal pose = publisher.newMessage() ;
if (getPosture_name().equals("Crouch")]
getPosture_name () .equals ("LyingBack") ||
getPosture_name () .equals("LyingBelly") ||
getPosture_name () .equals("Sit") ||
getPosture_name () .equals("SitRelax") []|
getPosture_name () .equals ("Stand") ||
getPosture_name () .equals("StandInit") ||
getPosture_name () .equals ("StandZero")
) A
// set the parameters of the message by the indicated posture and speed
pose. getGoal () . setPostureName (getPosture_name()) ;
pose.getGoal () .setSpeed (getSpeed ()) ;
// publish the message
publisher . publish (pose);
}
else
System.out. println ("the posture is not defined");
Thread . sleep (1000); }

B

Listing 5.2: Properties.java class of S3.

package posture;

import org.ros.node.AbstractNodeMain;
import org.ros.namespace.GraphName;

// any rosjava class should extend the AbstractNodeMain class
public class Properties extends AbstractNodeMain {

protected String posture_name ;
protected float speed ;

public String getPosture_name() {
return posture_name;

}

public void setPosture_name(String posture_name) {
this .posture_name = posture_name ;

}

public float getSpeed() {
return speed;

}

public void setSpeed(float speed) {
this .speed = speed ;

75

Chapter 5. ROS Web Service description and discovery

}

public GraphName getDefaultNodeName () {
// return the default name of the node

return GraphName.of("nao_postures") ;

}

To execute the postures and see the results on our robot, we used the Postures-

NAO. java class that utilizes the method execute of the rosjava NodeMainExecu-

tor class, as presented in Listing 5.3.

Listing 5.3: Execute the postures of S3 on Nao robot.

package posture;

import
import
import
import

import

public

org.ros.node.DefaultNodeMainExecutor ;
org.ros.node. NodeConfiguration;
org.ros.node. NodeMainExecutor ;

com. google .common. base . Preconditions ;
java.net.URI;

class PosturesNAO ({

public void applyPosture(String posture, float speed) {

NaoPostures postureNode = new NaoPostures();

postureNode . setPosture_name (posture);

postureNode. setSpeed (speed) ;

NodeMainExecutor nodeMainExecutor = DefaultNodeMainExecutor.newDefault() ;

/1l

indicate the ROS_MASTER URI

URI masterUri = URI. create ("http://sapp2:11311");
// indicate the NAO_IP, in case of simulation NAOIP = 127.0.0.1

String robotIP = "xxx.xxx.xxx.xxx";

NodeConfiguration postureNodeConfiguration = NodeConfiguration.newPublic(robotIP ,

masterUri) ;

Preconditions.checkState (postureNode != null);

nodeMainExecutor. execute (postureNode , postureNodeConfiguration);

}

In case of Service-based services as presented in Table 5.3, we implement client

classes instead of publishing messages. We give an example of S9 client class in List-

ing 5.4. There is no exchanged data between the client and the service with the ROS

service type std_srvs/Empty of S9. The Empty service type of the service package

std_srvs does not contain fields. Executing the code will stop your walked robot,

by enabling the communication with the robot like Listing 5.3.

76

5.5. Case study

Listing 5.4: S9 example of client class in case of service communication.

package stopService;

import org.ros.node.AbstractNodeMain;

import org.ros.namespace.GraphName;

import org.ros.node.ConnectedNode;

import org.ros.node.service.ServiceClient;

import org.ros.node.service.ServiceResponseListener;
import std_srvs.EmptyResponse;

public class CallStopService extends AbstractNodeMain {

public GraphName getDefaultNodeName () {
return GraphName.of("stop_walk_node") ;

}

public void onStart(final ConnectedNode connectedNode) {

ServiceClient<std_srvs.EmptyRequest, std_srvs.EmptyResponse> serviceClient = null;
try {
serviceClient = connectedNode.newServiceClient("stop_walk_srv", std_srvs.Empty. TYPE);

} catch (org.ros.exception.ServiceNotFoundException el) { el.printStackTrace(); }
std_srvs.EmptyRequest pose = serviceClient.newMessage();

serviceClient. call (pose, new ServiceResponseListener<std_srvs.EmptyResponse>() {
public void onFailure (org.ros.exception.RemoteException arg0) {

}
public void onSuccess (EmptyResponse arg0) {

}
1)

ROS-WS experimentation

All the implementation details are encapsulated by the Web Services’ WSDL descrip-
tion, which enables the communication with client applications using the host ad-
dress of each Web service. The following WSDL document (See Listing 5.5) describes
the web service that transported the previous presented ROS message of S3, using
the topic /body_pose_naogi/goal as stated in Table 5.2. We generate it automatically
from the class PosturesNAO. java as provided by Eclipse for generating a web ser-

vice using Apache Tomcat. The service requires posture and speed as inputs.

77

Chapter 5. ROS Web Service description and discovery

Listing 5.5: WSDL File of S3

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://posture" xmlns:apachesoap="http://xml.apache.org/
xml-soap" xmlns:impl="http://posture" xmlns:intf="http://posture” xmlns:soapenc="http:
//schemas .xmlsoap .org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org
/2001 /XMLSchema ">
<wsdl:message name="applyPostureResponse">
</wsdl:message>
<wsdl:message name="applyPostureRequest">
<wsdl:part name="posture" type="xsd:string">
</wsdl:part>
<wsdl:part name="speed" type="xsd:float">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="PosturesNAO">
<wsdl:operation name="applyPosture" parameterOrder="posture speed">
<wsdl:input message="impl:applyPostureRequest" name="applyPostureRequest">
</wsdl:input>
<wsdl:output message="impl:applyPostureResponse" name="applyPostureResponse ">
</wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="PosturesNAOSoapBinding" type="impl:PosturesNAO">
<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="applyPosture">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="applyPostureRequest">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://posture” use="encoded" />
</wsdl:input>
<wsdl:output name="applyPostureResponse ">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://posture” use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="PosturesNAOService">
<wsdl:port binding="impl:PosturesNAOSoapBinding" name="PosturesNAO">
<wsdlsoap:address location="http://localhost:8080/ROS_WserviceNAO/services /
PosturesNAO" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

For accessing the needed Web service, client applications can parse the WSDL
documents to determine the following data: (i) the Web service name and its oper-
ations, (ii) the input message of each operation, (iii) the part of the message, which

indicate its structure (the name and the type of parameters).

78

5.5. Case study

StandZero Crouch o SitRelax
Figure 5.8: Some NAQO'’s postures execution when invoking the Web service.

Listing 5.6 shows the Request Envelope in case of invoking the S3 Web service,
which meets the needs of the user, with posture = Sit and speed = 1 as param-

eters.

Listing 5.6: SOAP Request Envelope of S3 service invocation

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns0="
http://posture” xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.
org /2001 /XMLSchema—instance ">
<soapenv:Body>
<ns0:applyPosture>
<posture soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="
xsd:string ">Sit</posture>
<speed soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="
xsd:float ">1</speed>
</ns0:applyPosture>
</soapenv:Body>
</soapenv:Envelope>

The execution of the different postures when invoking this Web service is illus-
trated with NAO in Figure 5.8. We can see the running node'? of the invoked service
in Figure 5.9 thanks to the rqt_graph command line.

12The node is called nao_postures as named in the class Properties. java.

79

Chapter 5. ROS Web Service description and discovery

Inao_logger Jisy
robot_state_publisher

tf_static
naoqgi_joint_states
fjoint_states frobot_state_publishar base_foutprint
/naoql_joint_states
o4

.@
\
fioint_stiffnass

pose_controller
T~
[T /pose_controller)
-ﬁ»--.;__— e

fbase_footprint

pose_manager

e

fioint_trajectory/status

fjoint_trajectory/cancel

nag_posturas

fbody_pose_naoqi/goal __—

’,---' T
(__fnao_postures —

nao_robot

Inao_robotfsonar/right/naoqi_senar

Figure 5.9: The running node “nao_postures” of the invoked Web service.

ROS-SWS experimentation

Table 5.4 summarizes the set of Inputs and Outputs of the different developed ser-
vices. We have added S13, S14, 515, and S16 for ROS-SWSs (that require naogi_bridge
_msgs/BodyPoseActionGoal,naogi_bridge_msgs/JointAnglesWithSpeed,
naogi_bridge_msgs/BodyPoseWithSpeedActionGoal and geometry_msgs
/Twist respectively) in comparison with the services presented in Tables 5.2 and
5.3.

Mapping ROS components to Inputs/Outputs was accomplished following the
definition of each used ROS message or service and their fields. For example, we
have outlined for S3 “PostureProperty” and “SpeedProperty” as inputs, based on its
message fields, and “BodyPostureMotionCapability” as output, by linking them to the
ontology concepts as shown in Figure 5.7. The following OWL-S document (See
Listing 5.7) describes the ROS-SWS of S3.

Listing 5.7: OWL-S profile for ROS-SWS of S3

<profile:Profile rdf:about="http://www.owl-ontologies.com/Ontology1613388520.owl#
ProfilePosturesNAOService ">
<profile:textDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
>Different motions like standing up and sitting down, with a speed, are provided by
this service</profile:textDescription>
<profilethasInput>
<process:Input rdf:about="http://www.semanticweb.org/hp/ontologies/2021/0/
DomainOntology . owl#PostureProperty " />
</profile:hasInput>
<profilethasInput>
<process:Input rdf:about="http://www.semanticweb.org/hp/ontologies/2021/0/

80

5.5. Case study

Table 5.4: Inputs and Outputs of ROS-SWSs

Id Input Output Id Input Output
S1 OrientationProp- NavigationCapa- S9 - StopWalkingCapa-
erty bility bility
S2 PoseProperty PostureMotionCa- 510 — NavigationCapa-
pability bility
S3 PostureProperty, PostureMotionCa- 511 JointNameProp- BodyMotionCapa-
SpeedProperty pability erty, JointAn- bility
gleProperty,
SpeedProperty
S4 SpeedProperty ForwardWalking- 512 - BodyStiffness-
Capability Capability
S5 XProperty, YProp- MovementVeloci- S13 HelloProperty HelloMotionCapa-
erty, ZProperty tyControlCapabil- bility
ity
S6 PositionProperty MovementPoseC- S14 JointAngleProp- LeftArmMotion-
ontrolCapability erty Capability
S7 SpeedProperty, NavigationGoal- S15 SpeedProperty, SitRelaxMotionCa-
OrientationProp- Capability SitProperty pability
erty
S8 XProperty, YProp- MovementPoseC- S16 BackwardWalking-
erty, ThetaProp- ontrolCapability VelocityCapability- Capability
erty Property

DomainOntology . owl#SpeedProperty " />

</profile:hasInput>

<profile:thasOutput>

<process:Output rdf:about="http://www.semanticweb.org/hp/ontologies/2021/0/

DomainOntology . owl#BodyPostureMotionCapability " />
</profilethasOutput>

<profile:serviceName rdf:datatype="http://www.w3.org/2001/XMLSchema#string ">

PosturesNAOService</profile:serviceName>

<pr0file:serviceParameter>
<ROSParameter rdf:ID="ROSParameterPosturesNAOService">
<rosParameterName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>ParameterPosturesNAOService</rosParameterName>

<rosParameter>

<ROSCharacteristic rdf:ID="ROSCharacteristicPosturesNAOService">

<hasNode>

<Node rdf:ID="nao_postures" />

</hasNode>
<hasTopic>

<Topic rdf:ID="/body_pose_naoqi/goal"/>

</hasTopic>

<hasMessageType>

<MessageType rdf:ID="naoqi_bridge_msgs/BodyPoseWithSpeedActionGoal" />

</hasMessageType>
</ROSCharacteristic>

</rosParameter>
</ROSParameter>

</profile:serviceParameter>
</profile:Profile>

81

Chapter 5. ROS Web Service description and discovery

5.5.2 Search evaluation metrics: Precision and recall

To measure the search performance, the precision and recall of the services returned

were considered. These evaluation metrics are denoted as [153]:

e Precision: It refers the ability of identifying the most precise services. It is de-
fined as the number of relevant services retrieved (RsR) divided by the total

number of relevant (RsR) and irrelevant services retrieved (IsR).

Number of RsR

1
Number of RsR + Number of IsR x 100

o Recall: Tt refers to the capability of retrieving the maximum number of services
that match or are relevant to a query. It is defined as the relevant services re-

trieved (RsR) divided by the total number of existing relevant services (Rs).

Number of RsR 8
Number of RsR + Number of Rs not retrieved

100

5.5.3 ROS-WS search results

In addition to the URL of the service, the available services are provided with a de-
scription and a set of keywords to describe their features. We give descriptions for
the services of the case study, according to the description and names of fields of

their ROS messages and services, as summarized in Table 5.5.

The computed similarity score of sentence pair embeddings for search results was
presented for the used pre-trained and continue-trained model (presented in section
5.3.2) to evaluate their performance. In addition, an evaluation of tf-idf performance

was also carried out. tf-idf is briefly introduced in the following.

tf-idf (term frequency - inverse document frequency)

t f-idf is a numerical statistics that is designed to estimate how significant a word is to
documenting a collection or corpus. It is widely applied to generate corresponding
weight vectors of each service’s content and user query, or between a set of items as
text documents. The ¢ f-idf weighting is given by the following equation [154]:

tf-idfiq = tfiq < idf;

82

5.5. Case study

Table 5.5: Given descriptions for developed services

Class Category Id

Description of the service

S1 Move the base of the robot by sending velocity commands
S4 Theservice allows you to send a velocity to the walking controller
S5 The service enables the NAO to walk with linear and angular ve-
locities
]
2 S6 The service controls the position and orientation that makes the
g robot pass from one place to another
S
2 8 S7 Through this service, the NAO will move to a given goal
© -
- S8 Command the pose (X, y, theta) of the robot
E S9 Stop walking immediately
=
2 S10 The service provides a change in the location by changing the co-
ordinates
S2 The service allows the robot to perform some body poses like
o w hello and stand postures
o &
£ .2 S3 Different predefined motions like standing up and sitting down,
£3 with a speed, are provided by this service
oy
=fee! S11 This service allows you to change the values of NAO joints: joints
S & of the head, the arms or the legs
S12 Setting NAO stiffness by turning on/off all motors
Where:

e tfiq (term frequency) calculates the number of occurrences of term ¢ in docu-

ment d.

e idf; (inverse document frequency) is calculated as follows:

Where N denotes the total number of documents in the collection, and df; is

idf; = ZOQ(C%)

the number of documents that contain the term t.

To evaluate the t f-idf weighting, we applied a keyword extraction of user query
and services. Then, the t f-idf vectors of each query and services were generated by

83

Chapter 5. ROS Web Service description and discovery

assigning a weight for each query term in the service vector. Using these vectors, the
common cosine similarity was computed as follows. We denote by) = (¢1, ¢, -, ¢n)
the tf-idf vector of the query, and S; = (s1;, s2j, ..., sn;) the tf-idf vector of the service;

of the collection of services.

Q- S;
C S)= ———
@ 5) = @Sy
Z?:ﬂ]isij

n P} n 2
V2 i @A) D Sij
Queries

The experiments of the discovery process were tested using multiple queries. We
tested a set of queries that target the two categories of services. We present a sample

of 9 used queries for evaluation in the following.

e Queryl. A robot moves straight forward.

e Query2. A robot sits on an approximately 1m high platform.

e Query3. A robot moves his left arm.

e Query4. robot moves forward in a fast jog.

e Query5. A robot is standing relaxed.

e Query6. A robot doing a waving movement with the right hand.
e Query7. a robot walks slowly and stops.

e Query8. A sitting robot is standing up.

e Query9. a robot stands and then walks quickly a few steps forward.

Model-Similarity findings

Figure 5.10 presents the experimental results of cosine similarity measure, according

to the different outlined queries with each web service for NAO.

The computed similarity score of sentence pair embeddings was presented for
both pre-trained and continue-trained model to evaluate their performance, as well
as t f-idf. We denote the used pre-trained model as bertN1iSTSb and the continue
fine-tuned model as -—ROSkit.

84

5.5. Case study

IHSOY— W GSISINM=gm Jpi-p

€15 TIS 015 65

6AI2ND Yum synsal Aejiuis

WSOY— W gSlSNHEgE jpl-p

€IS TIS OIS 65 85 /S5 95 &5 5 €£€5 T8 15

BRIl

9A1anD Yum syynsa1 Aejiuis

WHSOY— W QSISHINH=9qE Jpi-p

€15 TIS 0TS 65

oo

0

o~

0

9’0

80

AR RIRHL

gAienD yum synsal Aepuis

=
=]

20

0

o
(=]

90

80

WSOd—Mm gSISiNb=gm pl-p

TIs TIS o.nm Wm 85 45 95 &5 Vm

mm
b I - _ .—
gAianD yum synsas Aejiuis

WSOY— W GSISINM=gE jpl-p

TIS 115 015 65

: _;__.___

SAIBND Yum synsas Ayejiwis

WSOH— W GSISYNH=qE jpl-p

¢Is TIS OIS 65 85 LS 95 5SS s IS

et

TAIenD yum synsa Aejiwis

o

90

80

oo

0

o
=

P

=]

o0

80

oo

"'SM-SOY 10§ sarronb yoreas yym symsax Ajreqruarg :01°G aan3Ly

WHSOY— W GSISINM=gm jp-f

TIS TIS OIS 65 85 /S 95 S5 5 £5 €5 1S
| | -

£A12nD yum synsas Ayejwis

WSOY— W GSISINM=qE jpi-p

ZIS TIS OIS 65

[

]

0

<

0

80

:::::

yAIBND Lpim synsaa Ayejuis

WSOH— | gSISINM=qE jpi-f
ZIS TIS OIS 65

::::______

TAIBND Yum synsal Aejiuis

=
=]

80

=
S

80

85

Chapter 5. ROS Web Service description and discovery

Figure 5.11 gives the precision and recall results for every query according to each
model. We consider the significance of similarity scores that are equal or less than 0.2
negligible. Therefore, we compute the precision and recall measures for similarity

tindings that are equal or higher than 0.3 and 0.4 respectively.

Performance discussion

As we can observe from the finding averages in Figure 5.12, t f-idf performs similar
findings with the precision of 47.96% and the recall of 51.96% compared to the two
similarity cases (equal or higher than 0.3 and 0.4). This is because ¢ f-idf retrieves
the same set of candidate services without taking into consideration the semantic
meaning. Most of their similarity scores are obtained due to the “robot” term that
appears in the query and services containing the same word. Almost the rest of the
words in each query are considered as ambiguous words, therefore, it is expected to

perform significantly worse without this term in the query.

On the other hand, bertN1iSTSb model provides a level of semantic. In the
similarity case where the scores are equal or higher than 0.3 and 0.4 respectively, the
average of precision is 43.27% and 51.85%, while the recall is 63.21% and 36.49%. The
decrease of recall is due to topic of sentence pairs in the dataset, which is not able to

give best similarity scores.

Furthermore, the results show that the ROS-kit reinforcement enhances signifi-
cantly the similarity scores, which improves the performance of the discovery pro-
cess. As we can observe, the proposed training enables to: (7) increase the similarity
score values of services, and (ii) indicate the similitude between relevant services
and user requests. The achievement of ~—ROSkit results in the improvement of the

average of precision of recall compared to bertN1iSTSb.

This is because the ROS-kit reinforcement distinguishes the relation between ser-
vices and each query. Thus, the system assigns a score for semantic equivalence
between ROS web services and robotic tasks according to ROS messages functional-
ities. In the similarity case where the scores are equal or higher than 0.3, the aver-
age of precision and recall values is 77.86% and 84.88% respectively. However, their
measures were decreased to 65.08% and 58.44% respectively in the case where sim-
ilarity scores are equal or higher than 0.4. Indeed, the -—ROSkit model is still able
to distinguish candidate services, however, it does not increase the similarity score

of retrieved services in some cases. This is due to ROS-kit dataset that need to add

86

5.5. Case study

"'SM-SOY 10§ sarrenb yoreas jo [resar pue uorsoaxd oy :11°G 913y

WASOH— MW gSISINM=qE jp-Am

TEER] uoIsIa g

ro=zws go=zws rosws go=ws

6A1anD Jo ||edss pue uolsdaad syl

WASOH— W QSISINV=qE jp-im

TEEN] uois1zald

FOT WS £0Tws FOITWIS £0T WS
g9Auany Jo ||edss pue uolsdald syl

WASOH— W gSISINM=qE jp-im

TEEN] uoisiald

vo<wis go=wis vo<wis go=wis

chianp Jo [|edad pue uolsiald sy

0¢
or

08
00T
(%)

[V
or

08

00T
(%)

[V
or

08

(%)

0 < wIs

WSOd— = Q5ISINH=qE jp-pim

IEEN] uolsIald
€05 wis Fows g0z wis

0 < wis

gA1anp Jo ||edad pue uoisad syl

WSOd— W QSISINH=qE jp-im

[IE=ER] uolsiald
g0 wIs voZ WIS go<ws

gA1anp Jo |[edsd pue uoisad syl

WSOd— W GSISINHEgE jp-im

lle23y uols1ald

v'o<wIs

€0z wis vo<wis g0 wis

/BN Jo [|edad pue uolsaid sy

oc
or

08

(%)

oc
or

08

(%)

oc
or

08

(%)

H4SOd— W gQSISUNM=qE jp-him

TEER uolsIDa g

oz ws go=zws ro=zws go=ws

g |

fA13np Jo ||edad pue uoisaud sy

WSOY— = QSISINMSqE jpi-pm
||eaay uoisioald

vo<ws gpzws rozws gozws

'y MK

A1snp Jo ||edsa pue uolsiald sy

H4SOH—E gSISINM=qE jp-iE

||eaay uoisioald

vo<wis g0 wis vo<wis go=wis

J8L

TAIBND Jo ||edad pue uolsidaid sy

00T
(26)

00T
(%)

08
00T
(%)

87

Chapter 5. ROS Web Service description and discovery

(%)
100
ap 34.88
77.86
80
65.08
gg 51 zilz 51.8 51.96 5844
0 4758 : 4796 :
a0 6.4
30
20
10
1]
Precision Recall Precision Recall
Sim20.3 Sim 2z 0.4

u tf-idf bertNliSTSb m —ROSkit

Figure 5.12: The average of precision and recall of search results for ROS-WS.

not only the specified definition given by ROS messages, but also those terms that

indicate the same meaning in order to be more exhaustive in the future.

5.5.4 ROS-SWS search results

We present in the following the search results for ROS-SWSs.

Queries

The experiments of the semantic search process were tested using multiple queries.
We tested 21 queries of inputs and outputs as presented in Table 5.6.

Search discussion

Figure 5.13 describes the recall and precision of the three matching degrees of search
and their total for every query. Both of the obtained precision and recall of exact
degree are better than the plug in and subsume degrees, which is reflected on their

average.

The average of precision and recall of search results for ROS-SWS is given in Fig-
ure 5.14. The recall average of total candidate services based on the ROS domain

ontology is 71.9%, while the precision is 63.75%.

88

5.6. Conclusion

Table 5.6: Search queries for ROS-SWS discovery.

Query Input Output Query Input Output
Q1 PoseProperty MovementPoseC- Q12 GoalCapabili- NavigationGoal-
ontrolCapability tyProperty Capability
Q2 JointProperty, GripperMotion- Q13 PostureProperty = PostureMotion-
SpeedProperty Capability Capability
Q3 XProperty, ForwardWalking- Q14 PathProperty Collision-
YProperty, Capability FreeNaviga-
ZProperty tionCapability
Q4 SitProperty SitMotionCapa- Q15 GoalCapabil- localizationCapa-
bility ityProperty, bility
VelocityCapa-
bilityProperty,
DurationCapa-
bilityProperty
Q5 PoseProperty, BodyMotionCa- Q16 OrientationProp- BackwardWalk-
PathProperty pability erty ingCapability
Q6 BehaviorProp- BodyMotionCa- Q17 VelocityCapabili- HelloMotionCa-
erty pability tyProperty pability
Q7 SpeedProperty, LeftLegMotion- Q18 JointNameProp- ArmMotionCapa-
JointAngleProp- Capability erty bility
erty
Q8 PathProperty NavigationCapa- Q19 SpeedProperty HeadMotionCa-
bility pability
Q9 OrientationProp- NavigationCapa- Q20 GoalCapabili- ForwardWalking-
erty bility tyProperty Capability
Q10 XProperty StopWalkingCa- Q21 XProperty, MovementVeloc-
pability YProperty ityControlCapa-
bility
Q11 PathProperty, EnvironmentEx-
SpeedProperty, plorationCapabil-
OrientationProp- ity
erty

5.6 Conclusion

This chapter focused on the designed approaches that enable to automate the ROS
web services use. The work exploits firstly the opportunities of SOAP web services
technologies to provide a service description for ROS-WS. Users can obtain the suit-
able robotic service by displays the search findings, according to a service-query
matching score using SBERT. On the other hand, we designed a second contribution
that brings a semantic layer to ROS-WS and defines the ROS-SWS. ROS-SWS charac-
terizes the scope and capability of each service by expressing itself through a ROS
domain ontology of capabilities and properties.

89

Chapter 5. ROS Web Service description and discovery

8 ¥

BesE883a3888

=
(=1 =]

g &

BEesEs883a3888

=
[=J =]

Recall

Q1 02 Q3 04 05 4 QFf 4GB 0% Q10 4Qll Qlz Ol Ql4 als Qls Ql7 Qi ale Q20 Q21

pmm Exact e Plug in oo Subsume s—ae=Total

Precision

Q1 Q2 Q3 04 045 a6 aFf OQ8 Q% Q10 Q11 Qlz Ol Ql4 Qls qQl6 Q17 QlE Ql% Q20 Q21

i Exact e Plugin oo Subsume s—ae=Total

Figure 5.13: The recall and precision of search queries for ROS-SWS.

Average
3333%
Subsume 25,08 %
. 30.95 %
Plug in 12.66 %
64.82 %
e |, —

Tatal 63.75 %

719%

=]

10 20 30 a0 50 60 70 B0

M Precision M Recall

Figure 5.14: The average of precision and recall of search results for ROS-SWS.

90

- Chapter6

Conclusion and Future Work

6.1 ConclUSIiON . . v v v v it e

6.2 FutureWork o i i i i i e

91

Chapter 6. Conclusion and Future Work

6.1 Conclusion

The trend towards shifting robotic applications into service-oriented solutions is
growing. Various service delivery concepts and models have been proposed. We
have presented a model categorization of the research literature on this topic into:
Robot as a Service (RaaS), Cloud-enabled Robotic Services (CRS), Multi-Robot-based
Services (MRS), and Robotic Service Composition Middlewares (RSCM). However,
considerable diversity can be observed between proposals. The majority of works
regard web services as a technique for building software components, and concen-
trate on how these services may be utilized in each case study, instead of developing
an architectural style. As a result, there are two key points to consider. First, het-
erogeneity of robotic service representations and accessibility, in which previous re-
search do not fully describe the service capability and characterization of the offered

robotic functionality. Second, a lack of service discovery methods.

This thesis exploits the opportunities of web services technologies in terms of the
life cycle process towards ROS-based robotic service provisioning. It is drawn on
the foundation of two major contributions. The first entails presenting an approach
for robotic services delivery in a cloud environment, as described in chapter 4. Ac-
cording to a defined representation, on-demand robotic tasks are expressed as ROS
web services and delivered over a cloud infrastructure as a CRS solution. The sec-
ond contribution consists of proposing a solution to define and locate such services.
It focuses on designing an approach that enables to automate the ROS web services
discovery and selection on the basis of their definition. By displays the search find-
ings, users may find the most appropriate service for their robots based on the result
of a service-query matching score. As stated in chapter 5, this contribution is divided
into two main contributions. The initial contribution of ROS Web Service (ROS-WS)
is based on SOAP web services and defines a set of ROS-WS characterization require-
ments. The ROS-WS search engine uses sentence-BERT to generate sentence embed-
dings in order to estimate the most suitable service of a desired task according to
the user’s query. In this context, we reinforce the training dataset by distinguishing
the relation between ROS and robot tasks. The second contribution extends ROS-WS
with a semantic layer based on the OWL-S and designs the ROS Semantic Web Ser-
vice (ROS-SWS). The description of ROS-SWS expresses itself through a ROS domain
ontology of capabilities and properties to handle service discovery requests.

92

6.2. FutureWork

6.2 FutureWork

There several potential challenges and perspectives for future research. We listed

some of them in the following.

6.2.1 Quality of Service and ROS2

QoS aspects are main requirements for the characterization of robotic applications in
service-oriented systems [6]. In the future, we aim to improve the service descrip-
tion and discovery by considering the QoS requirements that can meet the user’s
criteria. We plan to study and implement the solution in ROS 2 [155] that supports
QoS policies.

6.2.2 Resource allocation in robotic service composition

As outlined by authors of [111], service discovery and selection are the key func-
tionalities that should be extended within the robotic middleware of service compo-
sition. This can offer a flexible mechanism to respond the user’s needs of complex
tasks leading to knowledge sharing. In this regard, the resource allocation in such
systems (e.g. [125]) is a fundamental challenge. The dynamic allocation of needed
computing resources that offload the computation intensive tasks of robots requires
QoS issues to be resolved. Future work should involve a comprehensive study for
validating the service representation and the strategy of service discovery, within

the service composition process, by taking resource allocation aspect into account.

6.2.3 Fog computing in robotic service provisioning: Fog Robotics

Robotic service provisioning over the cloud faces the challenge of network latency
[62,63] and ensuring QoS [156] requirements. Network latency, which refers to the
delay of cloud-robot communication that affect the response time of robot tasks, can
be caused by QoS of the performance and network criteria such as cost and loss in
the transmission of data packets. Indeed, this can cause serious problems especially
for real-time applications such as search and rescue applications (e.g. [76]). One of
the relevant computing forms that can be used to improve these issues is fog com-
puting [77]. This emerging concept was introduced in robotics recently and named
“Fog Robotics” [157]. Tanwani et al. define it as “an extension of Cloud Robotics that
distributes storage, compute and networking resources between the Cloud and the Edge in

93

Chapter 6. Conclusion and Future Work

a federated manner” [158]. Fog robotics represents an architecture in which storage,
networking, control and decentralized computing are closer to robots [157]. Due
to this proximity, it can improve the real-time performance of data processing and

networking. Fog robotics need to be addressed in the future of SOA-based solutions

(e.g. [72]).

94

List of Publications

e Radhia Bouziane, Labib Sadek Terrissa, Soheyb Ayad, Jean-Francois Brethé.
Towards an architecture for cloud robotic services. International Journal of

Computers and Applications. p. 1-12. 2021.

e Radhia Bouziane, Labib Sadek Terrissa, Soheyb Ayad, Jean-Francois Brethé,
Okba Kazar. A Web services based solution for the NAO Robot in Cloud Robotics
environment. The 4th International Conference On Control, Decision And In-

formation Technologies (Codit 2017), April 5-7, 2017, Barcelona, Spain.

e Labib Sadek Terrissa, Bouziane Radhia, Soheyb Ayad, Jean-Francois Brethé.
ROS-Based Approach for robot as a service in cloud computing. 2nd Confer-
ence on Computing Systems and Applications, December 13-14, 2016, Algiers,

Algeria. At Ecole Polytechnique Militaire, Algiers, Algeria.

e Labib Sadek Terrissa, Bouziane Radhia, Jean-Francois Brethé. Towards a new
approach of Robot as a Service (RaaS) in Cloud Computing paradigm. 5th. In-
ternational Symposium ISKO-Maghreb (Knowledge Organization in the per-
spective of Digital Humanities: Researches and Applications), Nov 2015, Ham-

mamet Tunisia.

95

Bibliography

[1] Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics
and automation. IEEE Transactions on automation science and engineering, 12
(2) 398-409 (2015)

[2] ROS Website, http://wiki.ros.org.

[3] Ahmad, A., Babar, M.A.: Software architectures for robotic systems: A systematic
mapping study. Journal of Systems and Software. 122 16-39 (2016)

[4] Oliveira, L.B.R., Osério, ES., Nakagawa, E.Y.: An Investigation into the Develop-
ment of Service-Oriented Robotic Systems. Proceedings of the 28th annual ACM
symposium on applied computing, pp. 223-228 (2013)

[5] Koubaa, A.: ROS As a Service: Web Services for Robot Operating System. Journal
of Software Engineering for Robotics 6(1) 1-14 (2015)

[6] Oliveira, L. B. R., Leroux, E., Felizardo, K. R., Oquendo, F., Nakagawa, E. Y. :
ArchSORS: A Software Process for Designing Software Architectures of Service-
Oriented Robotic Systems. The Computer Journal 60(9) 1363-1381 (2017)

[7] Reimers, N., Gurevych, .: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

[8] Niku, S.B.: Introduction to robotics: analysis, control, applications. Third Edition.
John Wiley & Sons (2020)

[9] Hockstein, N. G., Gourin, C. G., Faust, R. A,, Terris, D. J.: A history of robots: from
science fiction to surgical robotics. Journal of robotic surgery, 1(2) 113-118 (2007)

[10] Kalan, S., et al.: History of robotic surgery. Journal of Robotic Surgery 4.3 141-147
(2010)

[11] The International Organization for Standardization (ISO) website: https://www.
iso.org/home.html.

[12] ISO 8373:2012(en) Robots and robotic devices — Vocabulary: https://www.iso.
org/obp/ui/#iso:std:55890:en.

[13] Ben-Ari, M., Mondada, F.: Elements of robotics. Springer Nature (2017)

96

http://wiki.ros.org
https://www.iso.org/home.html
https://www.iso.org/home.html
https://www.iso.org/obp/ui/#iso:std:55890:en
https://www.iso.org/obp/ui/#iso:std:55890:en

Bibliography

[14] The International Federation of Robotics (IFR) website: https://ifr.org/.

[15] Hagele, M., Nilsson, K., Pires,].N., Bischoff, R.: Industrial robotics. In : Springer
handbook of robotics. Springer, Cham, p. 1385-1422 (2016)

[16] The International Federation of Robotics: Executive Summary World Robotics
2021 - Service Robots. Available online: https://ifr.org/img/worldrobotics/
Executive_Summary_WR_Service_Robots_2021.pdf.

[17] Martinez, A., Fernandez, E.: Learning ROS for robotics programming: A prac-
tical, instructive, and comprehensive guide to introduce yourself to ROS, the
top-notch, leading robotics framework. Packt Publishing Ltd (2013)

[18] Johns, K., Taylor, T.: Professional Microsoft Robotics Developer Studio. Wiley Pub-
lishing, Inc (2009)

[19] YARP - Yet Another Robot Platform, https://www.yarp.it/latest/.

[20] Lentin, J.: Mastering ROS for Robotics Programming: Design, build, and simu-
late complex robots using Robot Operating System and master its out-of-the-box
functionalities. Packt Publishing (2015)

[21] W3C: Web Services Glossary - service-oriented architecture. W3C Working Group
Note 11 February 2004. URL https://www.w3.org/TR/ws-gloss/#defs.

[22] Zernadji, T.: Pattern-based Approach for Quality Integration in Service-based Sys-
tems (Doctoral dissertation, Université de Biskra) (2016)

[23] Endrei, M., et al.: Patterns: Service-Oriented Architecture and Web Services. IBM
Corporation, International Technical Support Organization (2004)

[24] Rosen, M., Lublinsky, B., Smith, K. T., Balcer, M.].: Applied SOA: service-oriented
architecture and design strategies. John Wiley & Sons (2012)

[25] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, third edit ed
(2013)

[26] Bean, J.: SOA and web services interface design: principles, techniques, and stan-
dards. Morgan Kaufmann (2009)

[27] Ayad, S.: Une approche pour la découverte sémantique des services Web dans les
réseaux mobiles ad-hoc. Doctoral dissertation (2016)

[28] OWL-S: Semantic Markup for Web Services: https://www.w3.org/Submission/
OwL-S/.

[29] Web Service Modeling Ontology (WSMO): https://www.w3.org/Submission/
WSMQ/.

97

https://ifr.org/
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Service_Robots_2021.pdf
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Service_Robots_2021.pdf
https://www.yarp.it/latest/
https://www.w3.org/TR/ws-gloss/#defs
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/WSMO/
https://www.w3.org/Submission/WSMO/

Bibliography

[30] Buyya, R., Broberg, J., Goscinski, A.: Cloud computing: Principles and paradigms.
John Wiley & Sons (2010)

[31] Mahmood, Z.: Cloud Computing for Enterprise Architectures: Concepts, Prin-
ciples and Approaches. In: Mahmood Z., Hill R. (eds) Cloud Computing for
Enterprise Architectures. Computer Communications and Networks, Springer,
London (2011)

[32] Hamdaqa, M., Tahvildari, L.: Cloud computing uncovered: a research landscape.
In Advances in Computers. Vol. 86. Elsevier, 41-85 (2012)

[33] Srinivasan, S.: Cloud computing basics. Springer (2014)
[34] Mell, P, Grance, T.: The NIST definition of cloud computing (2011)

[35] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: NIST Cloud
Computing Reference Architecture: Recommendations of the National Institute
of Standards and Technology (Special Publication 500-292) (2012)

[36] Duan, Y., et al.: Everything as a service (XaaS) on the cloud: origins, current
and future trends. 2015 IEEE 8th International Conference on Cloud Computing.
IEEE (2015)

[37] Rountree, D., Castrillo, I.: The basics of cloud computing: Understanding the fun-
damentals of cloud computing in theory and practice. Newnes (2013)

[38] Elgazzar, K., Hassanein, H. S., Martin, P.: DaaS: Cloud-based mobile Web service
discovery. Pervasive and Mobile Computing 13 67-84 (2014)

[39] Terrissa, L. S., Meraghni, S., Bouzidi, Z., Zerhouni, N.: A new approach of PHM
as a service in cloud computing. 2016 4th IEEE international colloquium on in-
formation science and technology (CiSt). IEEE (2016)

[40] Rittinghouse,].W., Ransome, J.F.: Cloud computing: implementation, manage-
ment, and security. CRC press (2017)

[41] Ramachandran, M.: Component-Based Development for Cloud Computing Ar-
chitectures. In: Mahmood Z., Hill R. (eds) Cloud Computing for Enterprise
Architectures. Computer Communications and Networks. Springer, London
(2011)

[42] Tsai, W.T., Sun, X., Balasooriya,]J.: Service-Oriented Cloud Computing Architec-
ture. 2010 Seventh International Conference on Information Technology: new
generations. IEEE, pp 684-689 (2010)

[43] Barry, D.K., Dick, D.: Web Services, Service-Oriented Architectures, and Cloud
Computing (2nd Edition). Morgan Kaufmann (2013)

98

Bibliography

[44] Kuffner, J.: Cloud-enabled robots, IEEE-RAS International Conference on Hu-
manoid Robotics (2010)

[45] Waibel, M., et al.: RoboEarth. IEEE Robotics & Automation Magazine. 18(2) 69-82
(2011)

[46] Reppou, S.E., Tsardoulias, E.G., Kintsakis, A.M., et al.. RAPP: A Robotic-
Oriented Ecosystem for Delivering Smart User Empowering Applications for
Older People. Int J of Soc Robotics 8(4) 539-552 (2016) https://doi.org/10.
1007/s12369-016-0361-z.

[47] Hu, G., Tay, W.P., Wen, Y.: Cloud Robotics: Architecture, Challenges and Appli-
cations. IEEE Network 26(3) 21-28 (2012)

[48] Mouradian, C., Errounda, F.Z., Belgasmi, F., Glitho, R.: An infrastructure for
robotic applications as cloud computing services. IEEE World Forum on Internet
of Things (WEF-IoT') IEEE, pp. 377-382 (2014)

[49] Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud Networked Robotics. IEEE Net-
work 26(3) 28-34 (2012)

[50] Terrissa, L.S., Ayad, S.: Towards a new cloud robotics approach. 10th International
Symposium on Mechatronics and its Applications (ISMA) IEEE (2015)

[51] Terrissa, L.S., Bouziane, R., Ayad, S., Brethé,].F.: ROS-Based Approach for robot as
a service in cloud computing. 2nd Conference on Computing Systems and Ap-
plications, December 13-14, Algiers, Algeria. At Ecole Polytechnique Militaire,
Algiers, Algeria (2016)

[52] Vick, A., Vonasek, V., Pénicka, R., Kriiger, J.: Robot control as a service - to-
wards cloud based motion planning and control for industrial robots. 10th In-
ternational Workshop on Robot Motion and Control (RoMoCo). IEEE, pp. 33-39
(2015)

[53] Wang, X.V., et al.: Ubiquitous manufacturing system based on Cloud: A robotics
application. Robotics and Computer Integrated Manufacturing 45 (2017): 116-
125. http://dx.doi.org/10.1016/j.rcim.2016.01.007.

[54] Du, Z., et al.: Robot Cloud: Bridging the power of robotics and cloud computing.
Future Generation Computer Systems 74: 337-348 (2017) https://doi.org/10.
1016/j.future.2016.01.002.

[55] Huang,].Y., Lee, W.P.: Enabling vision-based services with a cloud robotic system.
2016 Asia-Pacific Conference on Intelligent Robot Systems (ACIRS) IEEE, pp. 84-
88 (2016)

[56] Liu, B.,, Wang, L., Liu, M., Xu, C.Z.: Federated Imitation Learning: A Novel
Framework for Cloud Robotic Systems With Heterogeneous Sensor Data. IEEE
Robotics and Automation Letters 5(2) 2020 3509-3516.

99

https://doi.org/10.1007/s12369-016-0361-z
https://doi.org/10.1007/s12369-016-0361-z
http://dx.doi.org/10.1016/j.rcim.2016.01.007
https://doi.org/10.1016/j.future.2016.01.002
https://doi.org/10.1016/j.future.2016.01.002

Bibliography

[57] Manikanda Kumaran, K., Chinnadurai, M.: Cloud-based robotic system for crowd
control in smart cities using hybrid intelligent generic algorithm.] Ambient Intell
Human Comput (2020). https://doi.org/10.1007/s12652-020-01758-w.

[58] Mohanarajah, G., Hunziker, D., Waibel, M., D’Andrea, R.: Rapyuta: A Cloud
Robotics Platform. IEEE Transactions on Automation Science and Engineering
12(2) 481-493 (2014)

[59] Tenorth, M., Beetz, M.: KnowRob: A knowledge processing infrastructure for
cognition-enabled robots. The International Journal of Robotics Research 32(5)
566-590 (2013)

[60] Crick, C., Jay, G., Osentoski, S., Pitzer, B., Jenkins, O.C.: Rosbridge: Ros for non-
ros users. In: Christensen H., Khatib O. (eds) Robotics Research. Springer Tracts
in Advanced Robotics, vol 100. Springer, Cham (2017)

[61] RAPP project, https://rapp-project.github.io/.

62] Wan,J., Tang, S., Yan, H., Li, D., Wang, S., Vasilakos, A.V.: Cloud robotics: Current
& &
status and open issues. IEEE Access. 4 2797-2807 (2016)

[63] Saha, O., Dasgupt, P: A Comprehensive Survey of Recent Trends in Cloud
Robotics Architectures and Applications. Robotics 7(3) 47 (2018)

[64] Chen, Y., Du, Z., Garcia-Acosta, M.: Robot as a Service in Cloud Computing. 2010
Fifth IEEE International Symposium on Service Oriented System Engineering.
IEEE, pp.151-158 (2010)

[65] Osentoski, S., Pitzer, B., Crick, C., Jay, G., Dong, S., Grollman, D., Suay, H.B., Jenk-
ins, O.C.: Remote robotic laboratories for learning from demonstration. Interna-
tional Journal of Social Robotics 4(4) 449-461 (2012)

[66] Chen, Y., HU, H.: Internet of intelligent things and robot as a service. Simulation
Modelling Practice and Theory 34: 159-171 (2013)

[67] Koubaa, A.: A Service-Oriented Architecture for Virtualizing Robots in Robot-as-
a-Service Clouds. International Conference on Architecture of Computing Sys-
tems. Springer, Cham, pp. 196-208 (2014)

[68] Costa, L.F., Gongalves, L.M.G.: RoboServ: A ROS Based Approach Towards Pro-
viding Heterogeneous Robots as a Service. 2016 XIII Latin American Robotics
Symposium and IV Brazilian Robotics Symposium (LARS/SBR), IEEE, pp. 169-
174 (2016)

[69] Vanelli, B., Rodrigues, M., Silva, M. P. D., Pinto, A., Dantas, M. A. R.: A Proposed
Architecture for Robots as a Service. In: Branco K., Pinto A., Pigatto D. (eds)
Communication in Critical Embedded Systems. WoCCES 2013, WoCCES 2014,
WoCCES 2015, WoCCES 2016. Communications in Computer and Information
Science, vol 702. Springer, Cham, (2017)

100

https://doi.org/10.1007/s12652-020-01758-w
https://rapp-project.github.io/

Bibliography

[70] DiNapoli,C., Rossi,S.: A Layered Architecture for Socially Assistive Robotics as a
Service. In: 2019 IEEE International Conference on Systems, Man and Cybernet-
ics (SMC), IEEE. pp. 352-357 (2019)

[71] Koubaa, A., Qureshi, B., Sritii M. F., Allouch, A., Javed, Y., Alajlan, M,,
Cheikhrouhou, O., Khalgui, M., Tovar, E.: Dronemap Planner: A Service-
Oriented Cloud-Based Management System for the Internet-of-Drones. Ad Hoc
Networks 86 46-62 (2019) https://doi.org/10.1016/j.adhoc.2018.09.013.

[72] Qian, K., Liu, Y., Song, A., Li,].: A Control System Framework Model for Cloud
Robots Based on Service-Oriented Architecture. In: H.Yu et al. (Eds.): ICIRA,
vol 11741. pp. 579-588 (2019)

[73] Merle, P, Gourdin, C., Mitton, N.: Mobile Cloud Robotics as a Service with OC-
Clware. 2017 IEEE International Congress on Internet of Things (ICIOT). IEEE,
pp. 50-57 (2017)

[74] Bonaccorsi, M., Fiorini, L., Cavallo, F., Esposito, R., Dario, P.: Design of Cloud
Robotic Services for Senior Citizens to Improve Independent Living and Personal
Health Management. In: Ando B., Siciliano P., Marletta V., Monteriu A. (eds)
Ambient Assisted Living. Biosystems & Biorobotics, vol 11. Springer, Cham
(2015)

[75] Bonaccorsi, M., Fiorini, L., Cavallo, F., Saffiotti, A., Dario, P: A Cloud
Robotics Solution to Improve Social Assistive Robots for Active and Healthy
Aging. Int] of Soc Robotics 8(3) 393-408 (2016) https://doi.org/10.1007/
$12369-016-0351-1.

[76] Mouradian, C., Yangui, S., Glitho, R.H.: Robots as-a-Service in Cloud Computing:
Search and Rescue in Large-scale Disasters Case Study. 2018 15th IEEE Annual
Consumer Communications & Networking Conference (CCNC). IEEE (2018)

[77] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A.,
Kong, J., Jue, J.P.: All one needs to know about fog computing and related edge

computing paradigms: A complete survey. Journal of Systems Architecture 98
289-330 (2019)

[78] Bhavsar, P.C., Patel, S.H., Sobh, TM.: Hybrid Robot-as-a-Service (RaaS) Plat-
form (Using MQTT and CoAP). In 2019 International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). IEEE. pp. 974-979 (2019)

[79] Gupta, S., Durak, U.: RESTful Software Architecture for ROS-based Onboard Mis-
sion System for Drones. AIAA SciTech 2020 Forum. 2020.

[80] Sorrentino, A., Cavallo, F., Fiorini, L.: A Plug and Play Transparent Communica-
tion Layer for Cloud Robotics Architectures. Robotics 9(1) 17 (2020)

101

https://doi.org/10.1016/j.adhoc.2018.09.013
https://doi.org/10.1007/s12369-016-0351-1
https://doi.org/10.1007/s12369-016-0351-1

Bibliography

[81] Kato, Y., Izui, T., Tsuchiya, Y., Narita, M., Ueki, M., Murakawa, Y., Okabayashi, K.:
RSi-Cloud for Integrating Robot Services with Internet Services. IECON 2011-
37th Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp.
2158-2163 (2011)

[82] Kato, Y., Izui, T., Murakawa, Y., Okabayashi, K., Ueki, M., Tsuchiya, Y., Narita, M.:
Research and development environments for robot services and its implemen-
tation. 2011 IEEE/SICE International Symposium on System Integration (SII).
IEEE, pp. 306-311 (2011)

[83] Sato, M., Kamei, K., Nishio, S., Hagita, N.: The ubiquitous network robot plat-
form: common platform for continuous daily robotic services. 2011 IEEE/SICE
International Symposium on System Integration (SII). IEEE, pp. 318-323 (2011)

[84] Dyumin, A.A., Puzikov, L.A., Rovnyagin, M.M., Urvanov, G.A., Chugunkov,
L.V.: Cloud computing architectures for mobile robotics. 2015 IEEE NW Russia
Young Researchers in Electrical and Electronic Engineering Conference (EICon-
RusNW). IEEE, pp. 65-70 (2015)

[85] Muratore, L., Lennox, B., Tsagarakis, N.G.: XBot-Cloud: a Scalable Cloud Com-
puting Infrastructure for XBot Powered Robots. 2018 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 7781-7788
(2018)

[86] Penmetcha, M., Kannan, S.S., Min, B.C.: Smart Cloud: Scalable Cloud
Robotic Architecture for Web-powered Multi-Robot Applications. arXiv preprint
arXiv:1912.02927. (2019)

[87] Tanwani, A.K., Anand, R., Gonzalez, J.E., Goldberg, K.: RILaaS: Robot Inference
and Learning as a Service. IEEE Robotics and Automation Letters 5(3) 4423-4430
(2020)

[88] Quintas, J., Menezes, P.,, Dias, J.: Cloud robotics: Towards context aware robotic
networks. International Conference on Robotics. pp. 420-427 (2011)

[89] Doriya, R., Chakraborty, P., Nandi, G.C.: Robotic Services in Cloud Computing
Paradigm. 2012 International Symposium on Cloud and Services Computing.
IEEE, pp. 80-83 (2012)

[90] Terrissa, L.S., Bouziane, R., Brethé,].F.: Towards a new approach of Robot as a
Service (RaaS) in Cloud Computing paradigm. 5th. International Symposium
ISKO-Maghreb (Knowledge Organization in the perspective of Digital Human-
ities: Researches and Applications), Hammamet Tunisia (2015)

[91] Bouziane, R., Terrissa, L.S., Ayad, S., Brethéé,].F., Kazar, O.: A Web services based
solution for the NAO Robot in Cloud Robotics environment. 2017 4th Interna-
tional Conference on Control, Decision and Information Technologies (CoDIT).
IEEE, pp. 0809-0814 (2017)

102

Bibliography

[92] Oliveira, L.B.R., Amaral, F.A., Martins, D.B., Oquendo, F., Nakagawa, E.Y.: Ro-
boSeT : A Tool to Support Cataloging and Discovery of Services for Service-
Oriented Robotic Systems. In: Osério F., Wolf D., Castelo Branco K., Grassi Jr.
V., Becker M., Romero R. (eds) Robotics. SBR 2014 2014, ROBOCONTROL 2014,
LARS 2014. Communications in Computer and Information Science, vol 507.
Springer, Berlin, Heidelberg (2015)

[93] Huang,].Y., Lee, W.P, Lin, T.A.: Developing Context-Aware Dialoguing Services
for a Cloud-Based Robotic System. IEEE Access 7 44293-44306 (2019)

[94] Huang,].Y., Lee, W.P,, Chen,C.C., Dong.B.W.: Developing Emotion-Aware Hu-
man-Robot Dialogues for Domain-Specific and Goal-Oriented Tasks. Robotics
9(2) 31 (2020)

[95] Skarzynski, K., Stepniak, M., Bartyna, W., Ambroszkiewicz, S.: SO-MRS: A Multi-
robot System Architecture Based on the SOA Paradigm and Ontology. In: Giu-
liani M., Assaf T., Giannaccini M. (eds) Towards Autonomous Robotic Systems.
TAROS 2018. Lecture Notes in Computer Science, vol 10965. Springer, Cham. pp.
330-342 (2018)

[96] Mori, Y., Ogawa, Y., Hikawa, A., Yamaguchi, T.: Multi-robot Coordination Based
on Ontologies and Semantic Web Service. In: Kim Y.S., Kang B.H., Richards D.
(eds) Knowledge Management and Acquisition for Smart Systems and Services.
PKAW 2014. Lecture Notes in Computer Science, vol 8863. Springer, Cham. pp.
150-164 (2014)

[97] Mokarizadeh, S., Grosso, A., Matskin, M.n Kungas, P., Haseeb, A.: Applying Se-
mantic Web Service Composition for Action Planning in Multi-Robot Systems.
2009 Fourth International Conference on Internet and Web Applications and Ser-
vices. IEEE, pp. 370-376 (2009)

[98] Zhou, G., Zhang, Y., Bastani, F., Yen, L.L.: Service-oriented robotic swarm systems:
Model and structuring algorithms. 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE,
pp- 95-102 (2012)

[99] Mohamed, N., Al-Jaroodi, J.: Service-oriented middleware for collaborative UAVs.
2013 IEEE 14th International Conference on Information Reuse & Integration
(IRI). IEEE, pp. 185-192 (2013)

[100] Mahmoud, S., Mohamed, N.: Collaborative uavs cloud. 2014 International Con-
ference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 365-373 (2014)

[101] Mahmoud, S., Mohamed, N.: Broker architecture for collaborative uavs cloud
computing. 2015 International Conference on Collaboration Technologies and
Systems (CTS). IEEE, pp. 212-219 (2015)

103

Bibliography

[102] Cai, Y., Tang, Z., Ding, Y., Qian, B.: Theory and application of multi-robot service-
oriented architecture. IEEE/CAA Journal of Automatica Sinica 3(1) 15-25 (2016)

[103] van Gastel, PJ.G.: A planning module for a ROS-Based ubiquitous robot control
system. MS thesis (2014)

[104] Janssen, R., van de Molengraft, R., Bruyninckx, H., Steinbuch, M.: Cloud based
centralized task control for human domain multi-robot operations. Intelligent
Service Robotics, 9(1), 63-77 (2016)

[105] Bouten, N., Hristoskova, A., Ongenae, F., Nelis, J., De Turck, F.: Ontology-Driven
Dynamic Discovery and Distributed Coordination of a Robot Swarm. In: Sadre
R., Novotny J., Celeda P, Waldburger M., Stiller B. (eds) Dependable Networks
and Services. AIMS 2012. Lecture Notes in Computer Science, vol 7279. Springer,
Berlin, Heidelberg (2012)

[106] Chitic, S.G., Ponge, J., Simonin, O.: SDfR-Service discovery for multi-robot sys-
tems (2016)

[107] Hayet, T., Knani, J.: SOAP-Based Web Service for Localization of Multi-robot Sys-
tem in Cloud. In: Arai K., Kapoor S., Bhatia R. (eds) Intelligent Computing. SAI
2018. Advances in Intelligent Systems and Computing, vol 857. Springer, Cham
(2019)

[108] Zhou, H., Zhang, J., Liu, Z., et al.: Research on Circular Area Search algorithm
of multi-robot service based on SOA cloud platform. Applied Soft Computing
Journal (2019) 105816. https://doi.org/10.1016/j.asoc.2019.105816.

[109] Afrin, M., Jin,]J., Rahman, A., Tian, Y.C., Kulkarni, A.: Multi-objective resource al-
location for Edge Cloud based robotic workflow in smart factory. Future Genera-
tion Computer Systems 97 119-130. https://doi.org/10.1016/j.future.2019.
02.062 (2019)

[110] Queralta, J.P., Qingqing, L., Gia, T.N., Truong, H.L., Westerlund, T.: End-to-End
Design for Self-Reconfigurable Heterogeneous Robotic Swarms. arXiv preprint
arXiv:2004.13997. 2020.

[111] Chibani, A., Amirat, Y., Mohammed, S., Matson, E., Hagita, N., Barreto,
M.: Ubiquitous robotics: Recent challenges and future trends. Robotics and
Autonomous Systems. 61(11) (2013) 1162-1172. https://doi.org/10.1016/j.
robot.2013.04.003.

[112] Yang, TH., Lee, W.P.: A Service-Oriented Framework for the Development of
Home Robots. International Journal of Advanced Robotic Systems 10(2) 122
(2013)

[113] Sugawara, Y., Morita, T., Saito, S., Yamaguchi, T.: An Intelligent Application De-
velopment Platform for Service Robots. MuSRobS@ IROS. pp. 16-20 (2015)

104

https://doi.org/10.1016/j.asoc.2019.105816
https://doi.org/10.1016/j.future.2019.02.062
https://doi.org/10.1016/j.future.2019.02.062
https://doi.org/10.1016/j.robot.2013.04.003
https://doi.org/10.1016/j.robot.2013.04.003

Bibliography

[114] Yang, T.H., Lee, W.P.: Intelligent service reconfiguration for home robots. In:
Ding X., Kong X., Dai J. (eds) Advances in Reconfigurable Mechanisms and
Robots II. Mechanisms and Machine Science, vol 36. Springer, Cham. pp. 735-
745 (2016)

[115] Ha, Y.G., Sohn, J.C., Cho, Y.J., Yoon, H.: A robotic service framework supporting
automated integration of ubiquitous sensors and devices. Information Sciences
177(3) 657-679 (2007)

[116] Yachir, A., Tari, K., Amirat, Y., Chibani, A., Badache, N.: QoS based framework
for ubiquitous robotic services composition. 2009 IEEE/RS] International Con-
ference on Intelligent Robots and Systems. IEEE pp. 2019-2026 (2009)

[117] Tari, K., Amirat, Y., Chibani, A., Yachir, A., Mellouk, A.: Context-aware dynamic
service composition in ubiquitous environment. 2010 IEEE International Confer-
ence on Communications. IEEE (2010)

[118] Qian, K., Ma, X., Dai, X., Fang, F.: Flexible ambient service discovery and compo-
sition for component-based robotic system. Journal of Ambient Intelligence and
Smart Environments 4(6) 547-562 (2012)

[119] Qian, K., Ma, X., Dai, X., Fang, F.: Knowledge-enabled decision making for
robotic system utilizing ambient service components. Journal of Ambient Intel-
ligence and Smart Environments 6(1) 5-19 (2014)

[120] Qian, K., Ma, X., Dai, X., Fang, F., Zhou, B.: A utilization framework of ubiquitous
resources for service robots using semantic matchmaking. International Journal
of Advanced Robotic Systems 12(4) 41 (2015)

[121] Luo, J., Zhang, L., Zhang, H.Y.: Design of a cloud robotics middleware based
on web service technology. 2017 18th International Conference on Advanced
Robotics (ICAR), IEEE, pp. 487-492 (2017)

[122] Huang, J.Y., Lee, W.P, Yang, T.H., Ko, C.S.: Resource sharing for cloud robots:
Service reuse and collective map building. In : Advanced Robotics (ICAR), 18th
International Conference on. IEEE, pp. 303-309 (2017)

[123] Xia, C., Zhang, Y., Wang, L., Coleman, S., Liu, Y.: Microservice-based cloud
robotics system for intelligent space. Robotics and Autonomous Systems 110 139-
150 (2018) https://doi.org/10.1016/j.robot.2018.10.001.

[124] Puttonen, J., Lobov, A., Soto, M.A.C., Lastra,].L.M.: Cloud computing as a fa-
cilitator for web service composition in factory automation. J Intell Manuf 30
687-700. https://doi.org/10.1007/s10845-016-1277-z (2019)

[125] Xie, Y., Guo, Y., Mi, Z., Yang, Y., Obaidat, M.S.: Loosely Coupled Cloud Robotic
Framework for QoS-Driven Resource Allocation-Based Web Service Composi-
tion. IEEE Systems Journal (2019)

105

https://doi.org/10.1016/j.robot.2018.10.001
https://doi.org/10.1007/s10845-016-1277-z

Bibliography

[126] Erl, T.: SOA Principles of Service Design (paperback). Prentice Hall Press (2016)

[127] Aissam, M., Benbrahim, M., Kabbaj, M.N.: Cloud robotic: Opening a new road
to the industry 4.0. In: N.Derbel et al. (Eds.) New Developments and Advances
in Robot Control. Studies in Systems, Decision and Control, vol 175. Springer,
Singapore. pp. 1-20 (2019)

[128] Bouziane, R., Terrissa, L.S., Ayad, S., Brethéé, J.F.: Towards an architecture for
cloud robotic services. International Journal of Computers and Applications p.
1-12 (2021)

[129] Garcia-Valls, M., Cucinotta, T., Lu, C.: Challenges in real-time virtualization and
predictable cloud computing. Journal of Systems Architecture, 60(9), 726-740
(2014)

[130] Portnoy, M.: Virtualization essentials. second edition. Vol. 19. John Wiley & Sons,
(2016)

[131] De, D.: Mobile cloud computing: architectures, algorithms and applications.
CRC Press Taylor & Francis Group (2016)

[132] Masdari, M., Nabavi, S. S., Ahmadi, V.: An overview of virtual machine place-
ment schemes in cloud computing. Journal of Network and Computer Applica-
tions, 66, 106-127 (2016)

[133] Bugnion, E., Nieh, J., Tsafrir, D.: Hardware and Software Support for Virtualiza-
tion. Synthesis Lectures on Computer Architecture 12.1: 1-206 (2017)

[134] Synchromedia, http://www.synchromedia.ca/.
[135] SoftBank Robotics, https://www.ald.softbankrobotics.com/en.

[136] Ellouze, F., Koubaa, A., Youssef, H.: ROSWeb Services: A Tutorial. In: Koubaa
A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence,
vol 625, pp 463-490. Springer, Cham (2016)

[137] Protégé. url: https://protege.stanford.edu/.

[138] Tiddji, I., Bastianelli, E., Bardaro, G., d’Aquin, M., Motta, E.: An ontology-based
approach to improve the accessibility of ROS-based robotic systems. Proceedings
of the Knowledge Capture Conference (2017)

[139] Zander, S., etal.: A model-driven engineering approach for ros using ontological
semantics. arXiv preprint arXiv:1601.03998 (2016)

[140] Awad, R,, et al.: ROS engineering workbench based on semantically enriched
app models for improved reusability. 2016 IEEE 21st international conference on
emerging technologies and factory automation (ETFA). IEEE (2016)

106

http://www.synchromedia.ca/
https://www.ald.softbankrobotics.com/en
https://protege.stanford.edu/

Bibliography

[141] Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 Task 1:
Semantic Textual Similarity Multilingual and Cross-lingual Focused Evaluation.
arXiv preprint arXiv:1708.00055 (2017)

[142] Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

[143] SBERT.net: Sentence-Transformers: https://www.sbert.net/.

[144] Plappert, M., Mandery, C., Asfour, T.: The KIT motion-language dataset. Big
data, 4(4), 236-252 (2016)

[145] Plappert, M., Mandery, C., Asfour, T.:Learning a bidirectional mapping between
human whole-body motion and natural language using deep recurrent neural
networks. Robotics and Autonomous Systems, 109, 13-26 (2018)

[146] Aier, S., Offermann, P., Schonherr, M., Schropfer, C.: Implementing non-
functional service descriptions in soas. In: International Conference on Trends
in Enterprise Application Architecture. Springer. Berlin, Heidelberg (2006)

[147] Baklouti, N., Gargouri, B., Jmaiel, M.: Semantic-based approach to improve the
description and the discovery of Linguistic Web Services. In: Engineering Ap-
plications of Artificial Intelligence 46, pp. 154-165 (2015)

[148] Riazuelo, L., et al.: RoboEarth semantic mapping: A cloud enabled knowledge-
based approach. In: IEEE Transactions on Automation Science and Engineering
12.2, pp. 432-443 (2015)

[149] Kunze, L., Roehm, T., Beetz, M.: Towards semantic robot description languages.
2011 IEEE International Conference on Robotics and Automation. IEEE (2011)

[150] Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. International semantic web conference. Springer, Berlin,
Heidelberg (2002)

[151] Srinivasan, N., Paolucci M., Sycara K.: An efficient algorithm for OWL-S based
semantic search in UDDI. International Workshop on Semantic Web Services
and Web Process Composition. Springer, Berlin, Heidelberg (2004)

[152] rosjava_core documentation, http://rosjava.github.io/rosjava_core/0.1.
6/index.html.

[153] Paulraj, D., Swamynathan, S., Madhaiyan, M.: Process model-based atomic ser-
vice discovery and composition of composite semantic web services using web
ontology language for services (OWL-S). Enterprise Information Systems 6.4
(2012): 445-471.

107

https://www.sbert.net/
http://rosjava.github.io/rosjava_core/0.1.6/index.html
http://rosjava.github.io/rosjava_core/0.1.6/index.html

Bibliography

[154] Manning, C.D., Raghavan, P, Schiitze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

[155] ROS 2 Documentation, url: https://docs.ros.org/en/foxy/index . html.

[156] Hu, B., Wang, H., Zhang, P, Ding, B., Che, H.: Cloudroid: A Cloud Framework
for Transparent and QoSaware Robotic Computation Outsourcing. 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), IEEE. pp. 114-
121 (2017)

[157] Gudi, S.L.K.C,, Ojha, S., Johnston, B., Clark, J., Williams, M.A.: Fog Robotics: An
Introduction. In IEEE/RS] International Conference on Intelligent Robots and
Systems (2017)

[158] Tanwani, A.K., Mor, N., Kubiatowicz, J., Gonzalez, J.E., Goldberg, K.: A Fog
Robotics Approach to Deep Robot Learning: Application to Object Recognition
and Grasp Planning in Surface Decluttering. In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, pp. 4559-4566 (2019)

108

https://docs.ros.org/en/foxy/index.html

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Context
	Problem statements
	Contributions
	Thesis structure

	Fundamentals
	Introduction
	World of robots
	Robot Operating System
	Overview
	ROS concepts
	Difficulty in learning ROS

	Service-Oriented Architecture and Web services
	Service-Oriented Architecture (SOA)
	Web services
	Semantic Web services

	Opportunities of cloud computing
	Cloud computing basics
	SOA and cloud computing

	Cloud Robotics: An overview
	Conclusion

	Service-Oriented Robotic Architectures
	Introduction
	Service-oriented robotic models
	Robot as a Service (RaaS)
	Cloud-enabled Robotic Services (CRS)
	Multi-Robot-based Services (MRS)
	Robotic Service Composition Middlewares (RSCM)

	Description, discovery, and applications of robotic services
	Discussion
	Deployment model and Service Level Agreements
	Representation and description of robotic services
	Deficiencies in SOA implementation: Robotic service discovery gap
	Robot Operating System and case studies

	Conclusion

	Robotic Services as a Service approach
	Introduction
	Highlights
	Robotic Services as a Service scope
	Virtualization concept

	Robotic Services as a Service architecture
	Overall system
	RSaaS virtualization and service model
	RSaaS cloud actors
	RSaaS life cycle process for service provisioning

	Experimental settings
	Technical robotic tools
	APIs and ROS packages

	Conclusion

	ROS Web Service description and discovery
	Introduction
	General scope
	Motivation and related works
	Message and service types in ROS
	Distinguishing Robot-Service compatibility

	ROS Web Service (ROS-WS): Requirements and discovery
	ROS-WS requirements
	ROS-WS discovery

	ROS Semantic Web Service (ROS-SWS): Description and discovery
	OWL-S Profile extension for ROS-SWS
	Mapping ROS messages to Inputs/Outputs
	ROS capabilities and properties: Domain ontology
	Search engine

	Case study
	ROS Web Service experimentation
	Search evaluation metrics: Precision and recall
	ROS-WS search results
	ROS-SWS search results

	Conclusion

	Conclusion and Future Work
	Conclusion
	FutureWork
	Quality of Service and ROS2
	Resource allocation in robotic service composition
	Fog computing in robotic service provisioning: Fog Robotics

	Bibliography

