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Abstract 
Using a definition sketch, a theoretical development is proposed to define the functional 

relationship between the various parameters of the flow at the toe of an overspill dam. After 

conversion to dimensionless form, the USBR diagram for determining the velocity at the toe 

of a steeply-sloping spillway is replaced by a single curve. With the data collected in situ by 

USBR, the proposed theoretical equation is adjusted to allow for friction along the 

downstream face of the spillway. Finally, a convenient relationship for calculating the depth 

of flow at the downstream toe of an overspill dam with a steeply-sloping downstream face is 

proposed. It concerns steep slopes ranging from 1 on 0.6 to 1 on 0.8. 
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1. Introduction 

The need to calculate flow depth is a common problem for practising hydraulics engineers 

(Chow, 1981) and (Sinniger, 1989). Flow depth is a fundamental parameter in the design of 

free surface-flow pipes and canals, and several methods have been proposed in the past for 

such structures, for both uniform and gradually-varying non-uniform flow (Lencastre, 1999). 

The analysis is based on a rigorous theoretical development and generally produces very 

satisfactory results. 

When the problem is to compute the flow depth at the toe of an overspill dam, it becomes 

more complex and there are practically no methods available. No theoretical development has 

been able to yield an acceptable estimate of the depth at this type of structure, the main reason 

being the geometry of the downstream face of the dam. Various shapes exist for different 
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types of dam and they always result in a flow which is non-uniform spatially, making it a 

complex task to compute the head loss due to friction using the standard general hydraulics 

equations. 

Among the spillway shapes encountered are the Creager (1929) based on experimental data 

collected by Bazin (1888-1898), Scimemi (1930), WES profiles (1952) and Creager and al. 

(1966).  

As in the case of free-surface flow in conduits and canals, flow depth at the dam toe is an 

important feature in the design of any structure planned downstream of the dam itself 

(Smetana, 1948; 1949). Such is the case with the stilling basin (Achour, 2002) for the energy 

dissipation of the flow and every other type of discharge works. Designing a stilling basin 

requires the Froude number of the incident flow, which is strongly dependent on the initial 

flow depth. The velocity of the incident flow is another basic factor in estimating the   tractive 

forces acting on the bottom surface of the stilling basin or discharge structure. In addition, 

computing the backwater curve of the non-uniform flow which may occur on the discharge 

structure downstream of a spillway is fundamentally dependent on knowing the initial depth 

of flow. This is the starting point of the backwater curve and coincides with the flow depth at 

the downstream toe of the dam. These examples illustrate the importance attaching to 

estimating the flow depth as accurately as possible. We decided to select the steeply-sloping 

overspill dam for our study because it represents a type in widespread use. This is not a 

chance decision nor an arbitrary one, but constitutes one of the key components in our 

contribution. 

The only practical approach to computing the depth of flow at the downstream end of a 

steeply-sloping overspill dam is the USBR method (1955). Its special feature is its 

practicality, being based on field data collected from existing dams, including tests at Shasta 

and Grand Coulee dams in the USA. It estimates the incident flow velocity when the flow 

characteristics and the geometry of the overspill dam are known. The disadvantage of the 

method is certainly that it is a graphic approach which may give rise to errors in reading the 

required parameters, especially when interpolation is necessary. The method recommended by 

USBR (1955) is then a graphic method which must be used with great caution. But all the 

disadvantages that the use of the method can cause are particularly covered by our present 

study. The USBR method (1955) has always been considered a graphic method but our study 

aims to convert it to a semi-analytical method. The graph is replaced by a semi-empirical 

equation by combining a simplified theoretical approach with experimental data from the 

USBR field work (1955). By a suitable change of variable, the USBR graph (1955) is 
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replaced by a single dimensionless curve, and then a generalised equation. A least squares fit 

confirmed the validity of our approach. 

 
2. Theoretical Study 

Taking an overspill dam and ignoring the steepness of the downstream face and the effect of 

friction on it, we can write a theoretical dimensionless equation containing all the hydraulic 

and geometrical parameters of the flow. It is dimensionless so that it can be generalised, under 

the same conditions in which it was originally determined. Figure 1 is a schematic 

representation of the flow over a parabolic dam crest. The flow is characterised by the head on 

the sill H, the upstream approach velocity head Ha, tailwater depth h1 and mean velocity V1. 

The head loss due to friction on the downstream face of the overspill dam is represented by hf 

whereas Z is the vertical distance from reservoir level to the floor at the downstream apron. 

Friction head loss hf can be ignored if the spillway always operates at design head. The total 

head line is also shown on Figure 1. Its general shape has been arbitrarily drawn because it is 

not possible to define it accurately. Friction head losses are also difficult to estimate in the 

current state of knowledge, because they are governed by the geometry of the downstream 

dam face which is not a straight line and the depth of flow on it. Assuming s as the geometric 

height of the overspill dam reckoned from the downstream apron to the crest sill, one may 

write from figure 1: 

                                                                    HsZ +=                                                               (1) 

 

 
Fig.1. Components for writing the functional relationship  f (Z, H, h1) = 0 
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The flow is subcritical on the upstream side of the dam, in the reservoir, becomes critical at 

the dam crest and supercritical down the downstream face of the dam. The head H in Eq. (1) 

can therefore be considered as the critical head Hc provided the approach velocity of the flow 

is insignificant, meaning that the relationship between the geometric height s of the spillway 

and the design head Hd is s/Hd > 1.33 (USBR ,1948). 

Applying Bernoulli's equation over the section from the reservoir to the point where depth is 

h1 , yields the following relationship:  

                                                        af
2

11 HHsh/2gVh ++=++                                          (2) 

Where g is the acceleration due to gravity. Notice that Eq. (2) can also be established by 

equalising upstream and downstream heads. Neglecting the head loss hf for the reasons 

previously mentioned and assuming aH  ≅ 0, Eq. (2) can be simply rewritten as: 

                                                            Hs/2gVh 2
11 +=+                                                       (3) 

Inserting V1 = q/h1 into Eq. (3), where q is the discharge per unit width, yields: 

                                                          Hs)/(2ghqh 2
1

2
1 +=+                                                   (4) 

Since the head H is considered as the critical head, one may write: 

2/3hH c=  

Where ch  is the critical depth.  

Bearing in mind that:  
1/32

c /g)(qh =   

The head H can be then written as: 

                                                                3/12 )/)(2/3(H gq=                                                 (5) 

Eliminating q between Eq. (4) and (5), results in: 

                                                              Hs/27h4Hh 2
1

3
1 +=+                                               (6) 

After simplification, Eq. (6) is reduced to the following cubic equation: 

                                                         04/27)H(H)h(sh 32
1

3
1 =++−                                        (7) 

Introducing the theoretical non-dimensional parameters /Zh1t =ψ and ZHt /=φ ,  

Eq. (7) can be then written as: 

                                                              0)27/4( 323 =+− ttt φψψ                                            (8) 
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It is obvious that both tψ and tφ are less than unity since Zh <1 and ZH < . Furthermore, tψ  
and ZHt /=φ vary within the following ranges 10 <≤ tψ  and 10 <≤ tφ  respectively. On 
the other hand, it is also evident that Hh <1 , implying tt φψ < . Using trigonometric 
functions, Eq. (8) can be solved analytically and it found that its discriminant is given by:  

     )1()27/2( 232 −=∆ tt φφ  

Bearing in mind that φ <1, one may write ∆ < 0 and Eq. (8) admits then three real roots. The 

latter were rigorously analysed and it is found that two of them have no physical meaning. 

The solution of Eq. (8) is finally obtained as: 

                                                           [ ])3/αcos(21)3/1( +=tψ                                              (9) 

Where: 

                                                            )12(cosπα 31 −+= −
pφ                                                (10)                        

 
3. Dimensionless practical relationship  
The USBR diagram (1955) is very practical means of estimating the mean velocity V1 from 

known values of H and Z. It was derived from field tests on existing operational overspill 

dams, which confers undoubted reliability and validity. The friction head losses down the 

downstream dam face are accounted for, since the data was collected in situ. The steeply-

sloping downstream face of an overspill dam ranges from 1/0.6 to 1/0.8. The head on the sill 

is in the range 9mH0.76m ≤≤ . The geometric height s at overspill dams is 

150ms2.90m ≤≤ . Mean flow velocity V1 may be as high as 44 m/s approximately. 

In this section, let us assume pψ and pφ  as the practical values of the non-dimensional 

parameters ψ  and φ  previously defined. By the use of USBR data (1955), pψ and pφ  can be 

computed as follows:  

1. For a given head H, also considered as the critical head, the critical depth hc is estimated 

using the well-known equation 2H/3h c = . Once ch  is determined, the discharge 

3
cghq = per unit width follows then immediately. For the same value of H, USBR data give 

the main velocity V1 for each value of the tested parameter Z.  

2. Knowing q and V1, the toe depth h1 is easily evaluated, since 11 q/Vh =  . Thus, knowing 

the values of both Z and h1, the non-dimensional parameter /Zh1=pψ is well defined. 

3. Similarly, with the known values of both H and Z, the non-dimensional parameter pφ  is 

then computed.  
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4. Repeating the steps 1 to 4 for each value of the head H considered by the USBR, the 

corresponding values of pψ and pφ are finally determined (Table 1).  

Figure 2 shows the variation of pψ with respect  to pφ , for all considered values of the head 

H (solid signs) and one could easily drawn an average curve. This implies that the USBR 

diagram is reduced to a single dimensionless curve when considering the non-dimensional 

parameters pψ  and pφ . On the other hand, figure 2 indicates that pψ increases with the 

increase of pφ . In table 1 are also indicated the values of tψ ( pφ ) computed using Eqs. (9) 

and (10), after substituting tφ   by pφ . The variation of tψ  ( pφ ) is also represented in Fig.1 

(open signs).  
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Fig.2. Variation of ψ ( pφ ). (•) pψ ( pφ ) resulting from USBR data.  

(o) tψ ( pφ ) resulting from the theoretical Eqs. (9) and (10). 
 

Figure 3 compares then the theoretical values of ψ , obtained from Eq. (9) for tφ = pφ , with 

the practical values resulting from the USBR data. As it can be seen, deviations between the 

two may become significant for large pφ . It can be observed that tp ψψ >  for all the 

considered range of pφ . This confirms that, for a given value of pφ , the practical depths h1 

are greater than the theoretical ones obtained from Eq. (9). This fact was expected, since the 

effect of the head losses was ignored when writing Eq. (9) which must be then corrected. This 

can be possible when regarding pφ ( tψ ) plotted in figure 3, for all the considered values 

of pφ . 
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 Fig.3. (•) Variation of pψ versus tψ ; (.) For pψ = tψ . 

 
As it can be seen, pφ ( tψ ) is represented by a single curve which seems to be well correlated 

to a linear law. By a conventional statistical analysis, it is found that the non-dimensional 

parameter pψ  may be approximated as: 

                                                               310069.1 −+= tp ψψ                                               (11) 

Eq. (11), valid for the wide range  20.002.0 ≤≤ pφ , was obtained with R2 greater than 0.999. 

Furthermore, inserting Eq. (9) into Eq.(11), the following explicit pψ [α ( pφ )] relationship is 

deduced : 

                                                                 [ ] 310)3/αcos(21356.0 −++=pψ                                          (12) 

Where )(α pφ  is given by Eq. (10). Provided H and Z are given, Eqs. (10) and (12) allow then 

a direct calculation of the non-dimensional parameter pψ , once H/Z=pφ is determined. The 

toe depth pψZh1 =  is then easily deduced.  

4. Numerical illustration  
To illustrate the simplicity of the present method, the use is shown using the following 

numerical example: The crest of an overspill dam, having a downstream slope of 1/0.7, is 

60.96 m above the horizontal floor of the stilling basin. The head H on the crest is 9.144 m, 

then Z is 70.104 m and the maximum discharge q is 44.5639 m2s-1. 

pψ  

tψ  
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Using the given data, the values of pφ , α according equation (10) and pψ according equation 

(12) are 0.13044 , 6.18894rd and 0.02056, respectively. The toe depth pψZh1 =  is finally 

equal to 1.44 m. The Froude number is equal to 8.23. 

 

5. Conclusions 
Our contribution has focused primarily on calculating the depth h1 of flow at the downstream 

toe of a steeply-sloping overspill dam face, within the range 1/0.6 to 1/0.8. With the proposed 

definition sketch, we defined the functional relationship 0)h,H,Z(f 1 =  in which Z is the 

vertical distance from headwater elevation to downstream apron of the dam, and H is the head 

of water on the sill, considered as the critical head. 

In a first approximation, we ignored the effect of head losses due to friction on the 

downstream overspill dam face. This led to a refinement of the above functional relationship 

and we demonstrated that Z, H and h1 are related by a cubic equation. We showed that this 

relation is wholly composed of the non-dimensional parameters /Zh1=ψ  and φ = H/Z and 

used trigonometric functions to find the real root of the equation. 

We then proceeded to analyse the USBR diagram, which was constructed from field data 

collected at operational dams. The diagram shows the mean velocity V1 of the flow at the 

downstream toe of an overspill dam versus the head on the sill H and the difference in 

elevation Z. 

By means of an appropriate substitution of variables, we were able to transform this diagram 

into a single dimensionless curve defined by the non-dimensional parameters /Zh1=ψ and 

H/Z=φ . We were able to show that  tp ψψ >  , where pψ is the practical value of ψ  

resulting from USBR data, whereas tψ  is the theoretical value of ψ  obtained from our 

formulation. We attributed this result to the friction head losses which were not accounted for 

in the theoretical development. Graphical representation of )( tp f ψψ = shows clearly that 

pψ  may be favourably related to tψ  by a linear law. We were able to 

approximate )( tp f ψψ = , with a highly satisfactory coefficient of correlation. This allowed 

us to derive the explicit )( pp φψ  relationship from which the toe depth h1 can be easily 

evaluated provided H and Z are given. 
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Notation 
H    Total head   (m)    

aH  Upstream approach velocity head   (m) 

Hc   Critical head   (m) 

Hd   Design head   (m) 

He   Total head including effect of approach velocity   (m) 

F1    Froude number (-) 

V1   Mean velocity   (ms-1) 

Va   Approach velocity   (ms-1) 

Z    Vertical distance from reservoir level to the floor at the downstream apron   (m) 

g    Acceleration due to gravity   (ms-2) 

h1   Toe depth   (m) 

ch  Critical depth   (m)    

hf    Friction head loss   (m)   

q    Discharge per unit width   (m2s-1)    

s    Sill height   (m) 

ψ    ψ =h1/Z    (-) 

pψ    Practical value of ψ     (-) 

tψ     Theoretical value of ψ     (-) 

φ     φ =H/Z    (-) 

pφ    Practical value of  φ    (-)  
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Appendix 1 
 
Table. 1. Practical values of non-dimensional parameters ψ  and φ  , and the theoretical values of ψ   
                                              computed using Equations. (9) and (10).  
 

H 
(m) 

V1 
(m/s) 

Z 
(m) 

s 
(m) 

hc = 2H/3 
(m) 

q  
(m2/s)

h1 = q/V1
(m) pφ =H/Z pψ =h1/Z tψ  F1 

(-) 
6,096 2,9 2,14 0,508 1,134 0,186 0,26276 0,06415 0,05328 4,51
7,620 3,7 2,94 0,508 1,134 0,149 0,20595 0,04022 0,03665 6,30
9,144 5,95 5,19 0,508 1,134 0,124 0,12807 0,02084 0,01780 8,29
10,67 8,85 8,09 0,508 1,134 0,106 0,08610 0,01201 0,00977 10,46
12,192 11,9 11,14 0,508 1,134 0,093 0,06403 0,00782 0,00626 12,76
15,24 28,5 27,74 0,508 1,134 0,074 0,02674 0,00261 0,00168 17,89

0,762 

16,00 36,6 35,84 0,508 1,134 0,071 0,02082 0,00194 0,00116 19,17
15,24 17,5 15,98 1,016 3,208 0,210 0,08709 0,01203 0,00994 10,62
16,764 21,3 19,78 1,016 3,208 0,191 0,07155 0,00898 0,00739 12,25
18,288 27,4 25,88 1,016 3,208 0,175 0,05562 0,00640 0,00506 13,96
18,90 30,5 28,98 1,016 3,208 0,170 0,04997 0,00556 0,00431 14,64
19,66 36,6 35,08 1,016 3,208 0,163 0,04164 0,00446 0,00328 15,55
20,117 42,7 41,18 1,016 3,208 0,159 0,03569 0,00373 0,00260 16,11

1,524 

20,421 54,8 53,28 1,016 3,208 0,157 0,02781 0,00287 0,00179 16,45
18,288 24 21,71 1,524 5,893 0,322 0,09525 0,01343 0,01138 10,29
19,812 29,9 27,61 1,524 5,893 0,297 0,07645 0,00995 0,00817 11,61
21,336 36 33,71 1,524 5,893 0,276 0,06350 0,00767 0,00618 12,97
22,403 42,7 40,41 1,524 5,893 0,263 0,05354 0,00616 0,00478 13,95
23,47 54,9 52,61 1,524 5,893 0,251 0,04164 0,00457 0,00328 14,96
24,323 67 64,71 1,524 5,893 0,242 0,03412 0,00362 0,00243 15,79

2,286 

24,384 73 70,71 1,524 5,893 0,242 0,03132 0,00331 0,00214 15,83
22,555 36 32,95 2,032 9,072 0,402 0,08467 0,01117 0,00953 11,36
24,384 45,7 42,65 2,032 9,072 0,372 0,06670 0,00814 0,00665 12,76
25,908 54,9 51,85 2,032 9,072 0,350 0,05552 0,00638 0,00505 13,98
27,737 73 69,95 2,032 9,072 0,327 0,04175 0,00448 0,00329 15,49

3,048 

28,53 91,5 88,45 2,032 9,072 0,318 0,03331 0,00348 0,00234 16,15
21,793 30,5 25,93 3,048 16,667 0,765 0,14990 0,02507 0,02260 7,96
23,47 36,6 32,03 3,048 16,667 0,710 0,12492 0,01940 0,01714 8,89
25,298 42,7 38,13 3,048 16,667 0,659 0,10707 0,01543 0,01358 9,95
26,517 48,7 44,13 3,048 16,667 0,629 0,09388 0,01291 0,01113 10,67
27,828 54,9 50,33 3,048 16,667 0,599 0,08328 0,01091 0,00929 11,48
28,956 61 56,43 3,048 16,667 0,576 0,07495 0,00944 0,00793 12,18
30,632 73 68,43 3,048 16,667 0,544 0,06263 0,00745 0,00605 13,26
31,70 85,5 80,93 3,048 16,667 0,526 0,05347 0,00615 0,00477 13,96
32,309 91,5 86,93 3,048 16,667 0,516 0,04997 0,00564 0,00431 14,36

4,572 

33,162 110 105,4 3,048 16,667 0,503 0,04156 0,00457 0,00327 14,93
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H 

(m) 
V1 

(m/s) 
Z 

(m) 
s 

(m) 
hc = 2H/3

(m) 
q 

(m2/s)
h1 = q/V1

(m) pφ =H/Z pψ =h1/Z tψ  
F1 
(-) 

27,432 49,4 43,3 4,064 25,660 0,935 0,12340 0,01894 0,01683 9,06
28,651 55 48,9 4,064 25,660 0,896 0,11084 0,01628 0,01431 9,66
30,48 64 57,9 4,064 25,660 0,842 0,09525 0,01315 0,01138 10,61
32 73 66,9 4,064 25,660 0,802 0,08351 0,01098 0,00933 11,41
33,833 85,5 79,4 4,064 25,660 0,758 0,07130 0,00887 0,00735 12,41
34,595 91,4 85,3 4,064 25,660 0,742 0,06670 0,00812 0,00665 12,82
35,357 97,5 91,4 4,064 25,660 0,726 0,06252 0,00744 0,00604 13,25
36,576 109,7 103,6 4,064 25,660 0,702 0,05557 0,00640 0,00505 13,94
37 115,8 109,7 4,064 25,660 0,694 0,05264 0,00599 0,00466 14,18

6,096 

37,49 128 121,9 4,064 25,660 0,684 0,04763 0,00535 0,00401 14,47
29,21 54,9 47,28 5,08 35,862 1,228 0,13880 0,02236 0,02011 8,42
30,785 61 53,38 5,08 35,862 1,165 0,12492 0,01910 0,01714 9,11
32 67 59,38 5,08 35,862 1,121 0,11373 0,01673 0,01487 9,65
33,162 73 65,38 5,08 35,862 1,081 0,10438 0,01481 0,01307 10,18
36,576 94,5 86,88 5,08 35,862 0,980 0,08063 0,01038 0,00885 11,80
38,1 109,8 102,2 5,08 35,862 0,941 0,06940 0,00857 0,00706 12,54
39,32 122 114,4 5,08 35,862 0,912 0,06246 0,00748 0,00603 13,15

7,620 

40,64 146,5 138,9 5,08 35,862 0,882 0,05201 0,00602 0,00458 13,82
33,833 73 63,86 6,096 47,141 1,393 0,12526 0,01909 0,01721 9,15
34,9 79 69,86 6,096 47,141 1,351 0,11575 0,01710 0,01527 9,59
35,966 85,5 76,36 6,096 47,141 1,311 0,10695 0,01533 0,01355 10,03
37,185 91,4 82,26 6,096 47,141 1,268 0,10004 0,01387 0,01225 10,54
39,624 110 100,9 6,096 47,141 1,190 0,08313 0,01082 0,00927 11,60
41,148 122 112,9 6,096 47,141 1,146 0,07495 0,00939 0,00793 12,27
42,367 134 124,9 6,096 47,141 1,113 0,06824 0,00830 0,00688 12,82

9,144 

43,434 146,5 137,4 6,096 47,141 1,085 0,06242 0,00741 0,00602 13,31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


