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Abstract  
The aim of this study was to investigate steady state double diffusive mixed convection in a 
rectangular lid driven cavity while the bottom wall heated uniformly and the side walls are linearly 
heated which are hot at the bottom and cooled at the top. The top of the cavity (Top wall) is adiabatic 
and for the mass, a high and regularly concentrated wall at the left and a lower concentration but 
regularly too at the right wall while the horizontal walls are maintained impermeable. The governing 
equations are presented in dimensional form and non dimensional form then discretized using finite 
volume method after that solving this discretized system using SIMPLE algorithm to get the different 
gradients like velocities ,temperature and concentration and the iterative method used for solving the 
system of equations is TDMA and all this processes programmed with Fortron software. The heat and 
mass transfer rates were examined using several operational dimensionless parameters such as 
Richardson number Ri, Lewis number Le, Buoyancy ratio N, Aspect ratio A. while Pr=10 and 
Re=100. also a Nusselt and Sherwood number for the local and the average are extracted and plotted 
by Origin 2022 . The isocontours of the different physical quantities like streamlines, isocontours and 
isotherms are depicted with software Tecplot 360.  
 
Keywords: Mixed convection, Lid driven cavity, Finite volume method, Heat and mass transfer, 
Numerical simulation 

  :ملخص
هذا التجويف تحت , قائمالهدف من هذه العمل هو القيام بدراسة عددية لانتقال الكتلة و الحرارة لتدفق داخل تجويف ذو شكل رباعي 

ن الجانبين يداربينما تم تسخين الج, حيث تم تسخين قاع التجويف بحرارة ثابتة على مستوى هذا السطح.تأثير الحمل الحراري المزدوج
و يتحرك بسرعة افقية ثابتة  احراري معزولا العلوي يكون  الجداراما أعلاه بارد  وحيث أسفل الجدار ساخن  اخطي رةبحرارة متغي

هذا  ت نمذجة المعدلات التي يخضع لها تم . الأيمنو اقل تركيزا في الجدار  الأيسرتركيز الكتلة منتظم و كبير في الجدار بينما ,
مجال باستعمال طريقة الحجوم المحدودة و اعتماد خوارزمية التم تعريف . لحدية و الابتدائيةالنموذج المدروس و كذا الشروط ا

SIMPLE تحل المعادلات الجبرية . الحرارة و التركيز,لحساب مختلف القيم الفيزيائية مثل السرعة , لاقتران السرعة مع الضغط
النتائج المتحصل عليها تم عرضها عن طريق دالة .على التدفق لرؤية تأثيرهم Riو  A, Le, N ر في يالتغي تم. TDMAباستعمال 

 Shو عدد شاروود   Nuانتشار الحرارة و انتشار التركيز داخل التجويف و كذا قيم الموضعية و المتوسطة لعدد نوسالت , تيار
  . Origin 2022و   Techplot 360باستعمال برنامج 

 
  . دراسة عددية, انتقال الحراري و الكتلي, طريقة الحجوم المحدودة, تجويف مدفوع , جةالحمل الحراري المزدو :الكلمات المفتاحية 

Résume: 
L'objectif de ce travail est de faire une étude numérique du transfert de masse et de chaleur pour un 
écoulement  dans une cavité rectangulaire,  cette cavité est sous l'effet d'une double convection où le 
fond de cette cavité était chauffé par une température uniforme, tandis que les murs des deux côtés 
étaient chauffés de la même manière d'une façon linéaire où le bas de ces murs est chaud et  l'haut est 
maintenue froid, la paroi supérieure  est adiabatique, La paroi gauche est plus concentrique que la 
paroi droite et les parois horizontal sont imperméables. Les équations qui gouverne le model physique 
est représenté sous forme dimensionnel et adimensionnel ainsi que les conditions aux limites et 
initiales est aussi. Le Domain étudiée a été défini et discrétisée  à l'aide de la méthode des volumes 
finis et de l'algorithme SIMPLE de couplage de la vitesse à la pression, Une méthode pour résoudre 
l'ensemble d'équations pour obtenir les grandeurs physiques est TDMA. Les nombres adimensionnel  
A, Le, N et Ri sont varie  pour voir leur effet a l’écoulement. Les résultats obtenus ont été présentés en 
fonction du courant, de contour de température  et de contour de la concentration, ainsi que des valeurs 
locales et moyennes du nombre Nu et du nombre  Sh en utilisant  Tecplot 360 et Origin 2022. 
 
Mots clés : convection mixe, cavité entraînée, méthode des volumes finis, transfert de masse et 
thermique, étude numérique. 
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General introduction: 

 The lid driven cavity flow is one of the most studied problems in computational 
fluid dynamics field. The simplicity of the geometry of the enclosure flow makes the 
problem easy to code and apply boundary conditions and etc. Even though the problem 
looks simple in many ways, the flow in a cavity retains all the flow physics with 
counter rotating vortices appear at the corners of the cavity. 

Pure forced convection or pure natural convection situations are very rare at 
practice. Often the practical process is the mixture of the buoyancy convection and 
forced convection, and depending on the situations one may predominate over the 
other. The phenomena of heat and mass transfer are of considerable interest in the field 
of medicine and engineering. This interest is reflected in human heart, Oil and gas 
energy, distillation, air conditioning, drying of wood, cooling of electronic 
components, manufacture of float glass, etc.… 

In this work, we carry out a numerical study of heat and mass transfer in a 
rectangular cavity with a movable upper wall. The purpose of the study is to determine 
the influence of various parameters such as the Richardson number, the buoyancy 
ratio, the Lewis number and Aspect ratio on the transfer of heat and mass when the 
fluid is in motion. 

 

This document is organized into five chapters presented below: 

We present in the first chapter generalities and a bibliographical analysis which 
makes it possible to highlight the physical phenomena which must be considered in the 
case of heat and mass transfers in a cavity. 

The chosen physical model, the governing equations as well as the associated 
boundary conditions constitute the content of the second chapter. 

In the third chapter, we present the numerical method used for the resolution of 
the equations. The systems of algebraic equations obtained associated with the 
boundary conditions are solved by the use of the TDMA algorithm. 

We gather in the fourth chapter the validation of our computer code which is 
written by the Fortran software as well as the main numerical results of this study and 
also the comments, interpretations and analyzes of the various results of this study. 

Finally, we end with a general conclusion in which are pointed out the 
particularities of the results obtained in this study. 

 



 

 

 

 

CHAPTER I : 
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I-1-Heat transfer:  

I-1-1-Introduction: 

On this chapter, we give a brief definition of the heat and mass transfer and 
other concepts related on this field we used the different books and websites [1-8], and 
then some reviews of different articles [9-13]. 

It was clear to people that something flows from hot objects to cold ones, we call that 
heat flow. But the scientists in the eighteenth and early nineteenth centuries supposed 
that there is an invisible fluid in all bodies named 'Caloric'. it wasn't correct on some 
concepts (like heat has a weight)  but it was very useful manner to understand that the 
heat moves from hot to cold bodies.  

 The life forms have for the human being necessarily evolved to match the 
magnitude of these energy flows and prevent the loss of it. But while “Caveman”  is in 
balance with these heat flows, “Modern man”  has used his mind, his back, and his will 
to harness and control energy flows that are far more intense than those we experience 
naturally. 

I-1-2-Definition :  

Heat transfer (or heat) is thermal energy in transit due to a spatial temperature 
difference. Heat transfer is the exchange of thermal energy between physical systems. 
The rate of heat transfer lean on the temperatures of the systems and the properties of 
the medium through which the heat is transferred through it. 

I-1-3-Importance of heat transfer:  

 The study of heat transfer is applied for the follows purposes:  

1- To estimate the rate of flow of energy as heat the boundary of a system under 
studies (both under steady and transient conditions).  

 2- To determine the temperature field for the steady and transient conditions.  

In almost every branch of engineering, heat transfer (and mass transfer) are 
encountered vast areas covered under the discipline of heat transfer:  

 *Estimation of thermal and nuclear power plants. 

 *Internal combustion engines. 

 *Refrigeration and air conditioning units.  

 *Design and cooling fluids.  
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 *Construction of dams and structures.  

 *Heat treatment of metals. 

 *Dispersion of atmospheric pollutants. 

I-1-4-Heat transfer modes: 

 There is three fundamental modes of heat transfer: conduction, convection and 
radiation. 

I-1-4-1-Conduction:  

 Fourier’s law of heat conduction proves that to estimate the heat transfer 
through a specific medium of known thermal conductivity and cross-sectional area, 
one needs the spatial variation of temperature. Farther more the temperature at any 
point in the System may vary with time also. The spatial and temporal solutions are 
obtained by solving the heat conduction equation. We can obtain the heat conduction 
equation by applying first law of thermodynamics and Fourier’s law to an elemental 
control volume of the conducting medium. In rectangular coordinates, the general heat 
conduction equation for a conducting medium with constant thermal properties (for 
example heat capacity...) is given by: 

                      
ଵ

ఈ

డ்

డ௧
= ቂ

డమ்

డ௫మ +
డమ்

డ௬మ +
డమ்

డ௭మቃ +
௤೒

௞
                              I-1 

In the above equation,𝛼 =
௞

ఘ஼೛
 is called as thermal diffusivity, 𝑞௚ is the rate of heat 

generation per unit volume inside the control volume, k is the thermal conductivity and 
t is the time.  

The general heat conduction equation given above can be rewritten in a brief form 
using the Laplacian operator ∇ଶ 

       
ଵ

ఈ

డ்

డ௧
= ∇ଶT +

௤೒

௞
      I-2 

I-1-4-2-Convection:  

 Convection is the process of heat transfer by bulk movement of molecules 
within fluids such as gazes and liquids, it involves a bulk transfer of portion of the 
fluids.  

 convection and conduction are similar in that mechanism require the presence 
of medium to transfer the heat from a point to another, on the other they are different 
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because convection requires the presence of fluid motion but conduction doesn’t 
required it. 

I-1-4-2-1-Convection as conduction with fluid motion:  

 Some expert believe that convection is a special case of thermal conduction, 
and they did not consider convection as a fundamental mechanism of heat transfer, 
known as conduction with fluid motion.  

I-1-4-2-2-Types of convection:  

 -Natural convection  

 -Forced convection  

 -Mixed convection 

A- Natural convection:  

 when convection takes places due to buoyant force as there is difference in 
densities caused by difference in the temperature it is known as natural convection 
(e.g: Sea breezes).  

B-Forced convection:  

 When the fluid inducted by external source such as fans or pumps ...this known 
as Forced convection(e.g: Water heaters..) 

C-Mixed convection:  

 It is the mixture of natural convection and Forced convection , it’s the most 
realistic type, almost  we can see it in everything in our life.  

I-1-4-2-3-Newton's law of cooling:  

    𝑄 = 𝑚𝐴∆𝑇 = 𝑚𝐴(𝑇 − 𝑇0)    I-3 

I-1-4-2-3-1- the value of convective heat transfer coefficient h depend on :  

 - Density 

 - Viscosity  

 - Thermal conductivity  

 - Special heat capacity 
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I-1-4-2-4-dimensionless Numbers :  

1-Nusselt Number:  

 The Nusselt Number is a dimensionless number, named after a German 
engineer willhelm Nusselt, it describe the ratio of the thermal energy convected to the 
fluid to the thermal energy conducted within the fluid. 

   𝑁𝑢 =
௖௢௡௩௘௖௧௜௢௡ ℎ௘௔௧ ௧௥௔௡௦௙௘௥

௖௢௡ௗ௨௖௧௜௢௡ ℎ௘௔௧ ௧௥௔௡௦௙௘௥
=

௛௅

௞
    I-4 

2-Reynold Number:  

 The Reynolds number is the ratio of inertial forces to viscous forces and is a 
convenient parameter for predicting if a flow condition will be laminar or turbulent. 

   𝑅𝑒 =
௜௡௘௥௧௜௔ ௙௢௥௖௘௦

௩௜௦௖௢௨௦ ௙௢௥௖௘௦ 
=

ఘ௎௅

ఓ
=

௎௅

ν
      I-5 

3- Prandlt Number:  

 The Prandtl number is a dimensionless number, named after its inventor, a 
German engineer Ludwig Prandtl. The Prandtl number is defined as the ratio of 
momentum diffusivity to thermal diffusivity. 

  𝑃𝑟 =
௩௜௦௖௢௨௦ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘ 

௧ℎ௘௥௠௔௟ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘
=

 ν

ఈ
=

μ / ρ

௞/ρେ౦
=

μେ౦

௞
    I-6 

4- Grashof Number:  

 The Grashof number is a dimensionless number, named after  Franz Grashof. 
The Grashof number is defined as the ratio of the buoyant to viscous force acting on a 
fluid in the velocity boundary layer. Its role in natural convection is much the same as 
that of the Reynolds number in forced convection. 

  𝐺𝑟 =
௕௢௨௬௔௡௧ ௙௢௥௖௘௦ 

௩௜௦௖௢௨௦ ௙௢௥௖௘௦
=

௚ఉ(்ି்଴)௅య

νమ
       I-7 

5-Richrdson Number :  

 The Richardson number (Ri) is named after Lewis Fry Richardson (1881–
1953). It is the dimensionless number that expresses the ratio of the buoyancy term to 
the flow shear term. Richardson number represents the importance of natural 
convection relative to the forced convection. The Richardson number in this context is 
defined as :  
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  𝑅𝑖 =
 ୠ୳୭୷ୟ୬ୡ୷ ୲ୣ୰୫

௙௟௢௪ ௦ℎ௘௔௥ ௧௘௥௠ 
=

௚ఉ(்ି்଴)௅

௏మ
=

ீ௥

ோ௘మ
      I-8 

I-1-4-3- Thermal Radiation:  

 Is electromagnetic radiation on the infra-red region of electromagnetic spectrum 
although some of it is in the visible region, it is generated by thermal motion of 
charged particles in the matter and therefore any material that has temperature above 
absolute zero gives off some radiant energy.  

 Thermal Radiation does not require any medium of energy transfer. 

 Thermal Radiation heat transfer can occur between two bodies separated by 
medium colder than both bodies. 

I-1-4-3- 3-1-Governing Laws: 

1-Kirchhoff’s Law of Thermal Radiation:  

 For an arbitrary body emitting and absorbing thermal radiation in 
thermodynamic equilibrium, the emissivity is equal to the absorptivity. 

   emissivity ε = absorptivity α         I-9 

 As a result of this law, heat cannot spontaneously flow from cold system 
to hot system and the second law of thermodynamics is still satisfied. 

 In general, the emissivity, ε, and the absorptivity, α, of a surface depend 
on the temperature and the wavelength of the radiation. Kirchhoff’s law of 
thermal radiation, postulated by a German physicist Gustav Robert Kirchhoff, 
states that the emissivity and the absorptivity of a surface at a given temperature 
and wavelength are equal. 

2-Planck’s Law:  

 Planck’s law is a pioneering result of modern physics and quantum theory. 
Planck’s hypothesis that energy is radiated and absorbed in discrete “quanta” (or 
energy packets) precisely matched the observed patterns of blackbody radiation and 
resolved the ultraviolet catastrophe. 

 Using this hypothesis, Planck showed that the spectral radiance of a body for 
frequency ν at absolute temperature T is given by: 

    𝐵(𝑓, 𝑇) =
ଶℎ௙య

௖మ

ଵ

௘

ℎ೑
ೖಳ೅ିଵ

      I-10 
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B(f,T) is the spectral radiance (the power per unit solid angle and per unit of area 
normal to the propagation) density of frequency ν radiation per unit frequency at 
thermal equilibrium at temperature T 

The Planck’s law has the following important features: 

 -The emitted radiation varies continuously with wavelength. 

-At any wavelength the magnitude of the emitted radiation increases with 
increasing temperature. 

-The spectral region in which the radiation is concentrated depends on 
temperature, with comparatively more radiation appearing at shorter 
wavelengths as the temperature increases (Wien’s Displacement Law). 

3-Wien’s Displacement Law:  

 Wien’s displacement law (named after a German physicist) describes the shift 
of that peak in terms of temperature. 

 Wien’s displacement law, and the fact that the frequency is inversely 
proportional to the wavelength, also indicates that the peak frequency fmax  (object’s 
color) is proportional to the absolute temperature T of the blackbody. 

 According to Wien’s displacement law, the spectral radiance of black body 
radiation per unit wavelength, peaks at the wavelength λmax given by: 

     λ௠௔௫ =
௕

்
       I-11 

b is a constant of proportionality, known as Wien’s displacement constant, equal 
to 2.8978. 10ିଷ [K.m]. 

4-Stefan–Boltzmann Law:  

 According to the Stefan–Boltzmann law: 

 Radiation heat transfer rate, q [W/m2], from a body (e.g., a black body) to its 
surroundings is proportional to the fourth power of the absolute temperature and can 
be expressed by the following equation: 

q =  εσT4 

 

where σ is a fundamental physical constant called the Stefan–Boltzmann constant, 
which is equal 𝑡𝑜 5.6697 × 10ି଼[ 𝑊/𝑚ଶ𝐾ସ]. 

I-12 
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I-2-Mass transfer:  
I-2-1-Definition:  

 For system contains two or more components whose concentration vary from 
here to there, there is a natural way for mass to be transferred, The gradient 
concentration differences within the system. The transport from a  higher 
concentration to that of lower concentration is called mass transfer. A good example of 
mass transfer is drying of a wet surface exposed to unsaturated air. 

I-2-2-Modes of mass transfer:  

 There are three different modes of mass transfer: Mass transfer by diffusion, 
Mass transfer by convection, Mass transfer by change of phase.  

I-2-2-1-Mass transfer by diffusion (molecular or eddy diffusion):  

 The transport of fluid flow on microscopic level as a conclusion of diffusion 
from a region has higher concentration to a region of lower concentration in a system 
(or mixture) of liquids or gases is called molecular diffusion. it happens when a 
substance diffuses through a layer of static fluid may be due to concentration, 
temperature or pressure gradients. In a gaseous mixture, molecular diffusion occurs 
due to random motion of the molecules.  

 If one of the diffusing fluids is in turbulent motion we will get the eddy 
diffusion .Mass transfer is fast by eddy diffusion than by molecular diffusion.  

I-2-2-2-Mass transfer by convection:  

 Mass transfer by convection requires transfer between a moving fluid and a 
surface, or between two relatively immiscible moving fluids. The convective mass 
transfer relies on the transport properties and on the dynamic (laminar or turbulent) 
characteristics of this fluid.  

I-2-2-3-Mass transfer by change of phase:  

 Mass transfer occurs in the change from one phase to another takes place. The 
mass transfer in such a case happens due to simultaneous action of convection and 
diffusion. 

I-2-3-Fick's Law:  

 This law deals with transfer of mass within a medium due to difference in 
concentration between various parts of it. This is very similar to Fourier’s law of heat 
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conduction as the mass transport is also by molecular diffusion processes. According 
to this law, rate of diffusion (kg/s) is proportional to the concentration gradient and the 
area of mass transfer:  

     𝑚̇ = −𝐷𝐴
ௗ௖

ௗ௫
      I-13 

where, D is called diffusion coefficient, and it has the units of m2/s just like those of 
thermal diffusivity α and the kinematic viscosity of fluid ν for momentum transfer. 

I-2-4-General equation of mass transfer :  

     
஽௖

஽௧
= 𝐷∆𝑐 + 𝑁஺̇              I-14 

Where  𝑁஺̇ is the molar rate of production. 

I-2-5-Dimensionless Numbers :  

1-Sherwood Number:  

 The Sherwood number is a dimensionless number, named after Thomas Kilgore 
Sherwood. The Sherwood number is defined as the ratio of the convective mass 
transfer to the mass diffusivity. 

    𝑆ℎ =
௖௢௡௩௘௖௧௜௩௘ ௠௔௦௦ ௧௥௔௡௦௙௘௥

௠௔௦௦ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘
=

ℎ೘

஽/௅
    I-15 

The number of Sherwood in mass transfer correspondent to Nusselt number in heat 
transfer. 

2-Schmidt Number:  

 The Schmidt number is a dimensionless number, named after the German 
engineer Ernst Heinrich Wilhelm Schmidt (1892–1975). The Schmidt number is 
defined as the ratio of momentum diffusivity (kinematic viscosity) and mass 
diffusivity, and is used to characterize fluid flows in which there are 
simultaneous momentum and mass diffusion convection processes. The Schmidt 
number describes the mass momentum transfer, and the equations can be seen 
below: 

    𝑆𝑐 =
௩௜௦௖௢௨௦ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘ 

௠௔௦௦ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘ 
=

ν

஽
=

ఓ

ఘ஽
    I-16 

3-Lewis Number:  

 The Lewis number is a dimensionless number, named after Warren K. Lewis 
(1882–1975). The Lewis number is defined as the ratio of thermal diffusivity and mass 
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diffusivity. It is used to characterize fluid flows where there is simultaneous heat and 
mass transfer. The Lewis number is therefore a measure of the relative thermal and 
concentration boundary layer thicknesses. The Lewis number can also be expressed in 
terms of the Prandtl number and the Schmidt number as Le = Sc / Pr. 

    𝐿𝑒 =
்ℎ௘௥௠௔௟ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘

௠௔௦௦ ௗ௜௙௙௨௦௜௢௡ ௥௔௧௘ 
=

ఈ

஽
     I-17 

4-Buoyancy ratio : 

 It is non dimensional number that expresses the ratio of solutal convection to 
thermal convection.  

            𝑁 =
ீ௥ೄ

ீ௥೅
                                           I-18 

I-3-Reviews :  

A.M. Al-Amiri et al. [9] presented a numerical study of stationary mixed convection 
in a moving-wall cavity under the effect of the combination of thermal diffusion and 
mass diffusion. Heat and mass transfer were examined with the use of several 
dimensionless parameters such as Richardson number, Lewis number and buoyancy 
ratio. The physical model imposed for this reference is the side wall ( vertical walls) 
are adiabatic and impermeable while the horizontal walls is uniformly concentrated 
and heated but the bottom is hotter and more concentrated.  

Mohamed A. Teamah a, Wael M. El-Maghlany b [10],The present study deals with 
mixed convection in a rectangular lid-driven cavity under the combined buoyancy 
effects of thermal and mass diffusion. Convective flux with double diffusion in a 
rectangular enclosure with movable upper surface is studied numerically. The top and 
bottom surfaces are being insulated and waterproof. Constant temperatures and 
concentrations are imposed along the vertical walls of the enclosure, a laminar regime 
is considered in the state of equilibrium. The transport equations for continuity, 
momentum, energy and spice transfer are solved. Numerical results are reported for 
the effect of Richardson number, Lewis number and coefficient of buoyancy on the 
streamline, temperature and concentration. In addition, predicted results for Nusselt 
and local means and mean Sherwood numbers are presented and discussed for various 
parametric conditions. This study was made for 0.1< Le< 50 and Prandtl number 
Pr=0.7. Throughout the study, the number and format of the Grashof image are kept 
constant, whereas the Richardson number was changed from 0.01 to 10 to simulate a 
flow dominated by forced convection, mixed convection and flux dominated natural 
convection. 

Mefteh Bouhalleb AND Hassan Abbassi [11],Two-dimensional stable laminar 
natural convection in an inclined rectangular enclosure filled with CuOewater 
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nanofluid is investigated numerically. The horizontal walls are thermally insulated and 
the left vertical side wall is heated by a spatial temperature distribution. The mass, 
momentum and energy conservation equations are solved numerically by the volume 
finite element method using the SIMPLER algorithm for rotational speed coupling. 
This study was carried out for the relevant parameters in the following areas: ranges: 
angle of inclination, the volumetric fraction of the nanoparticles between 0 and 4% and 
aspect ratio. These simulations are performed at constant Rayleigh and Prandtl 
numbers, they are fixed at Ra and Pr. The results are presented in the form of 
streamlines, isotherms and Nusselt numbers. Heat transfer increases first, then 
decreases with enclosure tilt for aspect ratio  and increases with increasing tilt angle 
for Ar<1. The rate of heat transfer increases with increasing volume fraction of 
nanoparticles. The subject of this article is to study the effect of nanoparticles on heat 
transfer, as well as the effect of tilt angle and aspect ratio. 

M. Sathiyamoorthy a, Tanmay Basak b, S. Roy c, I. Pop d,* [12] The present 
numerical study deals with the natural convection flow in a square closed cavity when 
the bottom wall is heated uniformly and the vertical wall(s) are heated linearly, while 
the top wall is well insulated. Nonlinear coupled PDEs governing the flow have been 
solved by the finite element method with bi-quadratic rectangular elements. Numerical 
results are obtained for different values of Rayleigh number (Ra) and Prandtl number 
(Pr). The results are presented as streamlines, isothermal contours, local Nusselt 
number and mean Nusselt as a function of Rayleigh number. 

Youssef Stiriba [13] A numerical study was performed to analyze the effects of mixed 
convective auxiliary flow beyond a three-dimensional open cavity over a wide range 
of Reynolds (100 to 1000) and Richardson (0.001 to 10) numbers. The vertical walls in 
the inlet and outlet sides are isothermal while all other walls are adiabatic. The cavity 
is assumed to be of cubic geometry and the flow is laminar. A direct numerical 
simulation is undertaken to study the flow structure, the heat transfer characteristics 
and the complex interaction between induced flux at room temperature and flux 
induced by the buoyancy of the heated wall. It is found that the flow becomes stable at 
a moderate Grashof number and exhibits a three-dimensional structure, while for a 
high Richardson number mixed convection effects come into play and push the zone 
recirculation system further upstream and the flow may become unstable. 

 

Conclusion: 

After this generality and the different published scientific articles we gain an 
acceptable knowledge about Heat and mass transfer its mechanism and the significant 
of dimensionless parameters to have a better start to treat the present problem.  
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II-1-Introduction :  

In this chapter, we will expose the studied problem, and we will start by 
describing the geometry of the physical system and also Mathematical formulation of 
the governing equations of the present problem. 

Finally, the boundary and initial conditions are depicted and presented to give a 
general identifying of the problem. 

II-2-Problem formulation: 

   A schematic diagram of a two-dimensional rectangular cavity is displayed in 
Figure II.1 where the bottom wall is maintained at a uniform temperature. Side walls 
are kept linearly heated the top wall is well insulated. The top wall is assumed to slide 
from left to right with constant speed U0.constante different concentration are imposed 
at the vertical walls while the horizontal wall are impermeable .the thermophysical 
properties of the fluid such as viscosity,thermal conductivity,specificheats,thermal 
expansion coefficient except the density variation in the buoyancyterm are considered 
to be constant.The Boussinesq approximation is considered for the body force term 
involving the variation ofdensity of fluid with temperature and to couple the 
temperature and mass fields to the flow field. 

The heat and mass transfer occurs by mixed convection where the fluid excited 
by the lid driven, thermal forces and mass forces. 

The solution of this problem depends on the governing equations which are 
mass conservation, momentum equation, energy and concentration equations.  

 

Figure II.1 a schematic physical model 



Chapter II: Problem description and mathematical formulation  
 

 
13 

II-3-Hypotheses:  

 For simplifying the current present work we took this following hypothesis to 
work with an ease:  

- The bidimensional problem 
- Steady state flow  
- Laminar flow 
- Newtonien fluid, viscous and incompressible 

 

II-4-Mathelatical formulation :  

 The governing equations of mass conservation,momentum equations, 
concentration and energy equation are for the mixed convection laminar and steady 
state flows inside the cavity.  

 

II-4-1-Mass conservation:  

     
డ௨

డ௫
+

డ௩

డ௬
= 0      II.1 

II-4-2-Momentum equation:  

For U velocity ( projection in ox Label) 

  ቀ𝑢
డ௨

డ௫
+ 𝑣

డ௨

డ௬
ቁ = −

ଵ

ఘ

డ௉

డ௫
+ 𝜗 ቀ

డమ௨

డ௫మ
+

డమ௨

డ௬మቁ    II.2 

For V velocity (projection in oy label) 

ቀ𝑢
డ௩

డ௫
+ 𝑣

డ௩

డ௬
ቁ = −

ଵ

ఘ

డ௉

డ௬
+ 𝜗 ቀ

డమ௩

డ௫మ
+

డమ௩

డ௬మቁ + 𝑔[𝛽்(𝑇 − 𝑇஼) − 𝛽ௌ(𝑐 − 𝑐஼)]     II.3 

II-4-3-Energie equation :  

   ቀ𝑢
డ்

డ௫
+ 𝑣

డ்

డ௬
ቁ = 𝛼 ቀ

డమ்

డ௫మ
+

డమ்

డ௬మቁ      II.4 

II-4-4-Concentration equation :  

   ቀ𝑢
డ௖

డ௫
+ 𝑣

డ௖

డ௬
ቁ = 𝐷 ቀ

డమ௖

డ௫మ
+

డమ௖

డ௬మቁ     II.5 
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II-5-Boundary conditions :  

The boundary conditions of the present work are:  

For velocities:  

Left wall:         for  x = 0    ; 0 ≤ 𝑦 ≤ 𝐻 ;   𝑢 = 0, 𝑣 = 0 

Right wall:       for  x = L    ; 0 ≤ 𝑦 ≤ 𝐻 ;   𝑢 = 0, 𝑣 = 0 

Top wall:          for  y = H   ;  0 ≤ 𝑥 ≤ 𝐿 ;   𝑢 = 𝑈଴, 𝑣 = 0 

Bottom wall:     for   y = 0    ;  0 ≤ 𝑥 ≤ 𝐿 ;   𝑢 = 0, 𝑣 = 0 

For temperature: 

Left wall:         for x = 0   ; 0 ≤ 𝑦 ≤ 𝐻 ; 𝑇 = 𝑇௛ − (𝑇௛ − 𝑇௖)
௬

ு
 

Right wall:       for x = L   ; 0 ≤ 𝑦 ≤ 𝐻;  𝑇 = 𝑇௛ − (𝑇௛ − 𝑇௖)
௬

ு
 

Top wall:          for y = H   ; 0 ≤ 𝑥 ≤ 𝐿 ;  
ௗ்

ௗ௬
= 0 

Bottom wall:   for y = 0     ;  0 ≤ 𝑥 ≤ 𝐿;   𝑇 = 𝑇௛ 

For concentration:  

Left wall:         for x = 0   ;  0 ≤ 𝑦 ≤ 𝐻 ;   𝑐 = 𝑐௛ 

Right wall:       for x = L   ; 0 ≤ 𝑦 ≤ 𝐻;     𝑐 = 𝑐௖ 

Top wall:          for y = H  ;  0 ≤ 𝑥 ≤ 𝐿 ;   
ௗ௖

ௗ௬
= 0 

Bottom wall:   for y = 0   ; 0 ≤ 𝑥 ≤ 𝐿 ;   
ௗ௖

ௗ௬
= 0 

 

II-6-Dimensionless groups :  

𝑋 =
𝑥

𝐿
; 𝑌 =

𝑦

𝐿
; 𝑈 =

𝑢

𝑈଴

; 𝑉 =
𝑣

𝑈଴

; 𝑃 =
𝑝

𝜌𝑈଴
ଶ ; 𝜃 =

𝑇 − 𝑇஼

𝑇ℎ − 𝑇஼

; 𝐶 =
𝑐 − 𝑐௖

𝑐ℎ − 𝑐௖

 

II-7-Dimensionless governing equations:  

     
డ௎

డ௑
+

డ௏

డ௒
= 0      II.6 

   ቀ𝑈
డ௎

డ௑
+ 𝑉

డ௎

డ௒
ቁ = −

డ௉

డ௑
+

ଵ

ோ௘
ቀ

డమ௎

డ௫మ
+

డమ௎

డ௬మ
ቁ    II.7 
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  ቀ𝑈
డ௏

డ௑
+ 𝑉

డ௏

డ௒
ቁ = −

డ௉

డ௒
+

ଵ

ோ௘
ቀ

డమ௏

డ௑మ
+

డమ௏

డ௒మ
ቁ +

ீ௥

ோ௘మ
(𝜃 + 𝑁𝐶)  II.8 

  ቀ𝑈
డఏ

డ௑
+ 𝑉

డఏ

డ௒
ቁ =

ଵ

ோ௘௉௥
ቀ

డమఏ

డ௑మ
+

డమఏ

డ௒మ
ቁ      II.9 

  ቀ𝑈
డ஼

డ௑
+ 𝑉

డ஼

డ௒
ቁ =

ଵ

௅௘ோ௘௉௥
ቀ

డమ஼

డ௑మ
+

డమ஼

డ௒మ
ቁ     II.10 

N=
ீ௥ೞ

ீ௥೅
 

 

II-8-Dimensionless boundary condition:  

Vertical boundaries:  

U=V=0 ;𝜃 = 1 − 𝑌 𝑎𝑛𝑑 𝐶 = 1 𝑎𝑡 𝑋 = 0 

U=V=0 ;𝜃 = 1 − 𝑌 𝑎𝑛𝑑 𝐶 = 0 𝑎𝑡 𝑋 = 1 

Horizontal boundaries:  

U=V=0 ;𝜃 = 1 𝑎𝑛𝑑 
ௗ஼

ௗ௒
= 0  𝐴𝑡 𝑌 = 0 

V=0 ;
ௗѲ

ௗ௒
= 0 𝑎𝑛𝑑 

ௗ஼

ௗ௒
= 0 𝑎𝑛𝑑 𝑈 = 1  𝐴𝑡 𝑌 =

ு

௅
 

 

II-9-𝐍𝐮𝐬𝐬𝐞𝐥𝐭 𝐧𝐮𝐦𝐛𝐞𝐫: the local and the average Nusselt number at the left bottom 
and right walls respectively  

𝑁𝑢௅௘௙௧ ௪௔௟௟ = −(
డఏ

డ௑
)௑ୀ଴  𝑁𝑢஻௢௧௧௢௠ ௪௔௟௟ = −(

డఏ

డ௒
)௒ୀ଴  𝑁𝑢ோ௜௚ℎ௧  ௪௔௟௟ = −(

డఏ

డ௑
)௑ୀ௅ 

 

𝑁𝑢௔௩ି௅ = −
ଵ

஺
∫ (

డఏ

డ௑

஺

଴
)௑ୀ଴𝑑𝑌       𝑁𝑢௔௩ି஻ = − ∫ (

డఏ

డ௒

ଵ

଴
)௒ୀ଴𝑑𝑋       𝑁𝑢௔௩ିோௐ = −

ଵ

஺
∫ (

డఏ

డ௑

஺

଴
)௑ୀ௅𝑑𝑌 

 

II-10-Sherwood number: the local and the average Sherwood number at the left 
wall: 

𝑆ℎ௅௘௙௧ ௪௔௟௟ = − ൬
𝜕𝐶

𝜕𝑋
൰

௑ୀ଴
; 𝑆ℎ௔௩ି௅ = −

1

𝐴
න(

𝜕𝐶

𝜕𝑋

஺

଴

)௑ୀ଴𝑑𝑌 
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II-11-The stream function : 

𝑈 =
𝜕𝜓

𝜕𝑌
 ;  𝑉 = −

𝜕𝜓

𝜕𝑋
 

 

II-12-Conclusion :  

In this chapter, the governing equations used to solve the mixed double 
diffusive convection problem in a rectangular cavity filled by incompressible 
fluid,represented in both forms :dimensional and non dimensional equations  for the 
reason to show up the different dimensionless numbers like Ri,Le,N.. 

 



 

 

 

 

Chapter III : 

resolutIon method 



Chapter III : Resolution method 
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III-1-Introduction: 

As we know there is three major methods used to discretize the Partial 
differential equations to get a close approximation (Or to be more precise an approach 
solution) to avoid the complexity of analytical solution which it has  a lot of cases 
without solution for example :there is no Analytical solution for the complete form of 
Navier-Stokes equation -it is also called the momentum equation- for the three 
dimensions, even this solution ( Analytical solution) is more accurate than numerical 
method but it is so recommended to use an approximations to reduces time and get the 
solutions with ease and an additional factor confirm to choose numerical solution is 
the bulk development of computers which it becomes a very fast to treat a huge 
amount of calculations so we can rely on it in condition we are following a the correct 
instructions to the solution (For example developing an algorithm with Matlab to solve 
Navier-Stokes equations with of course taking in consideration the right 
implementation of the boundary conditions ,initial condition, the algorithm 
followed :SIMPLE,SIMPLER,SIMPLEC ) or using directly Software to get the 
solution : ANSYS,COMSOL…. 

Those three major methods are:  

*Finite volume method  

*Finite element method 

*Finite differencing method 

In our case we will treat our problem with the Finite Volume Method (FVM) which is 
the best option for Computational Fluid Dynamics (CFD) and it fit the boundary and 
initial condition for fluid flow more than the other two methods so we expect a better 
convergence and on fast manner.  

But if we want to class the previous methods from harder to easier we will find the 
finite Element Method is the hardest and the Finite differencing method is easier one 
while our option is not too complicated nor too Simple and this also another advantage 
that encourage us to work with method.  

With MVF we can discretize all kind of governing equation: (forced or natural 
convection ) on momentum equations, Scalar equation ( Temperature , concentration..) 
and discretising the boundary conditions and also velocities and pressure for initial 
conditions and for Temperature and concentration for solution process. 
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III-2-Transport equation :  

The transport equation describes how a physical scalar is transported (or flows) in a 
space. Therefore its applied for transport phenomena like (Temperature, Concentration  
...) inside a specific volume called control volume. For Mathematical formulation of 
this transport equation its about a first order partial differential equation (PDE) it’s 
also known as convection-diffusion equation which is generalized to represent the 
most common transportation model.[14] 

 
డఘ∅

డ௧
         +        ∇𝜌𝑈∅        =      ∆𝛤∅         +        𝑆               III.1 

  

III-3-Staggered grid :[5] 

 

 

 

 

 

 

 

 

 

Figure III.1: Staggered grid schema 

Staggered grid is one of the most important parts for the solution procedure hence we 
could not ignore this step.  

As we know the finite volume method starts as always with the discretisation of flow 
domain and also the transport equation.  

Staggered grid lead us to estimate velocities situated on the centered cell faces but to 
store the scalar variable (pressure, temperature, concentration...) at the ordinary control 

Generation  Diffusion  Convection    Storage 

Φ scalar     
control  volume 

u-velocity 
control  volume 

v-velocity 
control  volume 
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volume, so we conclude that the control volume of u and v are different from the 
scalar control volume and from each other too. 

The staggering of the velocity avoids the unrealistic behavior of the discredited 
momentum equation for spatially oscillating pressure so a high non-uniform pressure 
field will act like a uniform field in the discretised momentum equation if we don’t use 
this technique. 

III-4-The central differential  scheme :  

 

 

 

 

 

 

 

 

 

 

Figure III.2: central differential scheme 

Central differencing approximation has been used to represent the diffusion term 
which appear on the right hand side of transport equation and it seems logical to try 
linear interpolation to compute the cell face values for convective terms on the left side 
of the same equation.  

  ∅௘ =
∅ುା∅ಶ

ଶ
 ; ∅௪ =

∅ುା∅ೈ

ଶ
 ; ∅௡ =

∅ುା∅ಿ

ଶ
 ; ∅௦ =

∅ುା∅ೄ

ଶ
     III.2 

III-5-Discretisation of transport equation: [5] 

We will work with the steady state 2D dimension problem 

N 

S 

w 
W E 

e 

n 

P 

s 
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  ∇𝜌𝑈∅ᇣᇤᇥ
େ୭୬୴ୣୡ୲୧୭୬ 

        =      ∆𝛤∅ถ
஽௜௙௙௨௦௜௢௡ 

         +        𝑆⏟
ௌ௢௨௥௖௘ ௧௘௥௠ 

   III.3 

The following table introduces to us some of variables with their terms forming a 
specific equation  

Table III.1: Terms of transport equation 

Equations The variable  The diffusion term The Source term  

Continuity 1 0 0 

X momentum  U 1

𝑅𝑒
 −

𝜕𝑃

𝜕𝑋
 

Y momentum  V 1

𝑅𝑒
 −

𝜕𝑃

𝜕𝑌
+

𝑮𝒓

𝑹𝒆
𝟐

(𝜽 + 𝑵𝑪) 

Energy  Ѳ 1

𝑅𝑒𝑃𝑟
 

0 

Concentration C 1

𝑅𝑒𝑃𝑟𝐿𝑒
 

0 

 

-By integration the equation (III.3) over a control volume (cv) gives :  

  ∫ ∇𝑈∅
ୡ୴

𝑑𝑥𝑑𝑦        =      ∫ ∆𝛤∅
௖௩

  𝑑𝑥𝑑𝑦       +        ∫ 𝑆 𝑑𝑣
௖௩

   III.4 

With the theory of Ostogradski we will get: 

 ∫ 𝑈∅
ୡୱ

 𝑑𝑥𝑑𝑦ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
(ଵ)

       =      ∫ 𝛤𝑔𝑟𝑎𝑑∅
௖௦

 𝑑𝑥𝑑𝑦ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
(ଶ)

        +        ∫ 𝑆 𝑑𝑣
௖௩ᇣᇧᇤᇧᇥ

(ଷ)

     III.5 

(1) : ∫ 𝑈∅
ୡୱ

 𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑈∅ 𝑑𝑋𝑑𝑌
௡

௦

௘

௪
  

    =  ((𝑈∅)௘ − (𝑈∅)௪)∆𝑦 + ((𝑉∅)௡ − (𝑉∅)௦)∆𝑋 
            III.6 

 (2)    : ∫ 𝛤𝑔𝑟𝑎𝑑∅
௖௦

 𝑑𝑥𝑑𝑦 = ∫ ∫ 𝛤
 ௡

 ௦
 ቂቀ

డ∅

డ௑
ቁ + ቀ

డ∅

డ௒
ቁቃ 𝑑𝑋𝑑𝑌

௘

௪
 

    = 𝛤 ቂቀቀ
డ∅

డ௑
ቁ

௘
− ቀ

డ∅

డ௑
ቁ

௪
ቁ ∆𝑌 + ቀቀ

డ∅

డ௒
ቁ

௡
− ቀ

డ∅

డ௒
ቁ

௦
ቁ ∆𝑋ቃ    III.7 
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     (3)    : ∫ 𝑆 𝑑𝑣
௖௩

= ∫ ∫ 𝑆
௡

௦

௘

௪
 dx dy==  𝑆 ∆𝑥 ∆𝑦 = (𝑆௨ + 𝑆௉∅௉) ∆𝑥 ∆𝑦    III.8 

For evaluation ∅௘,∅௪,∅௡,∅௦, 𝑤𝑒 𝑢𝑠𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑛𝑔 𝑠𝑐ℎ𝑒𝑚𝑒 :   

       ∅௘ =
∅ಶା∅ು

ଶ
 

                                                              ∅௪ =
∅ೈା∅ು

ଶ
 

       ∅௡ =
∅ಿା∅ು

ଶ
 

       ∅௦ =
∅ೄା∅ು

ଶ
 

We do the same thing for : ቀ
డ∅

డ௑
ቁ

௘
 , ቀ

డ∅

డ௑
ቁ

௪
 , ቀ

డ∅

డ௒
ቁ

௡
, ቀ

డ∅

డ௒
ቁ

௦
 

       ቀ
డ∅

డ௑
ቁ

௘
=

∅ಶି∅ು

∆௑೐
 ; 

                                                               ቀ
డ∅

డ௑
ቁ

௪
=

∅ುି∅ೈ

∆௑ೢ
 ; 

       ቀడ∅

డ௒
ቁ

௡
=

∅ಿି∅ು

∆௒೙
 ; 

       ቀడ∅

డ௒
ቁ

௦
=

∅ುି∅ೄ

∆௒ೞ
 ; 

We sum up all the previous relations into the original equation (III.5):  

 ቂ𝑢௘
∅ಶା∅ು

ଶ
− 𝑢௪

∅ೈା∅ು

ଶ
ቃ ∆𝑦 + ቂ𝑣௡

∅ಿା∅ು

ଶ
− 𝑣௦

∅ೄା∅ು

ଶ
ቃ ∆𝑥 = ቂ𝛤௘

∅ಶ

ఋ௫೐
−

𝛤௘
∅೛

ఋ௫೐
 – (− 𝛤௪

∅ೈ

ఋ௫ೢ
+ 𝛤௪

∅ು

ఋ௫ೢ
)ቃ ∆𝑦 +

ቂ𝛤௡
∅ಿ

ఋ௫೙
− 𝛤௡

∅ು

ఋ௫೙
 – (−𝛤௦

∅ೄ

ఋ௫ೞ
+ 𝛤௦

∅ು

ఋ௫ೞ
)ቃ ∆𝑥  + (𝑆௨ + 𝑆௉∅௉)∆𝑥 ∆𝑦             III.11 

 

 ∅௣ ቂቀ
௨೐ି௨ೢ

ଶ
ቁ ∆𝑦 + ቀ

௩೙ି௩ೞ

ଶ
ቁ ∆𝑥 + ቀ

௰೐

ఋ௫೐
+

௰ೢ

ఋ௫ೢ
ቁ ∆𝑦 + ቀ

௰೙

ఋ௬೙
+

௰ೞ

ఋ௬ೞ
ቁ ∆𝑥 −

𝑆௉∆𝑥 ∆𝑦ቃ =  ∅ா ቂ(
௰೐

ఋ௫೐
−

௨೐ 

ଶ
)∆𝑦ቃ + ∅௪ ቂ(

௰ೢ

ఋ௫ೢ
+

௨ೢ 

ଶ
)∆𝑦ቃ +  ∅ே ቂ(

௰೙

ఋ௬೙
−

௩೙ 

ଶ
)∆𝑥ቃ +

 ∅ௌ ቂ(
௰ೞ

ఋ௬ೞ
−

௩ೞ 

ଶ
)∆𝑥ቃ + 𝑆௨∆𝑥 ∆𝑦                 III.12 

 by matching the equation (III.12) and :  
𝑎௣∅௣ = 𝑎ா∅ா + 𝑎ௐ∅ௐ + 𝑎ே∅ே + 𝑎ௌ∅ௌ + 𝑏 

& if we pose that  𝐹௜ = 𝑢௜∆𝑖 and 𝐷௜ = ௰೔

ఋ௜೔
∆𝑗 

III.9 

III.10 
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We will found that :  

𝑎ா = ቀ
௰೐

ఋ௫೐
−

௨೐ 

ଶ
ቁ ∆𝑦 ; 𝑎ௐ = (

௰ೢ

ఋ௫ೢ
+

௨ೢ 

ଶ
)∆𝑦 ; 

𝑎ே = (
௰೙

ఋ௬೙
−

௩೙ 

ଶ
)∆𝑥 ;𝑎ௌ = (

௰ೞ

ఋ௬ೞ
−

௩ೞ 

ଶ
)∆𝑥 ;  

  𝑎௉ =  𝑎ா + 𝑎ௐ + 𝑎ே + 𝑎ௌ + 𝐹௘ − 𝐹௪ + 𝐹௡ − 𝐹௦            III.13 

III-6-The discretisation schemes : 

Table III.2 : an explanation for the evaluation of 𝑎ா𝑎𝑛𝑑 𝑎ௐ with different schemes 

Schéma  𝑎ா 𝑎ௐ 

Central  
𝑎ா = 𝐷௘ −

𝐹௘

2
 𝑎ௐ = 𝐷௪ +

𝐹௪

2
 

Upwind  𝑎ா = 𝐷௘ + ൣ−𝐹௘,0൧ 𝑎ௐ = 𝐷௪ + ൣ−𝐹௪,0൧ 

Exponential 
𝑎ா =

𝐹௘

𝑒𝑥𝑝(𝑃௘) − 1
 𝑎ௐ =

𝐹௪exp (𝑃௪)

𝑒𝑥𝑝(𝑃ௐ) − 1
 

Hybride 
𝑎ா = ൤−𝐹௘,𝐷௘ −

𝐹௘

2
, 0൨ 𝑎ௐ = ൤−𝐹௪,𝐷௪ +

𝐹௪

2
, 0൨ 

Power law  𝑎ா =

𝐷௘ ൤0, ቀ1 −
଴.ଵ|ி೐|

஽೐
ቁ

ହ

൨+[0, −𝐹௘] 

𝑎ௐ =

𝐷௪ ൤0, ቀ1 −
଴.ଵ|ிೢ |

஽ೢ
ቁ

ହ

൨+[0, 𝐹௪] 

 
For more accuracy and to get better results we need to use advanced schemes for 
example power law to ensure the convergence to the exact solution for the discretized 
equation. Because the normal discretized scheme which is central differential scheme 
does not take in consideration the flow Direction or Pe Peclic number on consideration 
even they are so linked with physical phenomena which may result catastrophe for the 
solution and give unrealistic values for different scalars. 
For this reason we will rely on the power law scheme for our discretisation process to 
evaluate the coefficients  𝑎௉, 𝑎ா , 𝑎ௐ, 𝑎ே  𝑎𝑛𝑑 𝑎ௌ 
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III-7-Implementation of boundary conditions :[5] 

III-7-1-Wall boundary conditions :  

The wall is the most common boundary encountered in confined fluid flow problems 
(cavity).  

III-7-2-Laminar Flow / Linear sub-layer:  

The wall shear stress is obtained from 𝜏௪ = 𝜇
௨೛

∆௬೛
                    III.14 

The wall shear forces is given by : 𝐹௦ = −𝜏௪𝐴஼௘௟௟ = 𝜇
௨೛

∆௬೛
𝐴஼௘௟௟             III.15 

*The appropriate source term in the u-equation is defined by: 𝑆௣ = −
ఓ

∆௬೛
𝐴஼௘௟௟     III.16 

Heat transfer from a wall at fixed temperature 𝑇௪into the new wall cell in a laminar 

flow is calculated from: 𝑞௦ = −
ఓ

ఙ

஼ು( ೛்ି்ೢ )

∆௬೛
𝐴஼௘௟௟                         III.17 

With: 𝐶௉ : the specific heat ; 𝜎 : laminar Prandlt number 

*𝑆௣ = −
ఓ஼ು

ఙ

ଵ

∆௬೛
 and 𝑆௨ =

ఓ

ఙ

஼ು்ೢ

∆௬೛
                 III.18 

𝑞௦ = 𝑆௨ + 𝑆௣ 𝑇௣    III.19 

For adiabatic wall : 𝑆௨ = 𝑆௣ = 0 

III-7-3-Moving wall:  

𝐹௦ = 𝜇
஼ು(௨೛ି௨ೢೌ೗೗)

∆௬೛
𝐴஼௘௟௟                   III.20 

𝑆௣ = −
ఓ

∆௬೛
                         III.21 

𝑆௨ =
𝜇

∆𝑦௣

𝑢௪௔௟௟                                                                                                                        III. 22
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III-8-Solution of discretized equation :  

The discretising of the governing equation of fluid flow (or heat transfer or 
both) yields us to solve a system of linear algebraic equations. There are two families 
of solution technique for linear algebraic equation: The direct method and the iterative 
(indirect) method. The iterative methods are much more economical than direct 
method. 

Jacobi and Gauss-Seidel iterative methods are easy to implement in simple 
computer programs, but they can be slow to converge when the system of equation is 
large. Hence they are not considered suitable for general CFD procedures. Thomas 
(1949) developed a technique for rapidly solving tri-diagonal systems that is now 
called Thomas algorithm or tri-diagonal matrix algorithm (TDMA). This method is 
actually a direct method for one dimensional situation, but it can be applied iteratively 
in a line by line fashion, to solve multi dimensional problems and is widely used in 
CFD programs. It s computationally inexpensive and has the advantage that is require 
a minimum amount of storage.  

III-8-1-TDMA Algorithm : 

∅!                                                                                   = 𝐶! 

−𝛽ଶ∅ଵ + 𝐷ଶ∅ଶ − 𝛼ଶ∅ଷ                                                              = 𝐶ଶ 

                                        −𝛽ଷ∅ଶ + 𝐷ଷ∅ଷ − 𝛼ଷ∅ସ                                      = 𝐶ଷ 

                                                       −𝛽ସ∅ଷ + 𝐷ସ∅ସ − 𝛼ସ∅ହ                = 𝐶ସ       III.23 

   .  . . . . . . 

                                                       −𝛽௡∅௡ିଵ + 𝐷௡∅௡ − 𝛼௡∅௡ାଵ  = 𝐶௡ 

                                                                                               ∅௡ାଵ = 𝐶௡ାଵ 

The unknow equations can be rewritten as:  

∅ଶ =
𝛼ଶ

𝐷ଶ
∅ଷ +

𝛽ଶ

𝐷ଶ
∅ଵ +

𝐶ଶ

𝐷ଶ
 

∅ଷ =
𝛼ଷ

𝐷ଷ
∅ସ +

𝛽ଷ

𝐷ଷ
∅ଶ +

𝐶ଷ

𝐷ଷ
 

∅ସ =
𝛼ସ

𝐷ସ
∅ହ +

𝛽ସ

𝐷ସ
∅ଶ +

𝐶ସ

𝐷ସ
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     . . .                       III.24 

∅௡ =
𝛼௡

𝐷௡
∅௡ାଵ +

𝛽௡

𝐷௡
∅௡ିଵ +

𝐶௡

𝐷௡
 

For back substitution we use the general form of recurrence relationship :  

∅௝ = 𝐴௝∅௝ାଵ + 𝐶 ′
௝                 III.25 

Where : 

𝐴௝ =
ఈೕ

஽ೕିఉೕ஺ೕషభ
                    III.26 

𝐶 ′
௝ =

ఉೕ஼ ′
ೕషభା஼ೕ

஽ೕିఉೕ஺ೕషభ
                  III.27 

 

With :  

𝐶 ′
ଵ =  ∅ଵ;  𝐴ଵ = 0 

𝐶 ′
௡ାଵ =  ∅௡ାଵ;  𝐴௡ାଵ = 0 

 

In order to solve a system of equations it is first to arrange in the form of equations 

(tri-diagonal) and α௝ , β
୨
, C∗

୨  are identified, the values of 𝐴௝𝑎𝑛𝑑 𝐶 ′
௝ are subsequently 

calculated starting at j=2 and going up to j=n. Since the value of φ is known at 
boundary location (1) and (n+1) the values of φj can be obtained in reverse order by 
mean of recurrence formula the is simple and easy to incorporate into CFD program 

III-9-SIMPLE Algorithm :[4][5] 

The acronym SIMPLE stands for Semi-Implicit method for Pressure-Linked Equations 
and its created and developed by Patanckar [4].  

*To initiate the SIMPLE calculation process a pressure field 𝑃∗ is guessed.  

*Discretized momentum equations are solved using the guessed pressure filed to yield 
velocity components 𝑢∗ 𝑎𝑛𝑑 𝑣∗ as follows :  

  𝑎௜,௃𝑢∗
௜,௃ = ∑ 𝑎௡௕𝑢∗

௡௕ + ൫𝑃∗
ூିଵ,௃ − 𝑃∗

ூ,௃൯𝐴ூ,௃ + 𝑆∆𝑉௨            III.14 

  𝑎ூ,௝𝑣∗
ூ,௝ = ∑ 𝑎௡௕𝑣∗

௡௕ + ൫𝑃∗
ூିଵ,௃ − 𝑃∗

ூ,௃൯𝐴ூ,௃ + 𝑆∆𝑉௩              III.15 
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*𝑃′is the difference between the correct pressure field P and the guessed pressure field 
𝑃∗.  

 𝑃 = 𝑃∗ + 𝑃′               III.16 

Similarly for 𝑢′and 𝑣 ′ 

     𝑢 = 𝑢∗ + 𝑢′               III.17 

     𝑣 = 𝑣∗ + 𝑣 ′                III.18 

Substitution of the correct pressure velocities field from guessed pressure ,velocities 
filed :  

𝑎௜,௃(𝑢௜,௃ − 𝑢∗
௜,௃

) = ∑ 𝑎௡௕(𝑢௡௕ − 𝑢∗
௡௕) + ቀ(𝑃ூିଵ,௃ − 𝑃∗

ூିଵ,௃
) − (𝑃ூିଵ,௃ −

𝑃∗
ூ,௃)൯𝐴ூ,௃ I          II.19 

𝑎ூ,௝(𝑣ூ,௝ − 𝑣∗

ூ,௝
) = ∑ 𝑎௡௕(𝑣௡௕ − 𝑣∗

௡௕) + ቀ(𝑃ூିଵ,௃ − 𝑃∗
ூିଵ,௃

) − (𝑃ூିଵ,௃ −

𝑃∗
ூ,௃)൯𝐴ூ,௃                    III.20  

So :  

 𝑎௜,௃𝑢′
௜,௃ = ∑ 𝑎௡௕𝑢′

௜,௃ + ൫𝑃′
ூିଵ,௃ − 𝑃′

ூ,௃൯𝐴ூ,௃             III.21 

 𝑎௜,௃𝑣 ′
௜,௃ = ∑ 𝑎௡௕𝑣 ′

ூ,௝ + ൫𝑃′
ூିଵ,௃ − 𝑃′

ூ,௃൯𝐴ூ,௃                       III.22 

At this point an approximation is introduced ∑ 𝑎௡௕𝑢′
௜,௃ and ∑ 𝑎௡௕𝑣 ′

ூ,௝ are eleminated, 

The omission of these terms is the main approximation of the SIMPLE algorithm. :  

  ቊ
𝑢′

௜,௃ = 𝑑௜,௃൫𝑃′
ூିଵ,௃ − 𝑃′

ூ,௃൯

𝑣 ′
ூ,௝ = 𝑑ூ,௝൫𝑃′

ூିଵ,௃ − 𝑃′
ூ,௃൯ 

                      III.23 

Where : 𝑑௜,௃ =
஺೔,಻

௔೔,಻
  and  𝑑ூ,௝ =

஺಺,ೕ

௔಺,ೕ
 

NB : i,j : for staggered grid  and I,J for scalar grid 

We conclude that :  

 ቊ
𝑢௜,௃ = 𝑢∗

௜,௃ + 𝑑௜,௃൫𝑃′
ூିଵ,௃ − 𝑃′

ூ,௃൯

𝑣ூ,௝ = 𝑣∗
ூ,௝ +  𝑑ூ,௝൫𝑃′

ூିଵ,௃ − 𝑃′
ூ,௃൯ 

                     III.24 
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Similar expression exist for 𝑢௜ାଵ,௃and 𝑣ூ,௝ାଵ:  

 ቊ
𝑢௜ାଵ,௃ = 𝑢∗

௜ାଵ,௃ + 𝑑௜ାଵ,௃൫𝑃′
ூ,௃ − 𝑃′

ூାଵ,௃൯

𝑣ூ,௝ାଵ = 𝑣∗
ூ,௝ାଵ +  𝑑ூ,௝ାଵ൫𝑃′

ூ,௃ − 𝑃′
ூାଵ,௃൯ 

                III.25 

*The velocity fields should satisfy continuity equation:  

 [(𝑢𝐴)௜ାଵ,௃ − (𝑢𝐴)௜,௃] + ൣ(𝑣𝐴)ூ,௝ାଵ − (𝑣𝐴)ூ,௝൧ = 0           III.26 

ቂ𝐴௜ାଵ,௃ ቀ𝑢∗
௜ାଵ,௃ + 𝑑௜ାଵ,௃൫𝑃′

ூ,௃ − 𝑃′
ூାଵ,௃൯ቁ −  𝐴௜,௃ ቀ𝑢∗

௜,௃ + 𝑑௜,௃൫𝑃′
ூିଵ,௃ −

𝑃′
ூ,௃൯ቁቃ − ቂ𝐴ூ,௝ାଵ ቀ𝑣∗

ூ,௝ାଵ +  𝑑ூ,௝ାଵ൫𝑃′
ூ,௃ − 𝑃′

ூାଵ,௃൯ቁ − 𝐴ூ,௝ ቀ𝑣∗
ூ,௝ +

 𝑑ூ,௝൫𝑃′
ூିଵ,௃ − 𝑃′

ூ,௃൯ቁቃ=0                III.27 

This may be re-arranged to give:  

[(𝑑𝐴)௜ାଵ,௃ +  (𝑑𝐴)௜,௃ + (𝑑𝐴)ூ,௝ାଵ + (𝑑𝐴)ூ,௝]𝑃′
ூ,௃ =  (𝑑𝐴)௜ାଵ,௃𝑃′

ூାଵ,௃ + (𝑑𝐴)௜,௃𝑃′
ூିଵ,௃ +

 (𝑑𝐴)ூ,௝ାଵ𝑃′
ூ,௃ାଵ +  (𝑑𝐴)ூ,௝𝑃′

ூ,௃ିଵ + [(𝑢∗𝐴)௜,௃ −  (𝑢∗𝐴)௜ାଵ,௃ + (𝑣∗𝐴)ூ,௝ − (𝑣∗𝐴)ூ,௝ାଵ]  

                       III.28 

Identifying the coefficients of P’ this may be written as :  

   𝑎ூ,௃𝑃′
ூ,௃ =  𝑎ூାଵ,௃𝑃′

ூାଵ,௃ + 𝑎ூିଵ,௃𝑃′
ூିଵ,௃ + 𝑎ூ,௃ାଵ𝑃′

ூ,௃ାଵ + 𝑎ூ,௃ିଵ𝑃′
ூ,௃ିଵ + 𝑏′

ூ,௃      III.29 

With :  

𝑎௜ାଵ,௃ =  (𝑑𝐴)௜,௃ାଵ ; 𝑎ூିଵ,௃ = (𝑑𝐴)௜,௃ ; 𝑎ூ,௃ାଵ = (𝑑𝐴)ூ,௝ାଵ ; 𝑎ூ,௃ିଵ = (𝑑𝐴)ூ,௝ 

𝑏′
ூ,௃ = [(𝑢∗𝐴)௜,௃ −  (𝑢∗𝐴)௜ାଵ,௃ + (𝑣∗𝐴)ூ,௝ − (𝑣∗𝐴)ூ,௝ାଵ] . 

The previous equation represents the discretised continuity as an equation for pressure 
correction P’. The source term b’ on the equation is the continuity imbalance arising 
from the incorrect velocity field𝑢∗, 𝑣∗. By solving the equation, the pressure correction 
field P’ can be obtained at all points. Once the pressure field is known, the correct 
pressure field may be obtained using the given formulas. 

The omission of terms such as ∑ 𝑎௡௕𝑢′
௜,௃  and ∑ 𝑎௡௕𝑣 ′

ூ,௝  in the derivation does not 

affect the final result because the pressure correction and velocity correction will all be 
zero in a converged solution giving 𝑃∗ = 𝑃; 𝑢∗ = 𝑢; 𝑣∗ = 𝑣 

The pressure correction equation is susceptible to divergence unless some under-
relaxation is used during the iterative process and new, improved pressures 𝑃௡௘௪are 
obtained with 𝑃௡௘௪ = 𝑃∗ + 𝛼௉𝑃′ where 𝛼௉is the pressure under-relaxation factor. 
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Taking 𝛼௉ between 0 and 1 allows us to add to guessed field 𝑃∗  a fraction of the 
correction field P’ that is large enough to move the iterative improvement process 
forward , but small enough to ensure stable computation.  

The velocities are also under relaxed:  

 ቊ
𝑢௡௘௪ = 𝛼௨𝑢 + (1 − 𝛼௨)𝑢(௡ିଵ) 

𝑣௡௘௪ = 𝛼௩𝑣 + (1 − 𝛼௩)𝑣(௡ିଵ)
                   III.30 

u and v are velocities corrected without relaxation.  

𝑢(௡ିଵ)and 𝑣(௡ିଵ) velocities obtained in the previous iteration  

So the momentum equations may take the form :  

     ቐ

௔೔,಻

ఈೠ
𝑢௜,௃ = ∑ 𝑎௡௕𝑢௡௕ + ൫𝑃ூିଵ,௃ − 𝑃ூ,௃൯𝐴௜,௃ + 𝑏௜,௃ + ቂ(1 − 𝛼௨)

௔೔,಻

ఈೠ
ቃ 𝑢௜,௃

(௡ିଵ)

௔಺,ೕ

ఈೠ
𝑣ூ,௝ = ∑ 𝑎௡௕𝑣௡௕ + ൫𝑃ூିଵ,௃ − 𝑃ூ,௃൯𝐴௜,௃ + 𝑏௜,௃ + ቂ(1 − 𝛼௩)

௔಺,ೕ

ఈೡ
ቃ 𝑣ூ,௝

(௡ିଵ)

        III.31 

The pressure correction is also affected velocity under-relaxation and it can be shown 
that the d terms of pressure correction equation become:  

𝑑௜,௃ =
஺೔,಻ఈೠ

௔೔,಻
 ; 𝑑௜ାଵ,௃ =

஺೔శభ,಻ఈೠ

௔೔శభ,಻
 ; 𝑑ூ,௝ =

஺಺,ೕఈೡ

௔಺,ೕ
 ; 𝑑ூ,௝ାଵ =

஺಺,ೕశభఈೡ

௔಺,ೕశభ
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Initial Guess 𝑃∗, 𝑈∗, 𝑉∗, ∅∗   

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.3 : SIMPLE Algorithm 

START 

𝑎௜,௝𝑢௜,௝
∗ = ෍ 𝑎௡௕𝑢௡௕

∗ + ൫𝑝௜ିଵ,௝
∗ − 𝑝௜,௝

∗ ൯𝐴௜,௝ + 𝑏௜,௝ 

𝑎௜,௝𝑣௜,௝
∗ = ෍ 𝑎௡௕𝑣௡௕

∗ + ൫𝑝௜,௝ିଵ
∗ − 𝑝௜,௝

∗ ൯𝐴௜,௝ + 𝑏௜,௝  

STEP 1: Solve discretised momentum equations 

𝑎ூ,௃𝑝ூ,௃
ᇱ = 𝑎ூାଵ,௃𝑝ூାଵ,௃

ᇱ + 𝑎ூିଵ,௃𝑝ூିଵ,௃
ᇱ + 𝑎ூ,௃ାଵ𝑝ூ,௃ାଵ

ᇱ + 𝑎ூ,௃ିଵ𝑝ூ,௃ିଵ
ᇱ + 𝑏ூ,௃

ᇱ  

STEP 2: Solve pressure correction equation 

𝑝 = 𝑝ᇱ + 𝑝∗ 

𝑢௜,௃ = 𝑢௜,௃
∗ + ൫𝑃ூିଵ,௃

ᇱ − 𝑃ூ,௃
ᇱ ൯𝑑௜,௃ 

𝑣ூ,௝ = 𝑣௜,௃
∗ + ൫𝑃ூ,௃ିଵ

ᇱ − 𝑃ூ,௃
ᇱ ൯𝑑ூ,௝  

STEP 3: Correct pressure and velocities  

𝑎ூ,௃∅ூ,௃ = 𝑎ூାଵ,௃∅ூାଵ,௃ + 𝑎ூିଵ,௃∅ூିଵ,௃ + 𝑎ூ,௃ାଵ∅ூ,௃ାଵ + 𝑎ூ,௃ିଵ∅ூ,௃ିଵ + 𝑏ூ,௃ 

STEP 4: Solve all other discretised transport equations 

Convergence ? 

END 

𝑝∗ = 𝑝; 𝑢∗ = 𝑢 

𝑣∗ = 𝑣; ∅∗ = ∅ 

Set 

NO 

Yes 
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III.10-Conclusion :  

 In this chapter, we have presented th mathematical model for treating the problem 
and solve it using the SIMPLE algorithm. We gave a brief explanation about the 
discretisation of the physical domain and quantities and also the physical domain to 
simulate the system and get very accurate results shown on the next chapter.  

 



 

 

 

 

Chapter IV : 

results and dIsCussIon 
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IV-1-Introduction: 

In this chapter, we investigate steady state double diffusive mixed convection in 
a rectangular lid driven cavity under the combined buoyancy effects of thermal and 
mass diffusion. The heat and mass rates were examined using several operational 
dimensionless parameters, such as Richardson ‘Ri’, Lewis number ‘Le’, buoyancy 
ratio ‘N’ and Aspect ratio ‘A’. The investigations were carried out for 0.1 ≤ 𝐿𝑒 ≤ 50 ;  
−10 ≤ 𝑁 ≤ 10 ;  0.01 ≤ 𝑅𝑖 ≤ 10 & 𝐴 = 0.5,1,2. And the results were presented and 
highlighted in form of isocontours of velocities (streamlines),Temperature and Spices. 
The predicted results of both local and average Nusselt and Sherwood numbers are 
calculated and plotted. 

IV-2-Algorithme validation: 

  The governing equation were solved by using finite volume method and 
following SIMPLE technique developed by Patankar [4],which is based on the 
discretisation of the governing equation. 

 In order to check the accuracy of the numerical technique employed for the 
solution of the problem imposed on the present work, The Algorithm validation was 
carried out in two folds. First, grid sensitivity tests were performed to inspect field 
variables grid-independency solution for the uniform node points of (20x20), (40x40), 
(60x60), (80x80), (100x100) were examined for the dimensionless parameters equal to 
unity : Le=1,N=1,Ri=1 (Re=100 & Gr=10000),A=1,Pr=1 and observing the variation 
of the average Nusselt number as shown on Figure 2, Adequate results can be achieved 
using the node points of (80x80) but we will use the node points of (100x100) for 
more accuracy and precision to ensure a high quality of results. In addition, To check 
the accuracy of the present numerical code we did a comparative study of isocontours 
of velocities, Temperature and concentration and also a local and average Nusselt & 
Sherwood Number of two works: Al Amiri et al [9] and Teamah [10].  

 

 

 

 

 

 

 

Figure IV.1: Used mesh 
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IV-2-1-The Local Nusselt number:  
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Figures IV.2: Variation of Nusselt Numbers along the different walls for different mesh grids  

(A):Left wall; (B):Bottom wall; (C):Right wall 
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IV-2-2-The average nusselt number :  
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Figure IV.3: average Nusselt number at different walls for different grid mesh 

The non dimensional governing equations were solved under the following relaxation 
factors, 0.5, 0.5, 0.7, 0.7 and 0.7 for u-velocity, v-velocity, Pressure, Temperature and 
concentration respectively. The residual must satisfy an error of 10ି଺.  And after 
observing the figures we realize that the grid of 100x100 is the best option for us to 
deal with the present problem.  
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IV-3-Comparative study with previous works: 

In order to insure the accuracy of the computational method (SIMPLE) used for 
the present work. We compared our code results with two different published and 
validated results of articles on the lid-driven cavity flow of Al-Amiri et al and Teamh 
et al. The results are plotted using Tecplot 360 2008 version. 

1-First validation: al-amiri et al [9] 

The results shown below a comparaison of the streamfunction and isotherms 
and isoconcentration between AL-Amiri et al and the present work. 

Figure IV.4: Isocontours of the present study and [9] for Le=0.1 Le=10 
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Figure IV.5: Isocontours of the present study and [9] for Le=25 and Le=50 

 

The Results on the last figures shows that the there is an excellent agreement 
between our work and that of Al-Amiri et al which is another proof to validate the 
code and encourage us to manipulate the problem with it. 
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2-Second validation: Teamah et al [10] 

The results shown below a comparison of the streamfunction and isotherms and 
isoconcentration between Teamah et al and the present work. 

Comparative study of the effect of Lewis Number: 
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Figure IV.6: Isocontours of the present study and [10] for Le=1 
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Figure IV.7: Isocontours of the present study and [10] for Le=10 
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 Isoconcentration Streamlines Isotherms 
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Figure IV.8: Isocontours of the present study and [10] for Le=50 

 

 

Varying the Lewis number while Pr=0.7, N=1, Ri=1, A=1 like the Teamah et al 
did and we got perfect match of his results and ours. 

For the second validation we have noticed a very good match with our work and 
Teamah et al’s work. So it’s insuring to us that our code works very correctly and 
ready to be used for our problem.  
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3-An additional confirmation:  

The graph below shows the different the average Nusselt number varying with 
Buoyancy factor of three works which are the present work , Teamah et al and Al-
Amiri et al for the problem of al-Amiri et al. and the results show one more again a 
very good agreement of their codes and the numerical techniques which means they 
are all correct.  
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N
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N  

Figure IV.9: Average Nusselt number varying with N for present code and [9],[10] for the 
work of [9] 

IV-4-Results and discussion : 

On this section we will treat the main following variable for the present 
problem:  

-The effect of Lewis Number which reflect the mass transfer on the rectangular 
enclosure.  

- The effect of buoyancy ratio for both negative (opposing flow) and positive (assisting 
flow)  

- The effect of Richardson number which characterize the importance of natural 
convection to forced convection.  

- The effect of Aspect ratio which is the ratio between the height and the length of the 
studied cavity.  

-Also the local and the average Nusselt and Sherwood numbers are presented. 
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IV-4-1-First case: effect of Lewis number Le 

First of all, at the first look at the Figure IV.20 that shows the effect of Lewis 
number we can see clearly that this number has a direct effect to isoconcentration 
because every time we increase the value of Lewis number we observe a big change of 
the isocontours of the mass and the gradient of concentration increases the most at the 
left but basically there is an increase of the gradient at all the walls, which means an 
increase of mass transfer.  

Second, we move to isotherms we saw a little bit of change at the isocontours of 
temperature there is a kind of stability of temperature gradient at the bottom wall. 
Generally there is a decreasing of heat transfer inside the cavity between Le=0,1 and 
Le=1 but there is not such a big difference in isotherms for Le=1 to Le=50.   

There is no effect of Le at the isocontours of the velocity (Streamlines).  

For the Local Nusselt number the Figure IV 21 shows a stability of Nusselt 
number at the left and right wall (specially for high Lewis number) which means there 
is not such a big difference between Nusselt numbers while varying with Lewis 
number, specially for high Lewis number (Le>10) but there is an obvious decreasing 
of Nusselt number for small value of Le number.  

An important exchange of heat is situated at the top of side walls and at the 
middle of the bottom wall. 

For the average Nusselt number the Figure IV 22 gives a general idea about 
heat transfer rates, and it seems constant with the variation of Lewis number (for high 
numbers Le).  

NB: there is a decreasing of Nusselt number value from Le=0,1 to Le=1 which 
reflects to the decreasing of heat transfer rates.  

For the Sherwood number (Local and average) the Figure IV 23 proves to us 
that there is an increasing of mass transfer (or increase of Sherwood number) rates 
with increase of Lewis number.  
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 Isoconcentration  Stream lines Isotherms 
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Figure IV.10: The effect of Lewis number on the isocontours for N=1,Ri=1,A=1,Pr=10 
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Figures IV.11: Nusselt number for Different walls A=1,N=1,Ri=1 

(A):Left wall; (B):Bottom wall; (C):Right wall 

(A) 

(B) 

(C) 



Chapter IV: Results and discussion  
 

 
43 

 

 

 

 

  

 

 

 

Figure IV.12: The average Nusselt number at the different walls varied with Le for 
N=1,Ri=1,A=1 
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Figure IV.13: Local and average Sherwood number at the left wall varied with Le ,N=1,Ri=1,A=1 
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IV-4-2-Second case: effect of buoyancy ratio N 

After analyzing the Figure IV.24 that shows the effect of buoyancy ratio we can 
directly observe that this parameter has a direct effect on all isocontours.  

Let's start with streamlines:  

We can distinguish five different cases for five different values of N:  

For N=-10 we got two big cells one caused by forced convection and the other 
caused by natural convection (and on it we saw q formation of two vortices inside this 
cell). And it is so clear that the buoyancy forces dominate forced convection.  

For N=-1 we got also a formation of two big cells also like the previous one 
(N=-10) one caused by the lid-driven and the other caused by buoyancy forces and 
both of them have an effect to the fluid flow.  

For N=0 it means the absence of the effect solutal buoyancy forces inside this 
cavity, so it’s only under the effect of thermal buoyancy forces and forced flow. For 
this case (N=0) we got a formation of big cell (caused by forced convection) and 
another one smaller at right down corner of the cavity. it is so clear that the flow is 
dominated by forced flow.  

For N=1 the buoyancy forces and forced flow flows in the same direction which 
result a one primary cell inside the cavity. 

For N=10, it means that the intensity of mass buoyancy is much stronger (and 
after the equation II.8 we realize that the concentration term multiple by 10), and 
probably we can explain the change of the centre of the streamlines because the solutal 
buoyancy forces pushes the velocity vortices to the right wall.  

For isotherms:  

we saw a formation of cold area ( cold vortices) for N=-10 and N=-1, also we can say 
the distribution of temperature increases with the increase of the absolute value of 
buoyancy ratio 'N' which refer an increasing of heat transfer rates. 

For isoconcentration:  

we observe an increase of the distribution mass all over the cavity with the 
increase of the absolute value of buoyancy ratio 'N', and also increase of the gradient 
of the concentration along the left wall with the increase of the absolute value of 
buoyancy ratio 'N' which refer an increasing of mass transfer rates. 
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For the Local and average Nusselt number we can't rely on the Figure IV.25 and 
Figure IV.26 because it didn't got such a direct information if the heat transfer rates 
increasing or decreasing.  

NB: for this kind of problem I think probably the best option to see the effect of N on 
the Nusselt is to plot Nusselt number in absolute value.  

But For the Sherwood number ( Local And Average) the Figure IV.27 give us 
such a direct confirmation of our interpretation of the increase of mass transfer rates, 
because every time we increase the absolute value of buoyancy ratio we saw an 
increasing of Sherwood number and the average Sherwood number.  
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 Isoconcentration Stream lines Isotherms 
 N=-10 
 

   
 N=-1 
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 N=1 
 

   
 N=10 
 

   
Figure IV.14: Effect of buoyancy ratio on the isocontours for Le=1,Ri=1,A=1,Pr=10 
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Figure IV.15: Nusselt number at the different walls varying with N while Le=1,Ri=1,A=1 

(A) Left wall ; (B) Bottom wall ; (C) Right wall  
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Figure IV.16: The average Nusselt number at the different wall varied with N Le=1,Ri=1,A=1 
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Figure IV.17: Local and average Sherwood number varied with N, while Le=1, Ri=1, A=1 at 
the left wall 

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

4

 Left wall 
 bottom wall
 right wall

 

A
ve

ra
g

e
 N

u
ss

e
lt 

n
u

m
be

r

N



Chapter IV: Results and discussion  
 

 
49 

IV-4-3-Third case: effect of Richardson number Ri: 

           The Figure IV.28 shown below proves to us that there is a significant effect of 
Ri number at all isocontours specially for high values of Ri number. The gradient of 
mass and temperature increases with the increase of Richardson number (with visual 
observation increase of these gradients in all the wall of the cavity).  

           Also for Ri=10 that means the intensity of mass and temperature is so high 
(according to the equation II.8 the solutal and thermal scalars multiple by 10)  

            For the Local Nusselt number, the Figure IV.29 show an increasing of this 
number  with increase of Richardson number which refer an increasing of the heat 
transfer rates. Same thing can be concluded for average Nusselt number see Figure 
IV.30.  

            Also we observe at the Figure IV.31 an increasing of the Local Sherwood 
number and the Average Sherwood number with the increase of Richardson number 
which means an increase of mass transfer rates. 
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 Isoconcentration Stream lines Isotherms 
 Ri= 0.01 
 

   
 Ri=0.1 
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Figure IV.18:The effect of the Ri number on the isocontours while Le=1,N=1,A=1,Pr=10 



Chapter IV: Results and discussion  
 

 
51 

0,2 0,4 0,6 0,8

-10

-8

-6

-4

-2

0

2
 Ri=0.01
 Ri=0.1
 Ri=1
 Ri=10

 

N
u

Y

Nusselt number at the Left wall
 

0,2 0,4 0,6 0,80

1

2

3

4

5

6

7
 Ri=0.01
 Ri=0.1
 Ri=1
 Ri=10

 

N
u

X  

0,2 0,4 0,6 0,8-30

-20

-10

0

10
 Ri=0.01
 Ri=0.1
 Ri=1
 Ri=10

 

N
u

Y  

Figure IV.19: Nusselt number at the different walls for Le=1,N=1,A=1 

(A):Left wall; (B):Bottom wall; (C):Right wall 
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Figure IV.20: The average Nusselt number varied with Ri for different walls for 
Le=1,N=1,A=1 
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Figure IV.21: The local and average Sherwood number varied with Ri, for Le=1,N=1,A=1 at 
the left wall 
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IV-4-4-Fourth case: effect of Aspect ratio A:  

After taking a general look at the figure we can say that:  

For streamline:  

 We got unicell for A=0,5 and A=1 and a formation of two cells when A=2 
because it gives buoyancy forces more space to interact well with the fluid flow.  

For isotherms:  

We saw a very good heating of the cavity when A=0,5.  

Also an increase of heat transfers every time we increase of Aspect ratio.  

Formation of two cells when A=2 for the presence of the effect of buoyancy 
ratio at this case A=2.  

For isoconcentration: 

The distribution of the mass is very usual there is no special effect of the Aspect ratio 
to the isoconcentrations except on the case when A=2 a formation of two cells.  

Note: formation of two cells for all isocontours caused by significant presence of 
forced flow and buoyancy forces which appear in form of vortices.  

For Local and average Nusselt number they are increasing with the increase of 
Aspect ratio 'A' hence to the augmentation of heat transfer area.  

For local and average Nusselt number they are also increasing with increase of 
aspect ratio hence to the augmentation of mass transfer area. 

 

 

 

 

 

 

 

 

 



Chapter IV: Results and discussion  
 

 
54 

 

 Isoconcentration Stream lines Isotherms 
 A=0.5 
 

   
 A=1 
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Figure IV.22: The effect of Aspect ratio on the isocontours while Le=1,N=1,Ri=1 
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Figure IV.23: Nusselt number varied with Aspect ratio while Le=1, N=1, Ri=1 

(A): Left wall; (B): Bottom wall; (C): Right wall 
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Figure IV.24: Average Nusselt number at different walls varied with Aspect ratio for Le=1, 
N=1,Ri=1 

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

2

4

6

8

10

12

 A=0.5
 A=1
 A=2

 

S
h

Y  

0,5 1,0 1,5 2,0

3

4

5

6

 Left wall
 

S
h

av

A
 

Figure IV.25: The local and average Sherwood number varied with Aspect ratio for Le=1, 
N=1,Ri=1 at the left wall 
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IV-5-Conclusion:  

In this chapter, we have presented a comparative study of the isocontours of velocities, 
temperature and concentration between our code results and two other published 
works which means that’s work very correctly then we treated the current work which 
varying the dimensionless parameters Le,N,Ri,A for fixed Pr=10,Re=100 then we 
plotted the different isocontours and the different Nusselt and Sherwood number along 
the different walls.  
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General conclusion 
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GENERAL CONCLUSION: 

 

The work presented in this thesis is a numerical study of heat and mass transfer 
of an incompressible fluid flow inside a rectangular cavity with a movable upper wall 
moves to the right. The mathematical modeling of this physical problem is based on 
the conservation equations of mass, momentum, energy and species. The thermo-
physical properties are considered constant and the Boussinesq approximation has 
been adopted. Simplifying assumptions have been introduced and justified. The 
simplified system of equations is solved numerically by the finite volumes method. 
The velocity-pressure coupling is processed by the SIMPLE algorithm. 

A computer code was developed and validated in comparison with the 
numerical results available in the literature. 

The main results from this work can be summarized as follows: 

• The rate of heat and mass transfer increase with increasing of Richardson number  

• The variation of the Lewis number has no significant effect on the heat transfer 
except for small values of Lewis there is a decreasing of heat transfer rates but it needs 
a detailed study to confirm this hypothesis; on the other hand, an increase in the value 
of the Lewis number favors the mass transfer. 

• Heat and mass transfer rates increase with increasing buoyancy ratio N (in absolute 
value). 

• increase in aspect ratio implies an increase in heat and mass exchange surface 
therefore an increase in mass and heat transfer. 
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