

MÉMOIRE DE MASTER

Domaine: Sciences et Techniques

Filière: Génie Mécanique

Spécialité : Construction Mécanique

Réf.: Entrez la référence du document

Présenté et soutenu par :

GAHMOUCHE MOHAMED

Le: 27/06/2022

Étude de réalisation d'un embrayage à griffes pour une production en série

Jury:

Dr. Amrane Mohamed Nadir Pr Université de Biskra Président

Dr. Baci Lamine MCA Université de Biskra Rapporteur

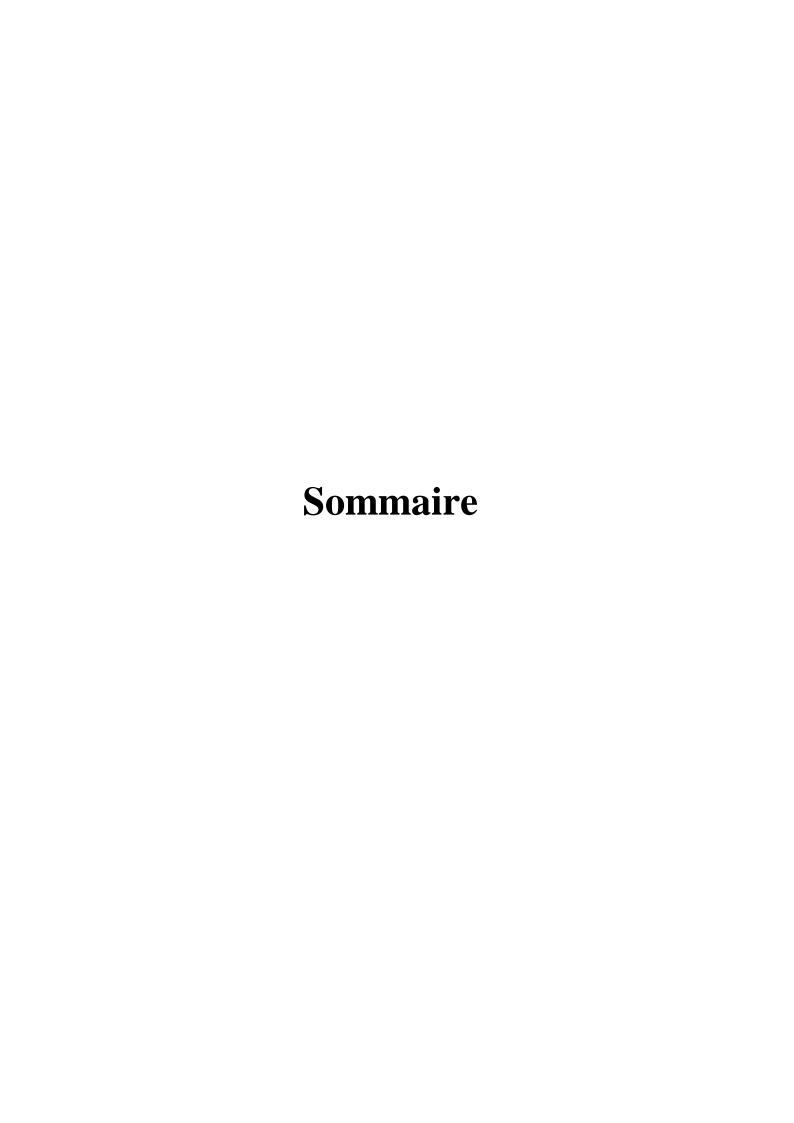
Dr. Ben Arfaoui MAA Université de Biskra Examinateur

Remerciement

A terme de ce travail, je veux adresser

mes vifs remerciements a mon encadreur **Mr B.Lamine** pour son encadrement, pour son soutien,

sa disponibilité et ses conseils et patiences durant ma préparation de ce travail


> Mes vifs remerciements a mes proches qui m'encourager,

m'aider et me pousser a réaliser ce travaille durant mon étude.

Sans oublier à remercier chaleureusement tous les enseignants contribuant durant ma formation.

Enfin à tous mes camarades de classe de la promotion génie mécanique.

Merci

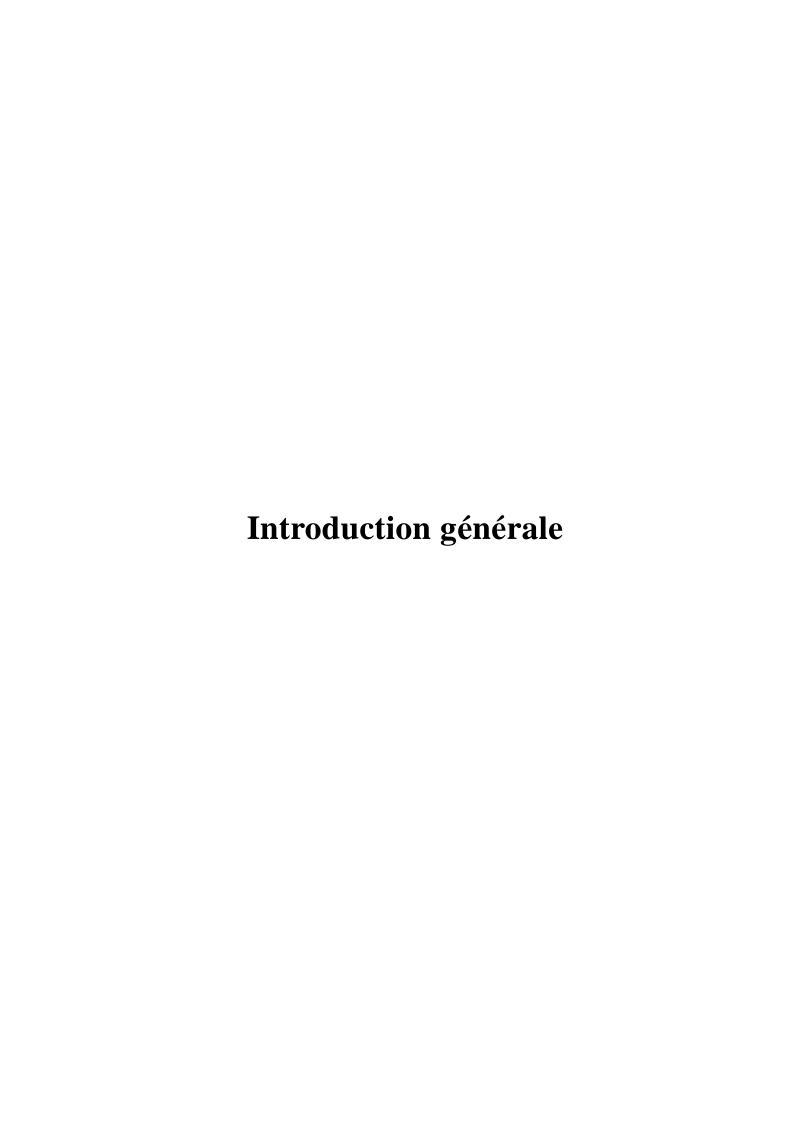
Sommaire

Remerciement	
Sommaire	I
Liste des tableaux	IV
Liste des figures	V
Introduction générale	1
Premier Chapitre : Technologie des embrayages	
Introduction	3
I. Embrayage et sa fonction	3
I.1 Représentation technologique	3
I.2 Objectif	3
I.3 Type d'embrayage	4
I.3.1. Embrayage instantané	4
a) Embrayage a dents	4
b) Embrayage a griffe	4
c) Embrayage a crabots	4
I.3.2. Embrayage progressif	5
a) Le couple transmissible	5
b) Embrayage mono disque	5
C) Embrayage multi-disques	8
I.4. Les solutions technologiques	9
I.4.1. la géométrie de la surface de friction	9
I.4.2. Les surfaces de contact	9
a)Selon le nombre de disques	9
b) Type de commande	10
II.5. Classification Des Embrayages	10
a) Embrayage mono-disque	10

b) Embrayage multidisque	10
c)Embrayage électro rhéologique	11
d)Embrayage centrifuge	11
e) Embrayage électromagnétique	12
f) Coupleur hydraulique	12
Bibliographie	13
Deuxième Chapitre : Généralités sur Bureau d'études	
et bureau de méthodes	
Introduction	15
II.1.Rôle et importance de la gestion de la production	15
II.2.Les contraintes	15
II.2.1.Financières	15
II.2.2.Temporelles	15
II.2.3.Mécanique	16
II.2.4.Qualité	16
II.2.5.Planification	16
II.3.Organisation du système de gestion de la production	16
II.3.1. Le bureau des études	16
II.3.2.Le bureau des méthodes	17
II.3.3.Le bureau d'ordonnancement	17
II. 4.Les ateliers de production	17
II.4.1. Notion générale bureau d'études	17
a) Définition	17
b) Activité de bureau d'étude	17
c) Quelles sont les tâches d'un bureau d'étude?	17
d) Bureau d'étude mécanique	18
e) Rôle de bureau d'étude	18
f) Ces études sont –elles obligatoires ?	18
Bibliographie	19

Troisième chapitre: Analyse et conception de produit	
III .1 Analyse de produits	21
III.1.1. Définition de produit	21
Dessin d'ensemble	21
Vue éclatée	21
Dessin en perspective	21
III.1.2.Analyse fonctionnelle	23
a)Mise en situation	23
b) Etude technologique	26
III.1.3. Analyse fonctionnelle	27
a) Fonction globale	27
b) Les fonctions techniques	31
c) Solutions technologique	36
III.1.4.Extraction de dessin de définition de l'arbre à griffes	36
III.2. Conception de produit	38
Introduction	38
a) La CAO (Conception Assistée par Ordinateur)	38
b) Logiciels de CAO professionnels	39
III.3.Conception Assistée par Solidworks	39
III.3.1. Conception de bâti	39
III 3.2 conception de l'arbre à griffes	51
III.3.3. Création de l'assemblage de produit	56
III.4. Analyse de fabrication de produit	63
III.4.1Etablissement d'un processus d'usinage	64
•	
a)Données de problème	64
b)Graphe logique de la méthode développée	64
Bibliographie	96
Conclusion générale	97

Sommaire des tableaux


Tableau (1): Solutions technologiques	32
Tableau (2): Caractéristiques mécaniques	33
Tableau (3): Les solutions technologiques:	36
Tableau (4): Des Opérations Elémentaires:	66
Tableau (5): Groupement Des Surfaces:	68
Tableau(6): tableau des contraintes:	70
Tableau(7): tableau des niveaux:	73
Tableau (8): Groupement en phases	77
Tableau (9): Processus de fabrication de l'arbre a griffes	80
Tableau (10) : Feuille D'analyse De Fabrication (100) +(200)	81
Tableau (13): Contrat de phase 200	82
Tableau (10): Feuille D'analyse De Fabrication (300)	83
Tableau (14): Contrat de phase 300	85
Tableau (11): Feuille D'analyse De Fabrication (400)	87
Tableau (15): Contrat de phase 400	89
Tableau (11): Feuille D'analyse De Fabrication (500)	90
Tableau (15): Contrat de phase 500	91
Tableau (12): Feuille D'analyse De Fabrication (600)	92
Tableau (12): Feuille D'analyse De Fabrication (700)	94
Tableau (16): Contrat de phase 700	95

Sommaire des figures

Premier chapitre	
Figure 1 : Représentation technologique	3
Figure 2 : Embrayage à dents	4
Figure 3 : Embrayage à griffes	4
Figure 4: Embrayage a crabots	4
Figure: 5 Embrayage mono disque	5
Figure 6 : Disque d'embrayage	6
Figure7 : Diaphragme	7
Figure 8 : La butée d'embrayage	8
Figure 9 : Embrayage multi-disques	9
Deuxième chapitre	
Figure: (1): Dessin d'ensemble	22
Figure : (2) : Vue éclatée	23
Figure: (3) Dessin en perspective	24
Figure: (4): Mise en situation.	25
Figure: (5): Chaine cinématique	26
Figure: (6): Fonction global	27
Figure: (7): surfaces fonctionnelles	31
Figure (8): Fonction de l'arbre	34
Figure : (9) Exigences technologiques partielles de l'arbre	37
Figure (10) : Dessin réalisé par solidworks	39
Figure(11): Document pièce (bâti)	40
Figure(12). Plan d'esquisse (bâti)	40
Figure (13): Création d'esquisse (bâti)	41
Figure(14): Cotation d'esquisse (bâti)	41
Figure (15): Révolution d'esquisse (bâti)	41
Figure (16). Création de l'esquisse (bâti)	43
Figure (17). Fonction extrusion (bâti)	43
Figure (18) Création de l'esquisse (bâti)	43
Figure (19). Enlèvement de matière (bâti)	43
Figure (20). Esquisser les axes des trous (bâti)	44

Figure (21). Paramètres de perçage	44
Figure (22): Fonction de perçage	44
Figure (23): Ajout de filetage	45
Figure (24): Taraudage des trous	45
Figure (25): Paramètres de perçage	46
Figure (26): Confirmation de choix	46
	46
Figure (27): Perçage d'un trou	46
Figure (28): Perçage d'un trou confirmation	46
Figure (29): Utilisation de la fonction répétions circulaires	46
Figure (30): Utilisation de la fonction répétions après confirmation	47
Figure (31): Taraudage	47
Figure (32): confirmation taraudage	47
Figure (33) : Ajout de 4 trous taraudés	47
Figure (34) : fonctions symétriques	47
Figure (36): Création de taraudage	
Figure (37): après confirmation	47
Figure (38) : Ajout de 4 trous.	48
Figure (39): Esquisser un trou lisse	48
Figure (40) : Editer la fonction répétition circulaire	48
Figure (41): Edition de l'esquisse	49
Figure(42): Fonction enlèvement de la matière	49
Figure (43): Editer l'esquisse	49
Figure (44) :Editer la fonction bossage extrudé	49
Figure (45): Editer la fonction répétition circulaire	50
•	50
Figure (46): Editer la fonction répétition circulaire	50
Figure (47): Ajout d'un chanfrein	50
Figure (48): Ajout d'un arrondi	51
Figure (49): Création d'un fichier arbre a griffes (29)	51
Figure(50): Créer une nouvelle esquisse	52
Figure(51); Créer la fonction révolution de l'arbre	
Figure (52)Après confirmation de la fonction	52
Figure (53) · Créer l'esquisse	52

Figure(54): Editer la fonction enlèvement de matière	53
Figure (56): Création de l'esquisse	54
Figure(57) : Création de la fonction enlèvement	54
Figure (58): l'assistant pour le filetage	54
Figure (59): Confirmation de la fonction	54
Figure(60): Insertion des composants	55
Figure(61): Insertion des composants	56
Figure(62): Ajouter des contraintes	56
Figure (63): Avec les contraintes suivantes	57
	57
Figure (64) Insertions des composants	58
Figure (65): Les contraintes a l'assemblage	
Figure (66): Insertion des composants a l'assemblage	58
Figure (68) :Insertion de nouveau composants	59
Figure (69): Contraintes a l'assemblage	60
Figure (70): Nouveau composants	61
	61
Figure (71): Les contraintes a l'assemblage	
Figure (72): Réalisation d'un nouveau assemblage	62
Figure (73) :Graphe logique de la méthode développée	64
Figure (74): Contraintes d'antériorités de copiage	68

Introduction générale

Dans ces derniers temps et grâce au progrès technologique les véhicules sont devenus de plus en plus performants, conforts et rapides.

Donc Les constructeurs d'automobiles ont fait entrer de nouvelles technologies dans la fabrication des pièces auto, cherchent à développer et à trouver de nouvelles alternatives qui nécessitent beaucoup d'efforts et d'expérimentations sur les mécanismes mécaniques (embrayage, moteur,...etc.) pour répondre au besoin de client, assurer la bonne qualité et de garder les meilleurs paramètres de sécurité.

Le développement rapide de l'industrie auto exige des études modernes et rapides pour crier des matériaux ou pièces de rechange, Suivant cette modernité, la complexité et la quantité des calculs mécaniques ont fait appel à des outils informatiques tels que : les logiciels de conception, de fabrication et de simulation. Dans ce contexte, Nous avons subdivisé notre travail en trois chapitres.

Vu l'importance de l'étude, qui se présente comme une étude concernant le disposif d'embrayage, dont le titre « étude de réalisation d'un embrayage à griffes, pour une production en série ».

On a jugé nécessaire de choisir ce contexte, ou il va se structurer et prendre sa forme, avec le plan de travail suivant :

Premier chapitre : Technologie des embrayages

Deuxième chapitre: Généralités sur Bureau d'études et bureau de méthodes.

Troisième chapitre : Analyse et conception de produit.

Et à la fin, une conclusion générale.

PREMIER CHAPITRE

Technologie des embrayages

Introduction

Dans une transmission de puissance à changement de vitesse, l'embrayage est indispensable, il permet de séparer l'arbre récepteur de l'arbre moteur et assurer sa liaison de nouveau.

I. Embrayage et sa fonction

De façon générale le terme « **embrayage** » fait référence a tout dispositif jouant un rôle d'interrupteur dans la transmission d'un couple mécanique.

L'embrayage permet d'effectuer ,ou à supprimer a volonté, la liaison entre deux arbres en prolongement.

I.1 Représentation technologique: (Figure: 1)

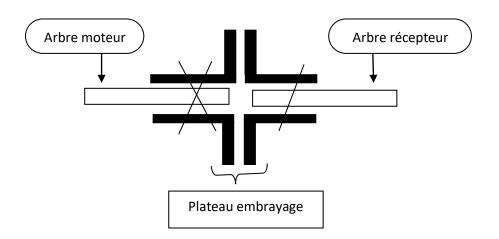


Figure :(1) Représentation technologique

I.2 Objectif

Seul les embrayages permettent de lancer les moteurs a vide, de manœuvrer une boite a vitesse sans arrêter le moteur.

I.3 Type d'embrayage

- Embrayage instantané
- Embrayage progressif

I.3.1. Embrayage instantané

La transmission se fait par obstacles, par conséquent l'accouplement entre les deux arbres (moteur, récepteur) ne peut se faire qu'a l'arrêt.

a) Embrayage à dents : Figure (2)

L'embrayage à dents type ne peut transmettre le mouvement que dans un seul sens.

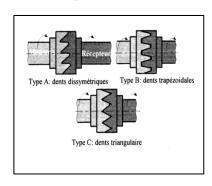


Figure 2 : Embrayage à dents[1]

b) Embrayage à griffes: Figure (3)

L'embrayage à a griffe type peut transmettre le mouvement que à l'arrêt.

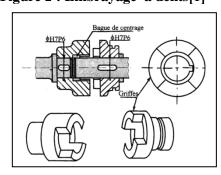


Figure 3 : Embrayage à griffe [2]

c) Embrayage à crabots : Figure (4)

un baladeur a denture, qui permet de lier en rotation, la roue 2 a l'arbre 1 et libérer 2', et vice versa, l'arbre 1 est toujours en rotation.

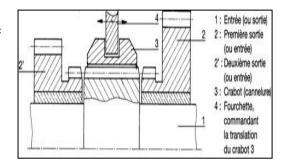


Figure 4: Embrayage a crabots [3]

I.3.2. Embrayage progressif: Figure (5)

La transmission de puissance entre deux arbres se fait par adhérence, sans faire arrêter l'arbre moteur.

Le frottement entre les surfaces de contacte se fait souvent par l'intermédiaire des garnitures, qui ont pour fonction d'augmenter le coefficient d'adhérence (plaquette ferodo).

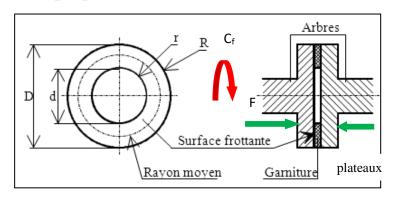


Figure: 5. Embrayage progressif [3]

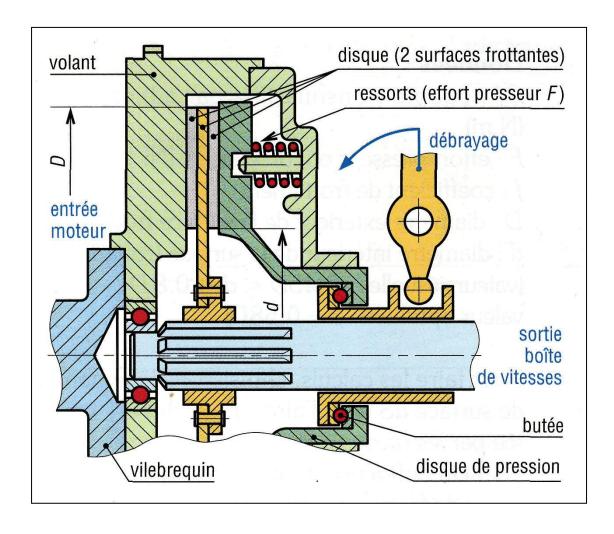
a) Le couple transmissible : [3]

Ou

N=nombre de surface de contacte

F : l'effort de pression

f : coefficient d'adhérence


Dmoy/2 : diamètre moyen de surfaces de contacte (R moyen)

$$Rmoy = \frac{2}{3} \frac{R^3 - r^3}{R^2 - r^2}$$
 ; $(Rmoy = \frac{R+r}{2} \ si\frac{1}{4} < \frac{r}{R} < \frac{1}{3}$

b) Embrayage mono disque: (Figure 5)

L'effort presseur peut être réalisé par des ressorts, ou par un diaphragme (embrayage automobile)

F

Figure : 5 Embrayage mono disque [4]

- Les constituants de Disque d'embrayage : (Figure :6)

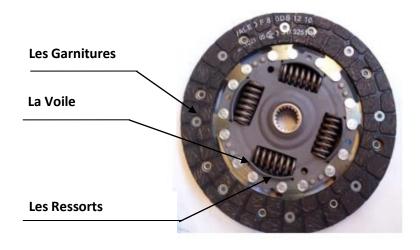


Figure 6: Disque d'embrayage [4]

- Les garnitures : Elles sont en matériaux composites procurant un haut coefficient de frottement et une bonne résistance aux températures élevées.
- ➤ La voile: Elle est en tôle mince fractionnée du plusieurs secteurs afin qu'elle évite de se voile sous l'effet d'échauffement.
- > Les ressorts: Ils amortissent les à-coups lors des manœuvres d'embrayage, et les variations de couple moteur.

• Diaphragme: (Figure:7)

Un ressort conique qui maintient le plateau presseur sur le disque.

<u>Ce système permet :</u>

- Une grande progressivité au démarrage.
- Un faible effort exercé sur la pédale.
- Un bon équilibre dynamique et une bonne ventilation.

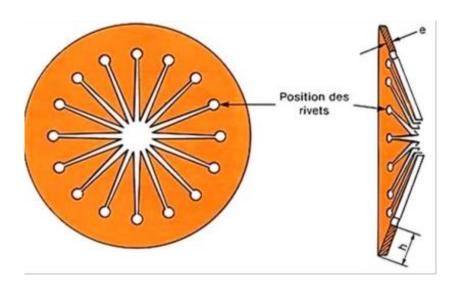


Figure 7: Diaphragme

• La butée d'embrayage : (Figure :8)

Sont rôle consiste à actionner le mécanisme d'embrayage en :

Transmettant une poussée axiale sur un organe en rotation constitue par les doigts ou le diaphragme.

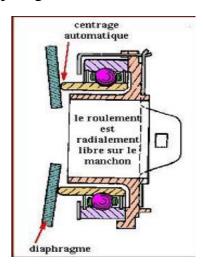


Figure 8 : La butée d'embrayage [4]

C) Embrayage multi-disques (Figure :9)

Permet de transmettre des couples importants sans risque de patinage, ces disques travailles a sec ou dans l'huile.

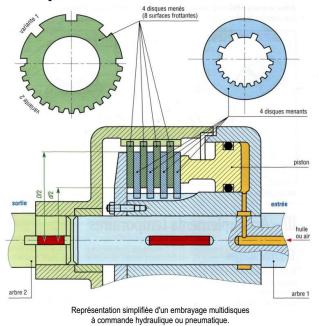


Figure 9: Embrayage multi-disques [4]

I.4. Les solutions téchnologiques : [5]

I.4.1. la géometrie de la surface de friction

- > Disque sa surface plane, le contact étant effectif suivant une couronne par face de disque,
- > Tambour cylindrique (dans le cas de certains embrayages centrifuges),
- > Conique (abandonné aujourd'hui sauf quelques applications à faible puissance). Son intérêt réside dans le fait qu'il est autobloquant : l'assemblage conique reste coincé en l'absence d'effort presseur. Il faut agir pour débrayer .

I.4.2. Les surfaces de contact :

Les surfaces de contact peuvent

- Fonctionner à sec avec refroidissement par air ;
- Etre lubrifiées et refroidies par bain d'huile.

a) Selon le nombre de disques (quand il s'agit de disques) :

- > Mono disque,
- > Bidisque à sec à commande unique ou à commande séparée (double),
 - > Multidisque humide ou à sec.

On appelle « disque » ou « friction » l'élément généralement associé à l'arbre de sortie et pincé par deux éléments liés à l'arbre moteur. Il porte les garnitures de friction, et constitue de ce fait une pièce d'usure. Le nombre de surfaces de contact est toujours pair.

b) Type de commande

- Commande mécanique
- > Hydraulique
- > Electrique asservie électroniquement;
- ➤ Centrifuge (dans ce cas la commande n'est pas directe mais induite par l'action sur l'accélérateur).

I.5. Classification Des Embrayages [6]

a) Embrayage mono-disque:

Dans ce type d'embrayage Le mouvement est de moins en moins transmis, rendant indépendante la boîte de vitesses du moteur. Cela permet, par exemple, de rester à l'arrêt sans caler le moteur, ou de changer de vitesse.

La manœuvre inverse consiste à relâcher progressivement la commande de débrayage, pour rétablir la liaison moteur/boîte de vitesses. Cette manœuvre s'appelle « faire patiner l'embrayage ».

b) Embrayage multidisque:

Les embrayages multidisques fonctionnent selon le même principe, sauf qu'on utilise un empilement de disques et de plateaux.

La poussée est donc, en théorie et aux frottements près, la même pour chaque disque et les plateaux intermédiaires permettent de répartir la transmission du couple sur de plus grandes surfaces. Les versions bi disques ou multidisques pour camions peuvent s'en passer, la multiplication des disques visant alors à répartir l'usure et prolonger la durée de vie du système.

Cette configuration est, pour un même couple transmissible, bien plus compacte radialement que celle à un seul disque. Elle est retenue sur les motocyclettes.

c)Embrayage électro rhéologique

Les progrès récents dans l'électro rhéologie permettent de penser à une nouvelle génération d'embrayage, se basant sur la capacité de changement entre l'état solide et l'état liquide d'un fluide électro rhéologique. Ce type d'embrayage permet de connecter ou isoler le couple d'entrée et celui de sortie très facilement et rapidement.

Le principe de l'embrayage électro rhéologique est très simple. Quand un **champ électrique** est appliqué, le fluide électro rhéologique (ER) se solidifie et relie le disque d'entrée et le disque de sortie. Quand ce champ est enlevé, le fluide ER revient à l'état normal (fluide). Le disque de sortie est donc isolé presque instantanément du disque d'entrée.

d)Embrayage centrifuge:

Dans ces dispositifs, l'embrayage est commandé par la vitesse de rotation de l'arbre moteur : lorsque celui-ci atteint une certaine vitesse, sous l'effet de la **force centrifuge**, des éléments (billes, ailettes) ont tendance à s'éloigner de l'axe de rotation et à frotter sur le disque secondaire, ce qui assure l'embrayament.

Ce genre d'embrayage est couramment utilisé sur les cyclomoteurs ou de petits outils portatifs comme la tronçonneuse, mais aussi sur certaines Citroën 2CV3.

Le ralentissement de la rotation du moteur a pour effet de désolidariser le moteur de l'arbre secondaire, ce qui réduit fortement le <<fre><<frein moteur >>.

e) Embrayage électromagnétique

Utilisé sur les compresseurs de climatisation, les lames de tondeuses, ventilateurs ou divers dispositifs d'asservissement en mécanique générale (machines-outils, imprimantes), l'embrayage électromagnétique utilise une bobine généralement concentrique à l'axe pour mettre en contact les surfaces de frottement. La commande en « tout ou rien » ne le destine généralement pas aux démarrages progressifs mais l'actionneur est intégré, et le dispositif compact est peu coûteux.

f) coupleur hydraulique [6]

Se constitué d'un volant moteur et d'un récepteur de forme mitorique munis d'ailettes planes, dont l'intérieur est remplit d'environ 30% d'huile.

Le volant moteur en tournant entraine l'huile ,qui par la force centrifuge se trouve projetée contre les ailettes du volant récepteur ,Provoquant ainsi son entrainement .le volant récepteur travaillant comme un turbine .

BIBLIOGRAPHIE

[1]. Disponible sur

https://slideplayer.fr/slide/11789082/

le 05/10/2022

[2]. Disponible sur:

https://www.electromecanique.net/2017/02/freins-et-embrayages.html

le:05/10/2022

[3]. Disponible sur:

https://www.alloschool.com/assets/documents/course-96/fonction-transmettre-transmission-de-puissance-embrayages.pdf

le:05/10/2022

[4]. Disponible sur:

https://slideplayer.fr/slide/11789082/

le:05/10/2022

[5]. Disponible sur :

https://fr.wikipedia.org/wiki/Embrayage#cite_note-mj-3

le: 05/10/22

[6]. A Ricordeau , C Corbet , Dossier de technologie de construction, éd CASTEILLA, Paris , France , 1999, p. 109.

Deuxième chapitre : Généralités sur Bureau d'études et bureau de méthodes

Introduction:

Le passage de l'idée a la réalisation effective d'une pièce mécanique, fait intervenir trois fonctions principales.[1]

- la conception-construction.
- L'étude et la préparation de la fabrication.
- La fabrication.

-Les principaux services mis en jeu sont :

- Le bureau des études.
- Les bureaux des méthodes.
- Les ateliers de fabrication.

II.1.Rôle et importance de la gestion de la production

La gestion de la production est la mise en application de méthodes et technique dans le but d'accomplir la transformation des matières premières en produits finis. Elle se résume en la combinaison de ressources, parmi les quelles les moyens matériels (les machines), les moyens humains (le personnel par qualification) et les matières (matières premières, matières consommables) dans un planning avec pour but assurer la fabrication du produit en qualité et en quantité.

II.2.Les contraintes:

II.2.1.Financières:

Produire a un cout optimal, cout de matières et consommable, cout de stockage des encours et de produits semi ouvres, cout de gestion des magasin, cout des heures de travail supplémentaires, cout des arrêts, faisant partie intégrante du cout de revient. Maitriser ces derniers est aussi une garantie pour la commercialisation des produits finis.

II.2.2.Temporelles

Produire dans les délais, assurer une livraison juste a temps, éviter les ruptures de stocks, éviter le gonflage des stocks de produits finis. Car cela a une incidence directe sur la satisfaction de la clientèle (pertes de commandes) ou sur le cout de revient du produit finis du au cout supplémentaires du stockage.

II.2.3.Mécanique:

Maintenance préventive et gestion des temps d'arrêt), anticiper sur les pannes et prévoir des solutions alternatives en cas d'arrêt d'une machine.

II.2.4.Qualité:

Produire avec le moins de défauts possible), un produit de bonne qualité participe a la fidélisation de la clientèle, véhicule l'image de marque de l'entreprise.

II.2.5.Planification:

Assurer une circulation continue des flux, détecter et supprimer les goulets d'étranglement dans le circuit de production. Il s'agit aussi a ce niveau de définir un plan de production, de définir les gammes opératoires, d'ordonnancer les opérations, et enfin la répartition des taches durant tout le processus de fabrication. [2]

II.3. Organisation du système de gestion de la production

Dans une entreprise industrielle de nombreux services composent le système de production :

II.3.1. Le bureau des études :

Il est en charge de la conception des produits finis qui seront fabriqués. Pour chaque produit, il dresse la liste des composants dans une structure de décomposition appelée **nomenclature.** Deux principale familles de logiciels sont alors utilisées pour accomplir cette tache : les logiciels CAO (Conception Assistée par Ordinateur) et les logiciels de CFAO (Conception de la Fabrication Assistée par Ordinateur).

II.3.2.Le bureau des méthodes :

Il définit de la manière la plus détaillée possible les différentes opérations a réaliser lors de la fabrication du produit en les moyens matériels requis ,mais aussi l'ordre et les détails dans lesquels elles sont automatisées afin de diminuer les délais de fabrication , assurer la production de produits de bonne qualité (avec le moins de défauts possibles),diminuer le nombre de taches répétitives et dangereuses pour le personnel .

II.3.3.Le bureau d'ordonnancement :

Il définit et gère le plan directeur de production, organise les activités et décrit l'ordre dans lequel elles sont exécutées au sein des différentes unités de fabrication. Il programme la succession des tâches à réaliser en un délai optimal.

II. 4.Les ateliers de production :

Il s'agit des cellules productrices. Les ateliers exécutent les tâches et assurent la transformation des matières premières en produits finis, suivant le plan défini par le bureau d'ordonnancement.[3]

II.4.1. Notion générale bureau d'études :[4]

a) Définition

Le terme « bureau d'études » désigne une structure chargée d'interpréter des données. Composées d'ingénieurs et de techniciens, ces entreprises sont chargées de produire des études qui orientent et justifient les choix structurels et techniques d'un projet.

b) Activité de bureau d'étude

L'activité des bureaux d'études relève du domaine des services : les prestations sont de caractère intellectuel. Un bureau d'études ne réalise pas directement de travaux ou de fourniture, bien qu'il intervienne en général en amont afin d'effectuer des recommandations préalables, ou en aval pour vérifier la qualité des réalisations.

c) Quelles sont les tâches d'un bureau d'étude?

- Le bureau d'étude est souvent sollicité pour des travaux de plus ou moins grande envergure, dans le bâtiment ou autre.
- Il livre à travers ses études des choix techniques et des orientations pour mener à bien l'exécution d'un projet.
- Il se base sur des calculs pour proposer des solutions visant à orienter la réalisation des opérations.

d) Bureau d'étude mécanique

Un groupe de techniciens ou toute une équipe d'ingénieurs se sont constitués pour la conception de divers éléments d'un ensemble mécanique, afin de parvenir à la constitution d'un produit fini.

e) Rôle de bureau d'étude :

- Opte a bien mener l'intégralité de toutes les étapes indispensables à la concrétisation d'un avant-projet de fabrication d'un produit donné.
- Il est responsable sur le choix, des matériaux et la réalisation des dessins (d'ensemble, de définition, nomenclature, cotation)de produit fini, tout en respectant les normes et les désignations et les résultats de calcul.
- Toutes les solutions qu'il propose doivent être conformes aux exigences des normes en vigueur avant leur validation.
- Il est en contacte avec le bureau de méthode en cas ou il y'a une difficulté d'usinage (une cote, une spécification géométrique ou autre), s'il est possible de la changer ...

f) Ces études sont –elles obligatoires?

En effet, les études réalisées dans le cadre d'un bureau d'étude sont tout à fait incontournables pour divers motifs :

- Les techniciens chargés d'études au sein de ce département doivent respecter les exigences des normes de fabrication en
- Aval des études qu'ils réalisent pour proposer des solutions en adéquation avec toutes les contraintes possibles.

Dans la même optique, l'entreprise qui va se consacrer à l'exploitation de toutes ces données restera à l'abri des éventuelles dérives durant le processus de fabrication de son produit .[4]

Bibliographie

[1] R. Dietrich, D. Garsaud, S. Gentillon et M. Nicolas, **Méthodologie production et normalisation**, éd. AFNOR NATHAN, 1989, Luçon, France, P.1.

[2]. Disponible sur:

http://www.logistiqueconseil.org/Articles/Gestion-production/Role-organisation-gp.htm, visité le: 10/02/2022.

[3]. Disponible sur:

https://www.serodem.fr/nos-activites/bureau-detudes-mecanique/, visité le : 24/02/2022.

[4]. https://www.serodem.fr/nos-activites/bureau-detudes-mecanique/

•

TROISIEME CHAPITRE Analyse et conception de produit

TROISIEME CHAPITRE : Analyse et conception de produit

III .1 Analyse de produits :

L'analyse de produit fait référence à l'étude détaillée réalisée sur un

produit. Cela permet de mieux comprendre ses caractéristiques, son

fonctionnement et ces utilisations.

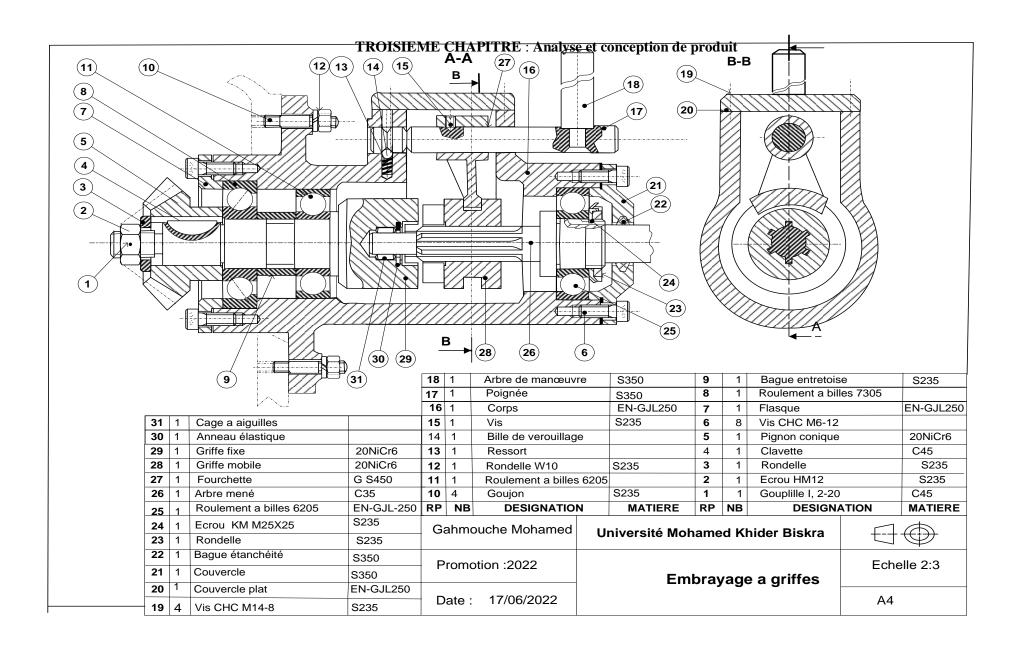
III.1.1. Définition de produit :

Un produit désigne aussi bien un objet matériel qu'un bien intangible

ou un service.

Il répond à un besoin identifié des clients et s'inscrit dans la

stratégie de positionnement d'une marque, notamment en termes de prix.


On à présentés notre produits par trois dessins :

a) Dessin d'ensemble. Figure (1)

b) Vue éclatée. Figure (2)

c) Dessin en perspective. Figure (3)

- 21 --

TROISIEME CHAPITRE : Analyse et conception de produit

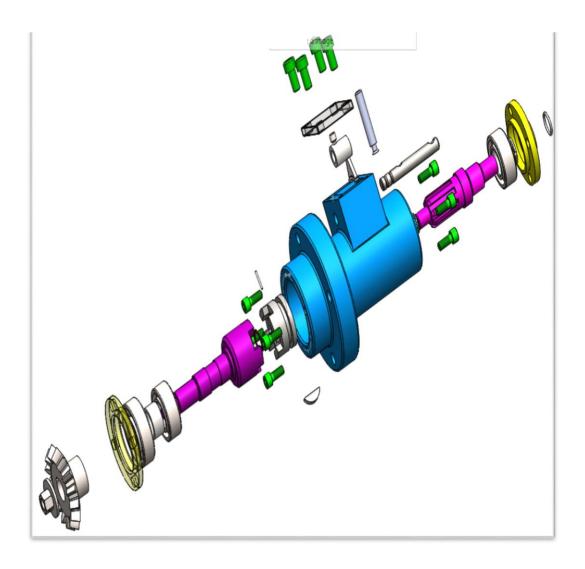


Figure : (2) : Vue éclatée

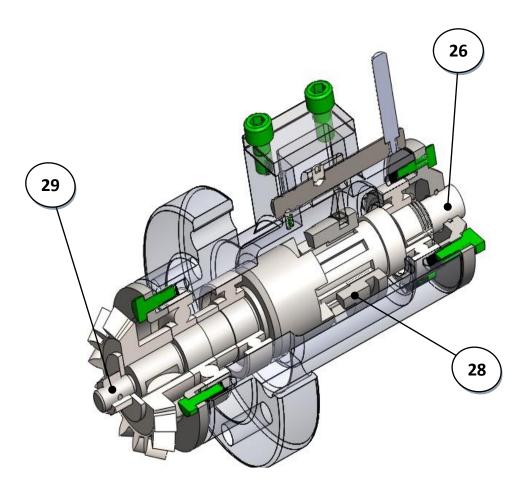


Figure: (3) Dessin en perspective

TROISIEME CHAPITRE : Analyse et conception de produit

III.1.2. Analyse fonctionnelle:

a) Mise en situation: Figure (4)

L'embrayage a griffes représenté sur **les figures** (1,2et3) en perspective) ,et en vue éclatée ,est un embrayage utilisé pour transmettre le mouvement de l'arbre moteur(griffe fixe 29) a l'arbre récepteur(26) ,par l'intermédiaire d'un griffe mobile (28).

Cet embrayage, se trouve entre la boite a vitesse de fraiseuse ,et le moteur .ce qui permet le changement des vitesse sans arrêt le moteur.

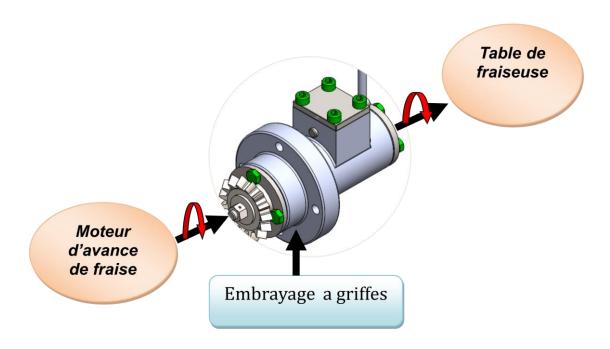


Figure: (4): Mise en situation

b) Etude technologique:

• Chaine cinématique : Figure (5)

Le mouvement de rotation du moteur est transmis a la griffe fixe 29 par l'intermédiaire d'un pignon conique 5, ce dernier peut transmettre par crabotage le mouvement de rotation a la griffe mobile 28, qui a son tour transmis le mouvement de rotation par cannelures a l'arbre mené 26, lequel transmis le mouvement a la vis -mère du chariot de la machine (non représenté sur le dessin).

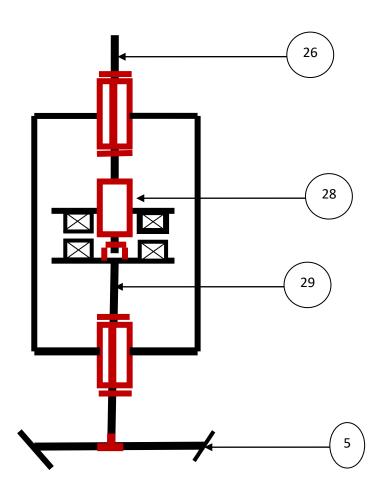


Figure: (5): Chaine cinématique

La commande :

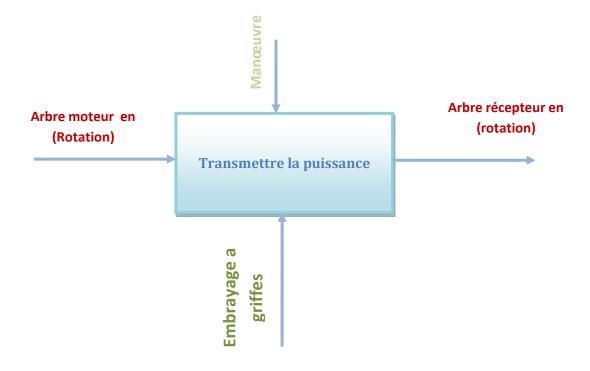
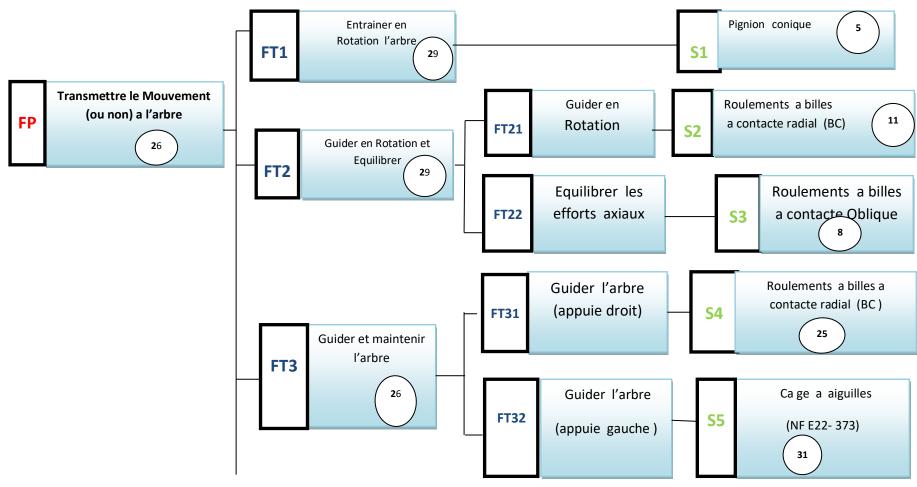
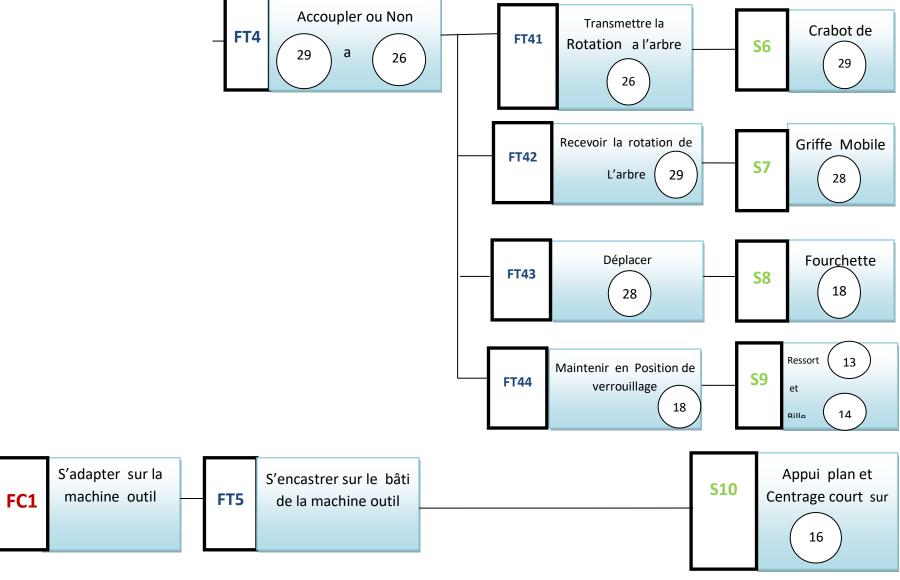
Le mouvement de translation de la griffe mobile 28, est assuré par la fourchette 27 solidaire a 17 mené d'une poigné 18, actionné par l'opérateur.

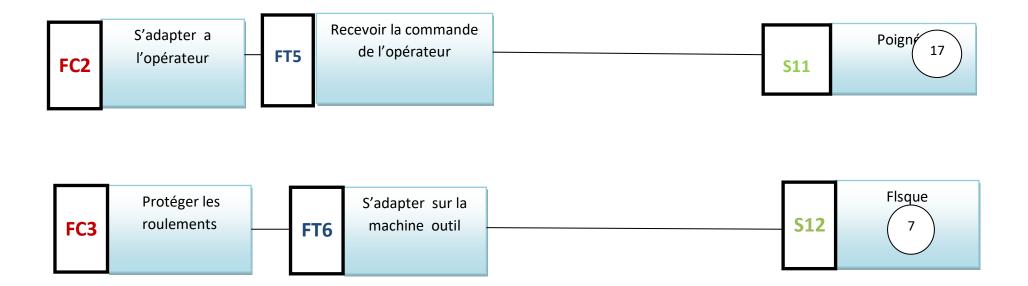
Le crabotage :

La transmission de puissance, de la griffe fixe 29 a la griffe mobile 28, s'effectue par crabotage, ces deux pièces représentent de formes des cannelures, qui peuvent s'emboiter l'une dans l'autre pour s'accoupler.

III.1.3. Analyse fonctionnelle:

a) Fonction globale: C'est la fonction, qui doit être assurée par le système. Figure (6)


Figure: (6): Fonction global

- FP : les fonctions principales
- FC : les fonctions complémentaires
- FT : les fonctions Techniques
- S : Les solutions téchnologiques adoptées

TROISIEME CHAPITRE : Analyse et conception de produit

b) Les fonctions techniques

En utilisant l'outil graphique d'analyse des fonctions techniques de système (FAST).

c) Solutions technologique

❖ Le corps (21): C'est l'élément contenant, qui supporte et protège tout les sous-ensembles de système.

Surfaces fonctionnelles : Figure : (7)

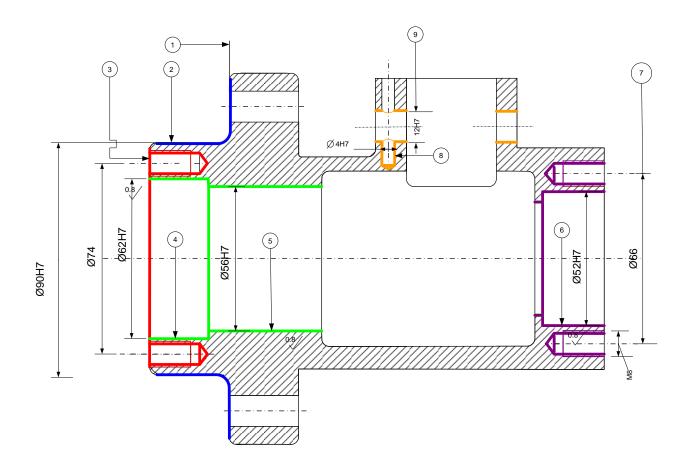


Figure: (7): surfaces fonctionnelles

FAST : analyse des fonctions des systèmes téchnologiques.

${\bf TROISIEME\ CHAPITRE: Analyse\ et\ conception\ de\ produit}$

Tableau (1): Solutions technologiques

Repères	Couleurs	Symbole	Fonctions	solutions	Exigence dimensionnelles
1	Bleu	FT5	S'adapter sur la machine	Goujons 10	
3	Rouge	FT6	Protéger par flasque 7	4vis positionner de 45° /A ISO 4762[1]	Ø0.1 A
4	Vert	FT2	Guider en	Roulement 8 SKF6205 [2]	BT25x62x17
5			rot ² ation l'arbre 29	Roulement 11 [2]SKF7305	BC 25x52x15
6	Violet	FT3	Guider et maintenir 26	Roulements 25 SKF6205[2]	Ø Ø0.1 A BC25x52x15
7	Violet	FT8	Protéger et appuyer par couvercle 21	Centrage court et 4 vis ISO 4762[1] positionner de45°/A	
8	Orange	F4	Accoupler ou non 29 a 26	Guidage par 18 et verrouillage par 13 et 14	

> Choix de la matière :

la matière de la pièce est **EN-GJL 250** (fonte a graphite lamellaire), qui a une bonne molabilité et une très bonne usinabilité . avec les caractéristiques mécaniques suivante : **Tableau** (2)

Tableau (2): Caractéristiques mécaniques:[1]

Caractéristiques mécaniques	Masse volumique (ρ en kg/dm3)	Effort de tension, r _{p0,2} (mpa)	Effort de rupture, r _m (mpa)	Allongement a	Module d'élasticité (gpa)	Coefficient moyen de dilatation thermique entre 20(°C) (10-6/(°C))		
					20 °C	-100°C	200°C	400 °C
EN GJL 250	7,20	165 – 228	250 – 350	0.3 - 0.8	20	-100	200	400

> Choix de brut :

le brut est obtenu par moulage au sable, au moyen de deux parties symétriques constituent le modèle en bois ou métallique et un noyau au sable .le surépaisseur d'usinage et de 2 mm avec un dépouille de 1.5%.

❖ L'arbre a griffes(29) :

Elément libre en rotation, qui reçoit le couple moteur, et le transmet a d'autre organe de l'ensemble. Figure :(10).

• Choix de la matière :

L'arbre 29 est fabriqué de **20NiCr6** cette matière résiste aux efforts répétés ,choc et vibrations

• Caractéristiques [2]

Limite d'élasticité de 75- 110 daN/mm² Résistance a la rupture de 70-110 dan/mm² Allongement 8-10 %

> Choix de brut :

Le brut est obtenu par estampage a chaud ,avec un surépaisseur d'usinage de 2 mm et un dépouille de 2% .La rugosité sur les surfaces est Ra 6.3 microns

➤ Fonction de l'arbre:la fonction d'usage :Figure(8)

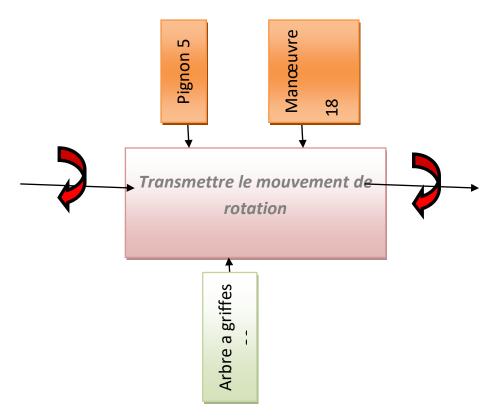
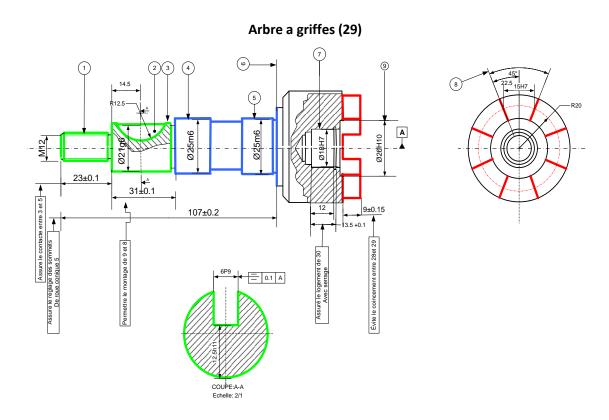
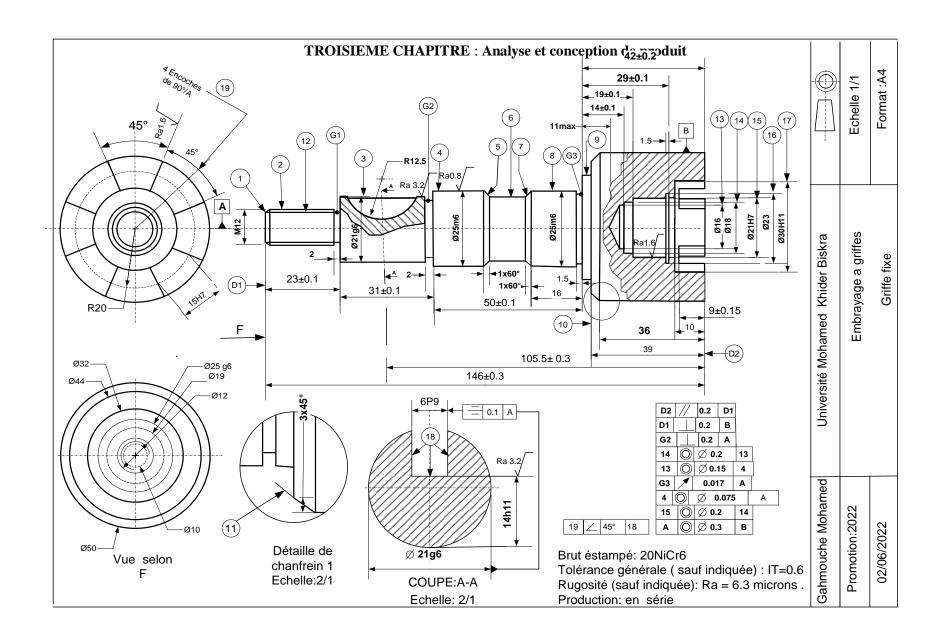


Figure (8): Fonction de l'arbre

> Exigences technologiques partielles de l'arbre : Figure : (9)




Figure : (9) Exigences technologiques partielles de l'arbre

▶ Les solutions technologiques: (Tableau 3)

Tableau: (3) Les solutions technologiques

Repères	Couleurs	Fonctions	solutions	Exigences dimensionnelles
1		Entrainer l'arbre 29 en rotation	2 écrous ISO-4034[1]	HM12
2	Vert		clavette disque4 NF-E22- 179[2]	6x10
3			Pignon 5	Ø Ø 0.1 A 1.6√
4		Guidage de l'arbre 29 en Rotation	Roulement 8 BT SKF7305[3]	BT25x62x17
5	Bleu		Roulement 11 BT SKF6205	BT 25x52x15
6			Epaulement sur l'arbre	✓ Ø0.021 A 1.6√
7	Noire	Guidage de 1'arbre mené 26	Cage a aiguille ISO 3096 – classe	K19x23x17
8	Rouge	Transmettre le mouvement de rotation a l'arbre 26	4 cannelures a 45° / a l'axe A	Ø Ø0.1 A 1.6√
9	Nouge		Plan de jauge	<u>=</u> 0.1 A

III.1.4. Extraction de dessin de définition de l'arbre à griffes :

III.2. Conception de produit

Introduction

Cette partie essentielle de notre travaille, est consacrée a l'utilisation de l'assistant CAO(Conception Assistée par Ordinateur), a partir de la création de la pièce, de sa mise en plan a son assemblage

Le reste du sujet ,sera devisé en deux parties inséparables (conception et usinage) la conception de dessin est faites par **solidworks**2016 et le logiciel **visio 2003** consacré a la conception assistée par ordinateur,ces derniers possédent des outils et gabarits multiples ,pour le dessin considéré

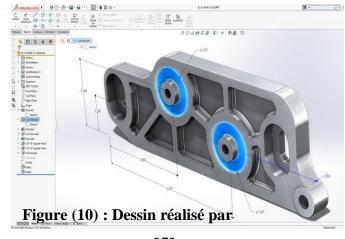
a) La CAO (Conception Assistée par Ordinateur) [4]

Egalement appelée en anglais « Computer Aided Design » (CAD), est un terme générique s'appuyant sur un ensemble d'outils et logiciels de conception et de modélisation. En d'autres termes, elle permet de réaliser des produits industrialisables à l'aide d'un ordinateur et d'un ensemble de techniques automatisées.

Il faut souligner que ces logiciels substituent entièrement les dessins et schémas réalisés à la main. Notons qu'il ne faut pas confondre la CAO avec la DAO, Dessin Assisté par Ordinateur. En effet, cette dernière a pour objectif la simple mise en plan et édition de dessins à l'aide d'un ordinateur.

Enfin, le dessinateur projeteur est la personne en charge de cette conception. En tant que responsable du projet, il doit être en mesure d'apprivoiser de nombreux logiciels. De la même manière, il doit maîtriser sur le bout des doigts son domaine d'activité pour réaliser parfaitement toutes modélisations. Il est en règle générale accompagné par plusieurs chefs de projets, responsables de la coordination, ainsi que du directeur du bureau d'études pour la bonne conduite des projets.

b) logiciels de CAO professionnels


Il existe plusieurs variante de logiciel de dessin, nous citons les célèbres parmi eux .

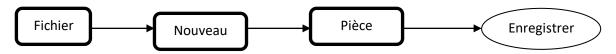
- > Autocad
- > Inventor
- > Solidworks
- > Fusion360
- > Catia
- > Creo8

Solidworks

Logiciel de dessin, développé par Dassault Systèmes, ce logiciel est un

des plus connus du marché. Il utilise la conception paramétrique, générant alors trois types de fichiers : la pièce, l'assemblage et la mise en plan. Solidworks comprend une large gamme de fonctionnalités telles que des outils de validation de la conception ou le reverse

solidworks[5]


engineering. Souvent utilisé pour des pièces industrielles, il est pratique et très détaillé.

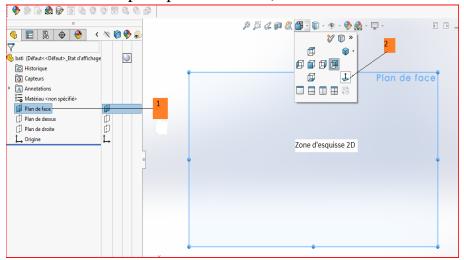
III.3. Conception Assistée par solidworks

III.3.1. Conception de bâti 21

1-Création d'un nouveau document de nom (bati 29)

De la barre d'outil standard on clique sur :

Ou de la barre de menu on clique successivement. Figure (11)



Figure(11): Document pièce (bâti) [6]

2) Créer une nouvelle esquisse.

• Choisir le plan d'esquisse. Figure (2)

Exemple: plan de face 1, l'orienter vers la normale 2

Figure(12). Plan d'esquisse (bâti).

3)Créer une esquisse fermée

Créer Une esquisse 2D appropriée, et un axe de construction pour la révolution de l'esquisse. Figure (3).

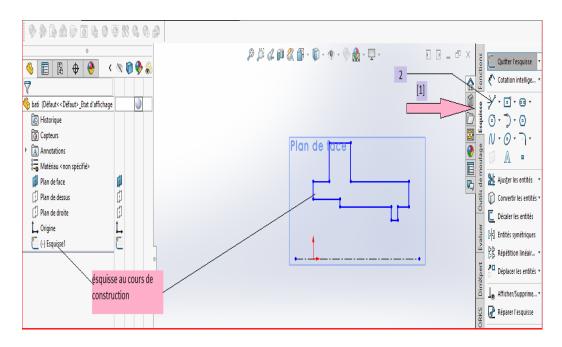
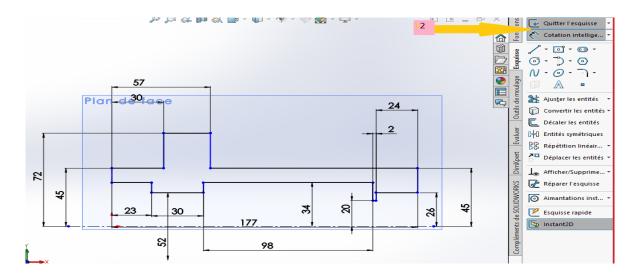



Figure (13): Création d'esquisse (bâti).

• Cotation de l'esquisse : Figure (14).

L'outil cotation intelligente 2, permis de coter les entités de l'esquisse de différentes formes.

Figure(14): Cotation d'esquisse (bâti).

La fonction <<revolved Boss/Base>> :

Cette fonction , Permet de créer une révolution cylindrique autour de .Figure (15)

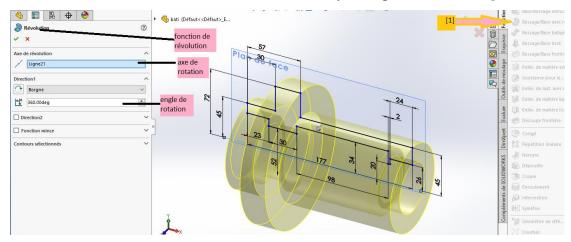
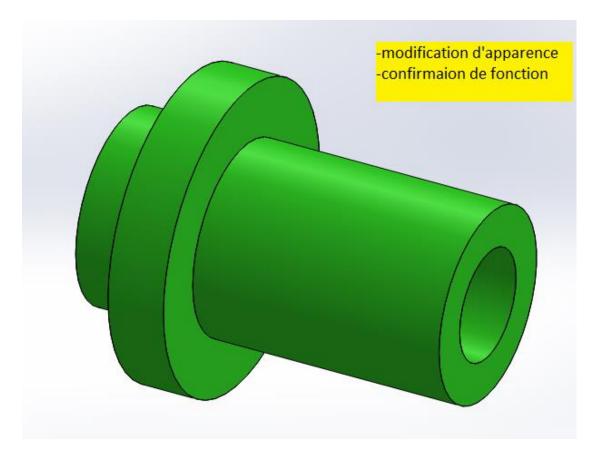



Figure (15): Révolution d'esquisse (bâti).

Confirmation de la fonction << Revolved Boss/Base >>

4) Insertion d'une fonction extrusion :

Editer le plan d'esquisse \implies créer l'esquisse \implies coter le dessin \implies utiliser la fonction extrusion, ces étape sont représentées par les figures (16,17et 18).

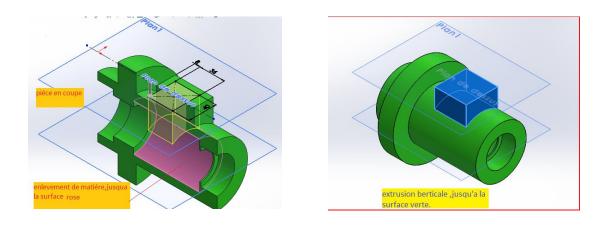


Figure (16). Création de l'esquisse (bâti). Figure (17). Fonction extrusion (bâti).

5) Insertion d'une fonction enlèvement de la matière :

Editer le plan d'esquisse \longrightarrow créer l'esquisse \longrightarrow coter le dessin \longrightarrow fonction extrusion

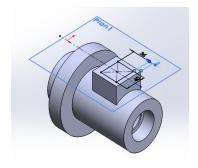


Figure (18) Création de l'esquisse (bâti).

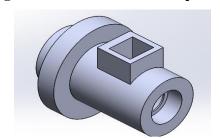


Figure (19). Enlèvement de matière (bâti).

6) Insertion des trous de perçage

Cliquer sur la surface de position de perçage → Esquisser la Position des axes des Trous → cliquer sur la fonction assistant de perçage.

Figure (20).

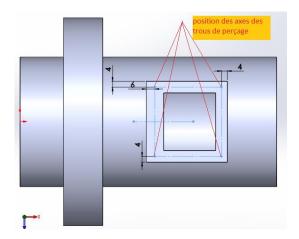


Figure (20). Esquisser les axes des trous (bâti).

• Fonction assistant pour le perçage : Figure(21 et 22)

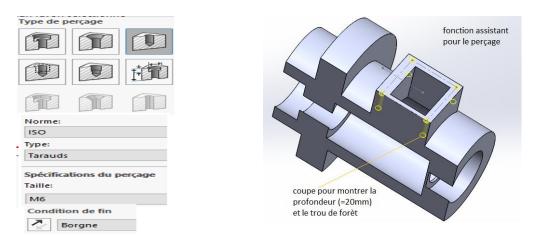
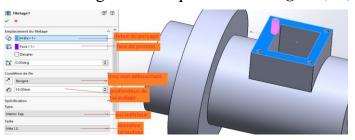



Figure (21). Paramètres de perçage. Figure (22). Fonction de perçage.

• Ajout de filetage :

Editer les paramètres de taraudage 👄 cliquer sur ok . Figure (23)

Figure (23).

Répétons cette dernière opération, pour avoir 4 trous taraudés sur la même surface. Figure (24).

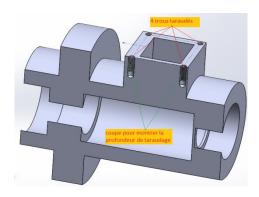
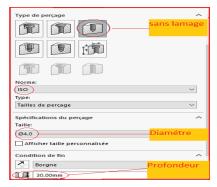



Figure (24). Taraudage des trous.

7) Ajouter un trou de perçage (ø=4mm, P=30mm) . Figure (25 et 26)

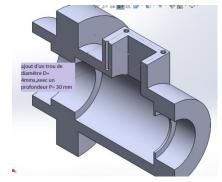
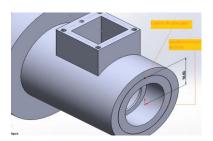
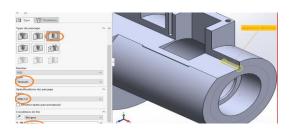



Figure (25) : Paramètres de perçage


Figure (26): Confirmation de choix

8) Taraudage des 4 trous sur la face de bout avant de bâti :

- Perçage d'un trou (esquisser la position d'axe de trou ,et utiliser l'assistant de perçage). Figures (27 et 28)
- Utilisation de la fonction répétions circulaires (définir les paramètres, confirmer par ok). Figure (29 et 30)

Figure (27).

Figure (28)

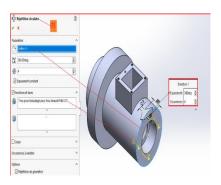


Figure (29)

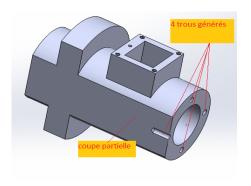
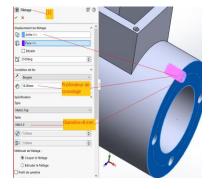



Figure (30)

• Taraudage (définir les paramètres de taraudage et confirmer successivement pour les 4 trous) : Figure (31) et Figure (32).

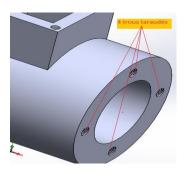


Figure (31)

Figure (32)

- 9) Ajout de 4 trous taraudés sur le bout arrière de bâti
- Esquisser la position des trous, choisir la fonction assistant pour le perçage et répéter les fonctions symétriques. Figure (33) et Figure (34).

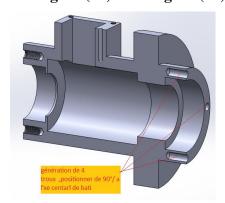
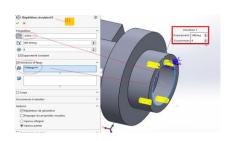
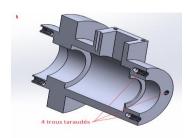




Figure (33)

Figure .(34)

Création de taraudage. Figure (36) et Figure (37).

Figure (36)

Figure (37)

10) Ajout de 4 trous sur la couronne de bâti :

• Esquisser un cercle de construction et centre des trous. **Figure :(38)**

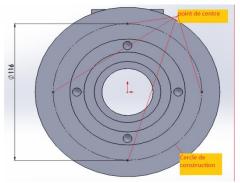
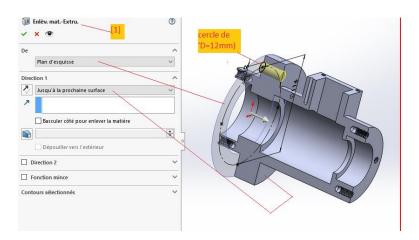
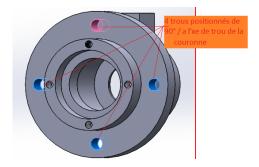
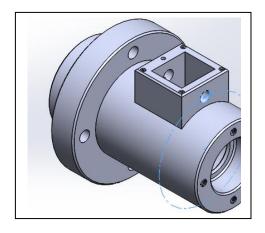


Figure (38)

■ Esquisser un trou lisse de (D=12 mm) débouchant et éditer la fonction enlèvement de la matière. Figure (39)


Figure (39)

• Editer la fonction répétition circulaire. Figure (40).

Figure (40).

10) Ajout d'un trou débouchant sur la surface prismatique parallèle a l'axe centrale de bâti : Figure (41) et Figure (42).

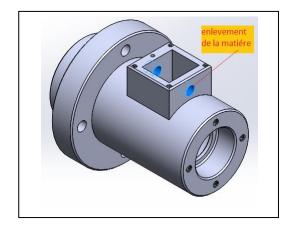
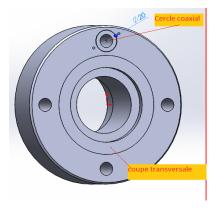
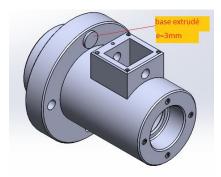


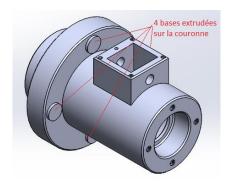
Figure (41): Edition de l'esquisse.

Figure (42): Fonction enlèvement de la matière

11) Ajout d'un bossage extrudé sur les trous de face de couronne :

• Editer l'esquisse : Figure (43).


Figure (43)

• Editer la fonction bossage extrudé : Figure (44)

Figure (44).

Editer la fonction répétition circulaire : Figure (45). et Figure (46).

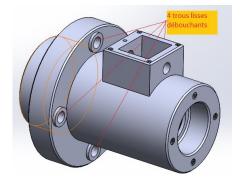
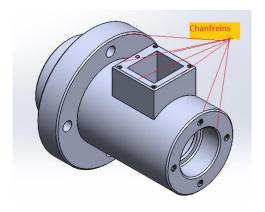



Figure (45).

Figure (46).

12) Ajouter la fonction congé :

• Ajout d'un chanfrein sur les arrêtes vives (1.5x45°). Figure(47).

Figure (47).

• Ajout d'un arrondi(r= 2 mm). **Figure (48).**

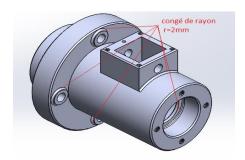
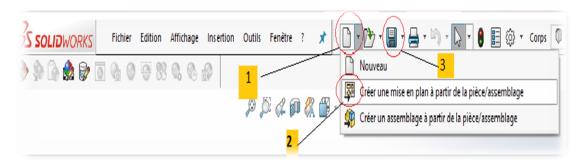



Figure (48).

III .3.2) conception de l'arbre a griffes (29)

1) Création d'un fichier arbre a griffes (29). Figure (49)

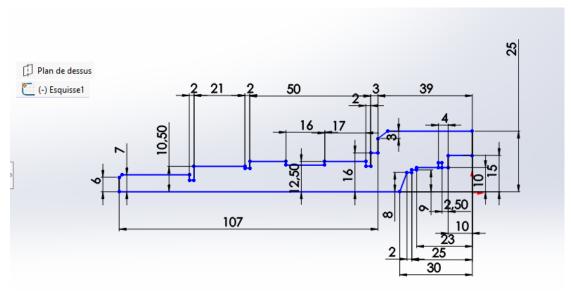
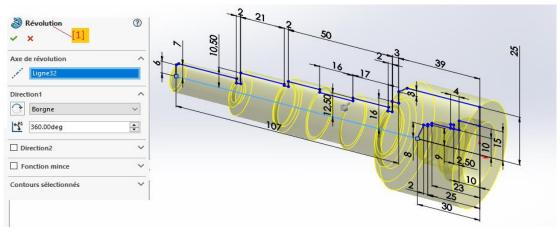
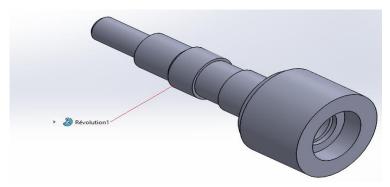

On clique comme suit : 1,2 ,3 et on enregistre la pièce sous le nom arbre a griffe, comme suit :[7]

Figure (49).


2) Créer une nouvelle esquisse :Figure (50).

- Cliquer sur plan de face (orientation normale)
- cliquer sur esquisse
- cliquer sur ligne
- coter l'esquisse


Figure (50).

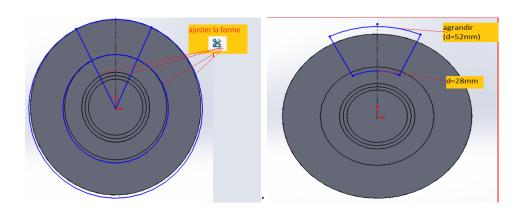
- 2) Créer la fonction révolution de l'arbre : Figure (51).
- Cliquer sur bossage/avec base révolved.

Figure(51).

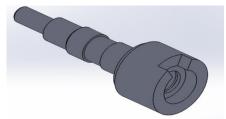
• Après confirmation de la fonction .Figure (52).

Figure (52).

3) Créer la forme des encoches :


• créer l'esquisse, Figure(53).

Activer le plan d'esquisse


Esquisser la forme, a l'aide de l'outil(et)

et Coter le dessin

Ajuster l'esquisse .

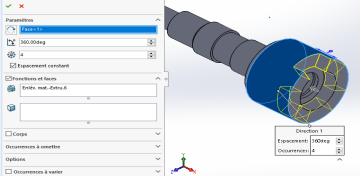
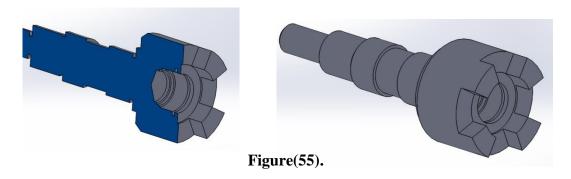
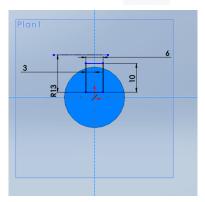


Figure (53).


Figure (53)

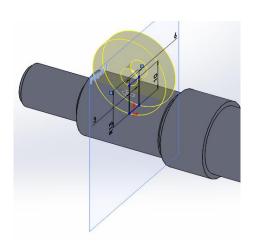
• Utiliser la fonction répétition circulaire (): Figure (54).

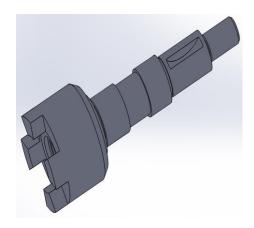

Figure(**54**).

• Après confirmation de la fonction répétition circulaire :Figure (55)

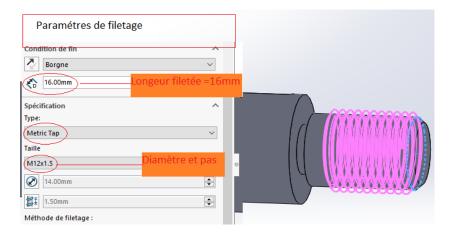
4) Création la rainure de clavette (6x10)

Création de l'esquisse : Figure (56).
 Créer un plan parallèle au plan de droite (□) ⇒ esquisser un rectangle (□), un axe de construction(□), et coter l'esquisse (०).




Figure(56).

• Création de la fonction enlèvement : Figure (57).


de la matière-révolution

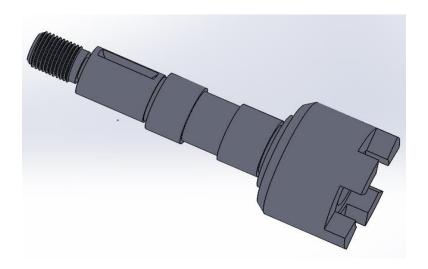
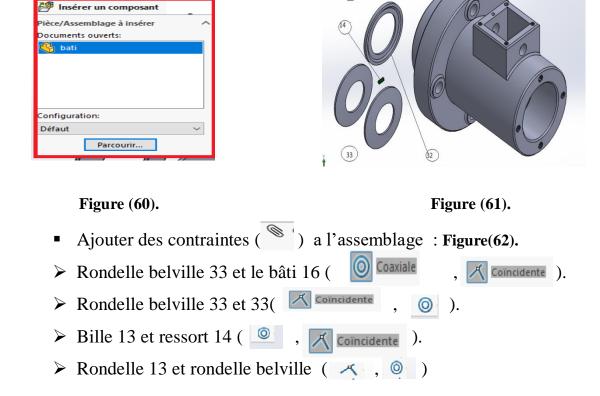


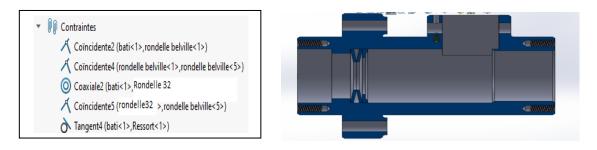
Figure (57).

- - Choisir les paramètres de filetage en cliquant sur l'assistant pour le filetage Figure (58)
 - confirmation de la fonction .Figure (59).

Figure(58).

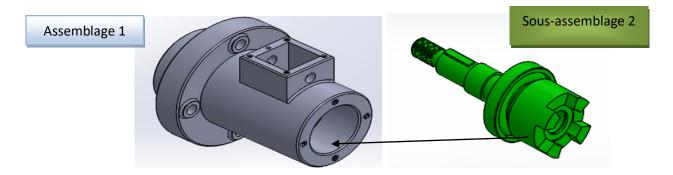
Figure (59)

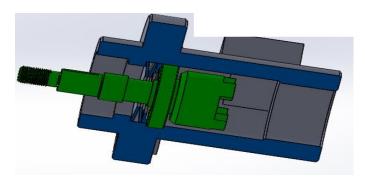

III.3.3) Création de l'assemblage de produit


1) Création de sous assemblage de l'embrayage a griffes

Création de document :

Cliquer sur fichier \longrightarrow nouveau assemblage


- Insertion des composants :
- On clique sur parcourir et on choisit le bâti 16 pour l'ouvrir dans la zone graphique,, on fixe le bâti sur l'axe de coordonnées. Figure (60).
- On clique sur insertion des composants et sur parcourir, on sélectionne les composants suivants (13, 14, 32,33) .Figure(61).


Figure (61).

3)Insertion de sous assemblage 2. Figure :(62)

Figure(62)

- Avec les contraintes suivantes :Figure(63)
 - Ocaxiale (bati 16, arbre a griffes 29
 Coïncidente (bague exterieure 11, rondelle 33

Figure (63).

4) Insertions des composants: Figure(64).

- De bibliothèque de solidworks on clique sur toolbox et on choisit les éléments (8,5, 3, 2,1 et 6).
- Sur parcourir on insert le flasque 7 .et le clavette 4.

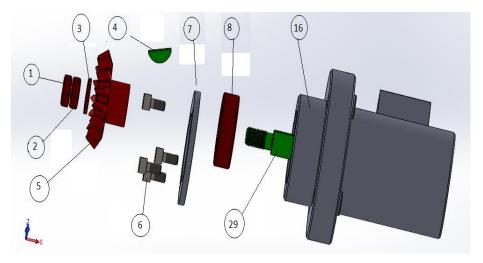
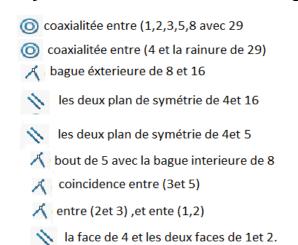
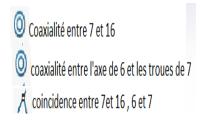
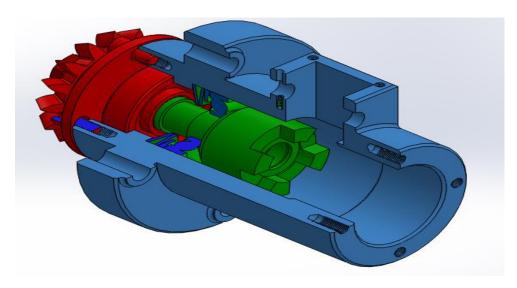
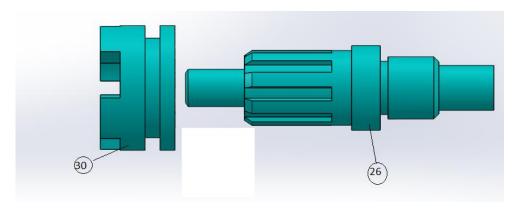
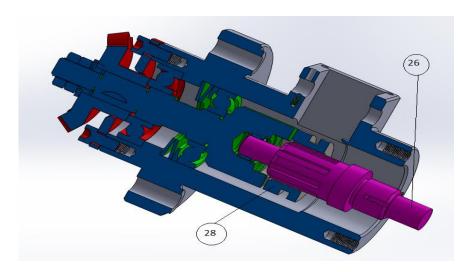





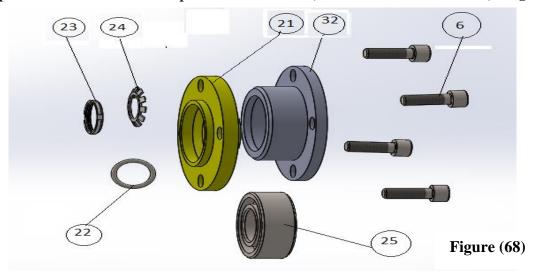
Figure (64)

Ajouter des contraintes a l'assemblage : Figure (65)

Figure(65).

5) Insertion des composants a l'assemblage : on clique sur insérer des composants, et sur parcourir ,on choisit les pièces (26,30). Figure(66).


Figure (66).

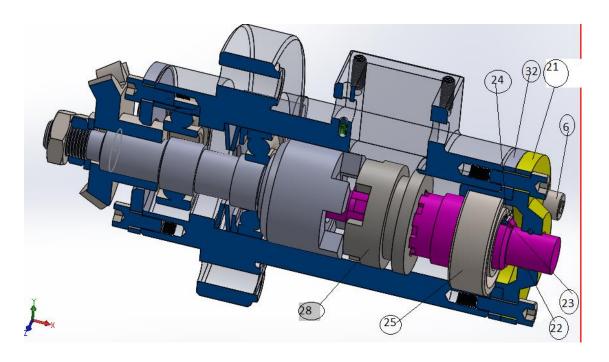
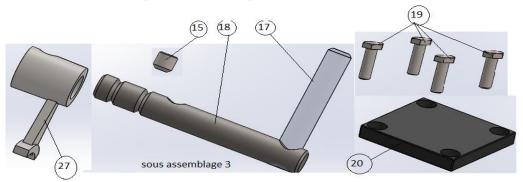
- Ajout er des contraintes a l'assemblage. Figure (67).
- o coxialitée de 260avec 30
- coincidence entre les plans de symétrie des cannelurs et rainures (30et 26)
- parallélisme entre les plans de 30et 26

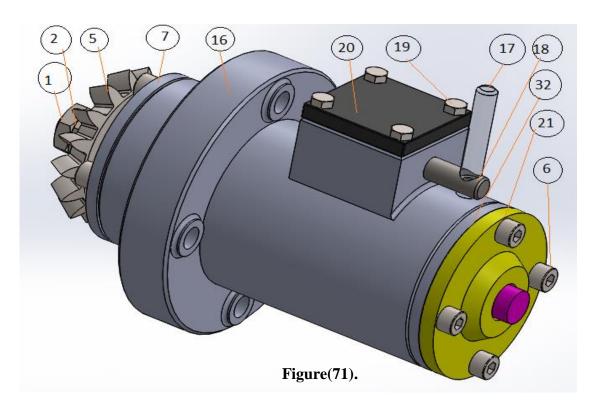
Figure (67)

6) Insertion de nouveau composants : on clique sur insérer des composants ,sur parcourir ,on choisit les pièces suivantes (32,25,24,21,22,23 et 6). Figure (68).

• Ajouter des contraintes a l'assemblage. Figure (69).

- Coaxialité entre 16 et 32, positionnements coaxial entre les perçages de 16 et 32, coïncidence entre les plans de 16 et 32.
- Coaxialité et coïncidence function entre (25, 26).
- Coïncidence on entre (25 et 16).
- Coïncidence de coaxialité de (23,24) avec 25.
- Coaxialité o et coïncidence entre (21, 22).
- Coaxialité entre les perçages de (21et 32).
- Coaxialité de entre les axes de trous de perçage de 16 et les axes des vis 6, et coïncidence des plans de 6 avec 21.


Figure (69)

- 7) Insertion des nouveau composants .Figure (70).
- ➤ Insérer la fourchette 27
- La vis sans tète 15
- ➤ Le sous assemblage 3
- ➤ Insérer le couvercle plat 20 et les quatre vis 19

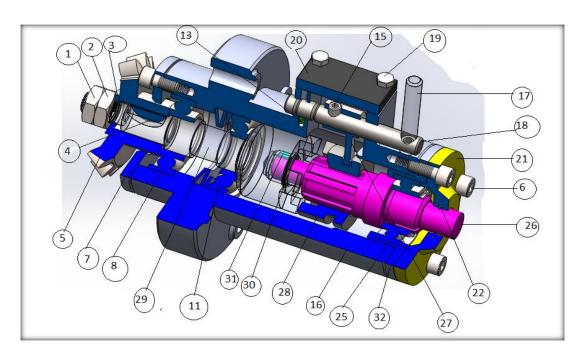


Figure (70).

- Ajouter des contraintes a l'assemblage 1. Figure (71).
- Coxialité de 27 avec 28 et de l'alésage de 27 avec 18.
- Coaxialité entre 15 et 27.
- verrouillage de 16 avec 18.
- Coïncidence 🔥 entre 20et 15, coixialité 🌀 entre les trous de perçage de de 20 et 16.

8) réalisation d'un nouveau assemblage :Figure(72).

Figure (72).

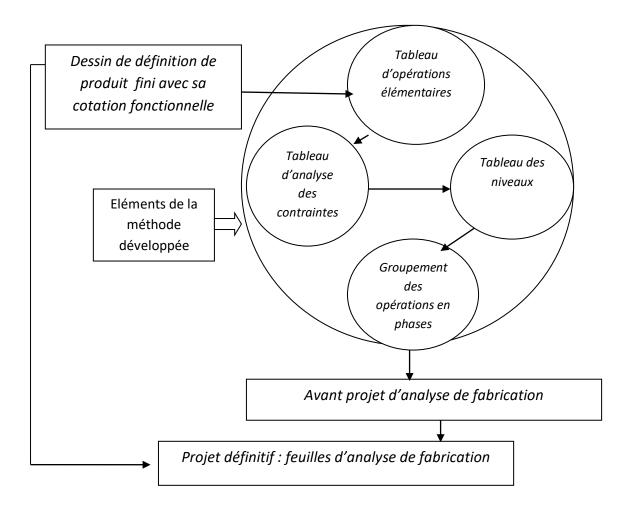
III.4. Analyse de fabrication de produit

Introduction:

L'importance de besoin conduit a fabriquer le produit en moyenne série dans un atelier conçu pour ce type de production avec des machines outils semi-automatique appropriées.

On a choisit pour l'usinage l'arbre a griffe fixe 29, cette pièce mère dans l'assemblage, embrayage a griffe, vu son rôle et son importance dans la transmission de mouvement.

III.4.1Etablissement d'un processus d'usinage [7]


a)Données de problème

Les services d'étude (BE) et de production (BM) sont en possession du dossier, qui comprend :

- Le dessin de définition, résultat d'une collaboration entre le (BE) et le (BM)
- Le programme de fabrication, quantité, délai, cadence et cout à ne pas dépasser.
- La liste des moyens disponible ou envisagés.

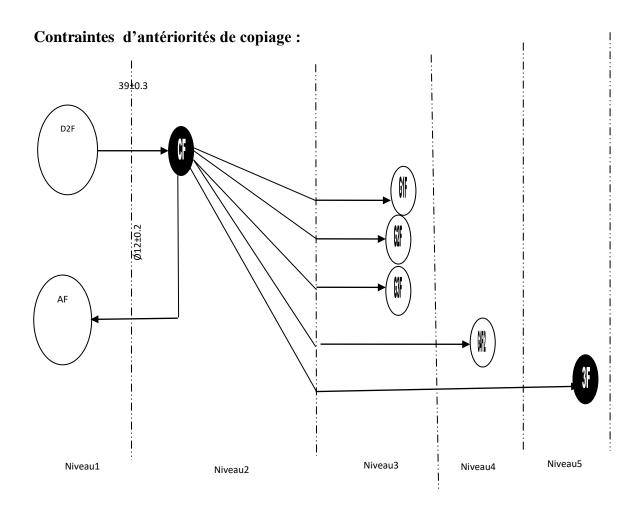
Application d'analyse de fabrication

b) Graphe logique de la méthode développée : [8]

Figure (73)

65-

Tableau (4) : Des Operations Elémentaires


Repères	Cotes de liaiso surfaces	n aux		Spécificat	ions métrologiques		Opéi éléme	rations ntaires
<u>æ</u>	Usinées	Brutes	IT	Formes	Positions	Ra√	Successiv es	Symboles
01	146±0.3 D2		0.6		⊥ 0.3 B	6.3	Finition directe	D1 F
D2	146±0.3 D1					6.3	Finition directe	D2 F
A					⊚ Ø=0.3 B	6.3	Finition directe	AF
0	1x45° (D1)		0.6			6.3	Finition directe	1F
2	ø12±0.3 A		0.6			6.3	Finition directe	2F
GI	123±0.3 D2		0.6			6.3	Finition directe	G 1F
	Ø10±0.3 (A)		0.6					
3	Ø21g6 (A)		g6			3.2	Ebauche Finition	3E 3F
G2	90±0.3 D2 Ø19±0.3 A		0.6		⊥ 0.3 A	6.3	Finition directe	G2 F
4	Ø25m6 (A)		m6		⊚ Ø=0075 A	0.8	Ebauche Semi-finition	4E 4F/2
							Finition	4F
							Rectification de finition	4Rc F
6	1x60° (4)		0.6			6.3	Finition directe	5F
6	Ø24±0.3 A		0.6			6.3	Finition directe	6F
7	1x60° 8		0.6			6.3	Finition directe	7F
	A		m6		⊚ Ø=0075 A	0.8	Ebauche Semi-finition	

	Ø25m6		=			
8	y23IIIU		_		Finition	
					Rectification	
			=		de finition	
	42±0.2 D2				Finition directe	G3F
G3	23+0 3 A	0.6	0017 A	6.3	unecte	
	23±0.3 (A)					
	Ø32±0.3(A)	0.6		6.3	Finition directe	9F
9					unecte	
	39±0.3 (D2)	0.6		6.3	Finition	
10					directe	
0	36±0.3 D2	0.6		6.3	Finition	
•	3x45 (10)	0.0	=	0.5	directe	
		0.6		6.3	Finition directe	12F
Ø			=		uncete	121
	11max (10)	0.6	Ø-0.15 A		5.	
B			⊚ Ø=0,15 4	6.3	Finition directe	13F
	Ø16±0.6					
	14±0.1 (10)	0.6	⊚ Ø=0,2 13	6.3	Finition	
4	Ø18±0.3		© Ø=0,2 13		directe	14F
	10+0.1				Ebauche	15E
					Semi-finition	15F/2
(Ø27H7 (A	H7	⊗ Ø=0,2 14	1.6	Finition	
					1 111111011	15F
	29±0.1 (10)	0.2			Finition	
				6.3	directe	16F
16	Ø23±0.3(A	0.6				
	32±0.2 10	0.4			Finition directe	17F
17				6.3		
	Ø30H11(^	H11				
•	12 Eh11			2.2	Ebauche	18E
18	12.5h11 3	P6		3.2	Finition	
	105.5±0.3 D2					18F
19	137±0.15 (A)	H7		1.6	Ebauche	19E
9	13/10.13				Semi-finition	19F/2
			$\bigoplus_{0,1}$			19F/2
			0.1 A		Finition	

Tableau (5): Groupement Des Surfaces

Repère de groupement	Surfaces groupées	Outillage utilisés et motifs Du groupement	symboles
G	1 , 2 , 3 , 4 , 5 6 , 7 , 8 , 9 , 0 et 1	Ces surface se trouvent sur le même profil, et qui sont exécutées dans la même phase, on peut les associées par un groupement de copiage Avec la préférence d'une cote appareil à une cote machine (la dispersion ne dépends que de la précision de l'appareil).	ä
64	4 et 8	Outil à charioter même opération (2cm=\phi25g6, Ra=0.8)	
65	13 et 4	La contrainte de coaxialité entre ces deux trous, est assurée par un foret étagé.	65

${\bf TROISIEME\ CHAPITRE: Analyse\ et\ conception\ de\ produit}$

Figure (74)

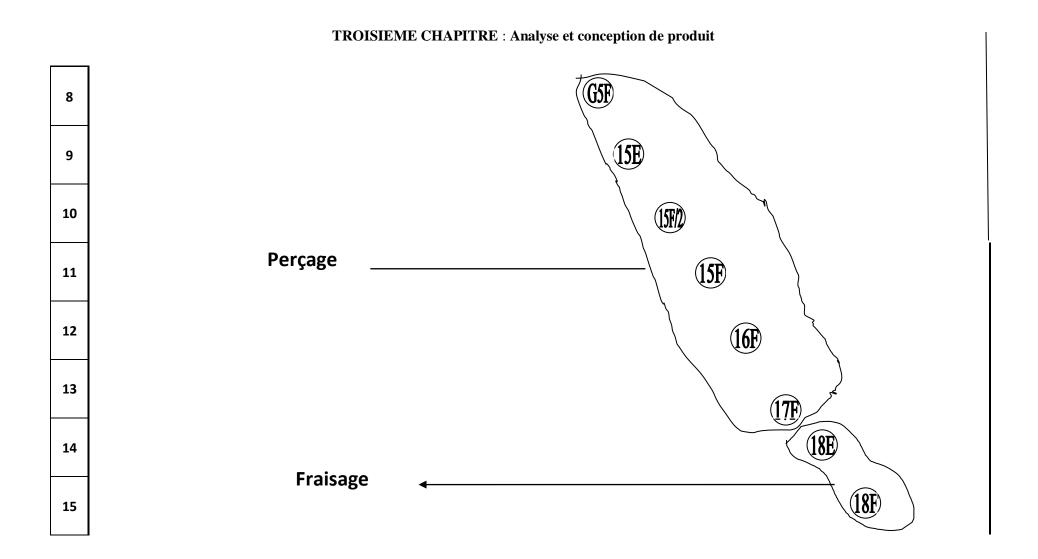
Tableau (6). DES CONTRAINTE

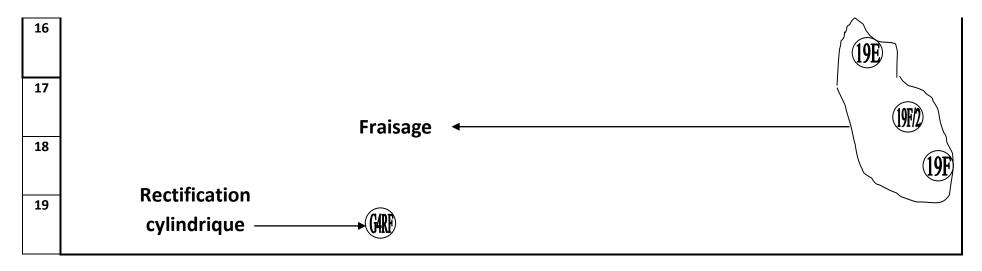
UNIVERSITE : Mohamed Khider Biskra		ANA	ALYSE DI	CON	TRAINTE				NOM :	Gahmo	uche Mo	hamed
ENSEMBLE : Embrayage a griffes	PIECE	: Arbre	e a griffe	mobi	le				r	MATIERI	E : 20NiC r	6
				Ty	pe de c	ontrai	ntes					
tion		Métrolog	giques					tec	hnologique	es	Econ	omiques
opération	↔	//	⊥ ⊚	#		_	7	Opération	Reprise	divers	Moindre usinage	Condition De coupe
DIF			®									
D2F	(D1F)		0									
AF			E					(D1F)				
G	O1F AF								(D2F)			
35	AF							(CF)				G1F) (()))
(47)	AF			F)				(CF)				
GIF .	(AF)			F				(G4F 2)				(G2F) (G3F)

687	(AF)	AF			G4F)	(19F)		
ØF.	(AF) (D2F)				CF			
	AF O2F				(CF)			
GF .	(AF) (D2F)			(AF)	(CF)			G4F/2>
125					CF			G1F
GSF	(CF) (AF)	G4F)						
155	<u>CF</u>	G 5F)						
\$7	<u>CF</u>	G 5F)			15E)			
15F	CF	G 5F)			15F/2			
16F	CF				15F			

175	CF AF						(15F)	
188	3F AF		(17F)				17F	
18F	3F) AF)		(17F)		(18E)			
198	AF			(18F)			17F)	
(97)	(AF)			(18F)	(19E)		(17F)	
19F	(AF)			18F)	(19F2)		(17F)	

Tableau(7): tableau des niveaux


	Т				- 1		1	Т	1			1	1	1				1	(-	<i>,</i> ·	1			ucs			Ė		1										,				
			$\overline{}$						$\overline{}$						$\overline{}$							\frown												Ni	ive	aux	(d'	exe	écut	ior	าร		
opérations		3)()(Di	X	AF	CF	\ 3	SF)(GHR)	(GAF	(GAF)(GIF		(3F)	GIZF	(GSF)	(15E			SF)(16F X	17F)	(18E)	(18F)	(19E)	(1982	(19F)	C	1	1 2	2	3	4	5	6	7	8	g)	10	11	12
B ·																													0														
MF																													1	0													
(D2F)			1		dillillillilli.	l																							1	1													
(AF)	:		1		L																								3	2	! 1	L	0										
(F)			1		Ī	1																							2	2	2 1	L	1	0									
3F)						1	1						1	1															4	4	. 4	ı	4	3	2	1	0						
						1	1																						2	2	2 2	2	1	1	0								
(AF)						1				1				1	1														4	4	. 4	ı	4	3	3	2	0						
						1					1												1					1	4	4	. 4	ı	3	3	3	3	3	2	2	2	2	2	2
(GIF)					L	1	1																						3	3	3 2	2	1	1	0								
(C2F)					L	1	1			1																			4	4	J 3	3	3	2	1	0							


(G3F)			1	1	1		1															4	4	3	3	2	1	0						
	_	$\overline{}$	F	1								3																						
G12					1					1												2	2	2	2	2	1	0						
(G5F)				1	1			1	L													3	3	3	3	2	1	1	1	0				
(15E)					1							1										2	2	2	2	2	1	1	1	1	0			
(1572)					1							1	1									3	3	3	3	3	2	2	2	2	1	0		
(15F)					1							1		1								3	3	3	3	3	2	2	2	2	1	1	0	
(16F)					1										1							2	2	2	2	2	1	1	1	1	1	1	1	0
177				L	1											1						3	3	3	3	2	1	1	1	1	1	1	1	1
(18E)				L		1											1					3	3	3	3	2	2	2	2	1	1	1	1	1
(18F)				ı		1											1	1				4	4	4	4	3	3	3	3	3	1	1	1	1
(19E)				L													1		1			3	3	3	3	2	2	2	2	2	2	2	2	2
1982																	1		1	1		4	4	3	3	3	3	3	3	3	3	3	3	3
(19F)																	1		1		1	4	4	3	3	3	3	3	3	3	3	3	3	3

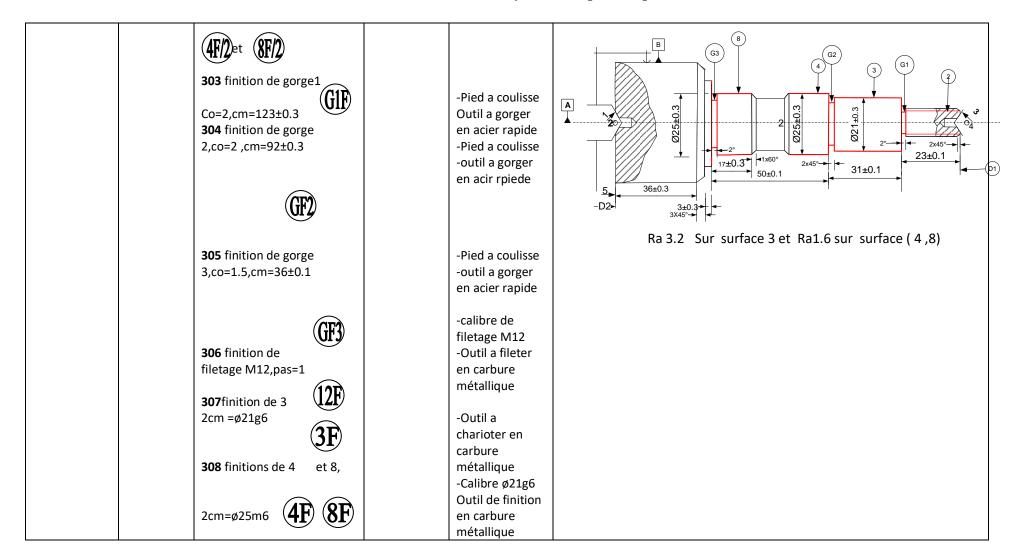
																										ſ	Vive	aux	d'e	xécu	tions	5			
opérations	B	OMF	02F	AF	CF	3F)	GIFZ		GIF	(62F)	G3F	GSF	15E)	(1572)	15F	(16F	(17F)	18E	(18F)	19E	(1972)	19F)	13	14	15	16	15	16	17	18	19	20	21	22	23
B ·																																			
OF	1																																		
02F)		1																																	
(AF)	1	1	1																																
(F)		1		1																															
3F)				1	1				1	1																									
				1	1																														
(AF)				1			1			1	1																								
				1				1									1					1	1	1	1	1	1	1	1	0					
GIF			1	1	1																														
(G2F)			1	1	1		1																												
(3F)			1	1	1		1																												

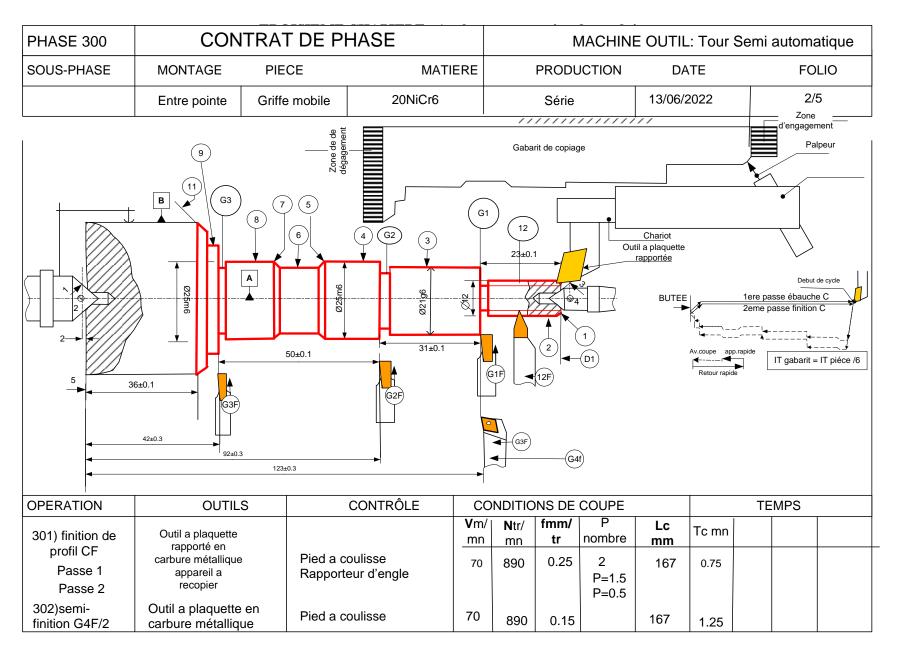
(ATF)			1			1																					
G5F		1	. 1		1																						
(15E)			1					1																			
(572)			1					1	1																		
15F)			1					1		1																	
16F			1								1																
177		1	. 1									1						1	0								
(18E)		1		1									1					1	1	0							
18F		1		1									1	1				1	1	1	0						
(19E)		1	ļ										1		1			2	2	1	1	0					
1972		1	<u>.</u>										1		1	1		3	3	2	2	1	0				
(19F)		1	-										1		1		1	3	3	2	2	1	1	0			

Tableau (8): Groupement en phases | DE | AF | CF | 3F | GFD | Contrôle de brut \bigcirc 0 1 → Fraisage centrage 2 **D2F**) (AF) 3 (CF) 4 5 **T**ournage 6 (G2F) (G3F) (12F) **3F** G4F) 7

${\bf TROISIEME\ CHAPITRE: Analyse\ et\ conception\ de\ produit}$

Tableau (09): Processus de fabrication de l'arbre a griffes :

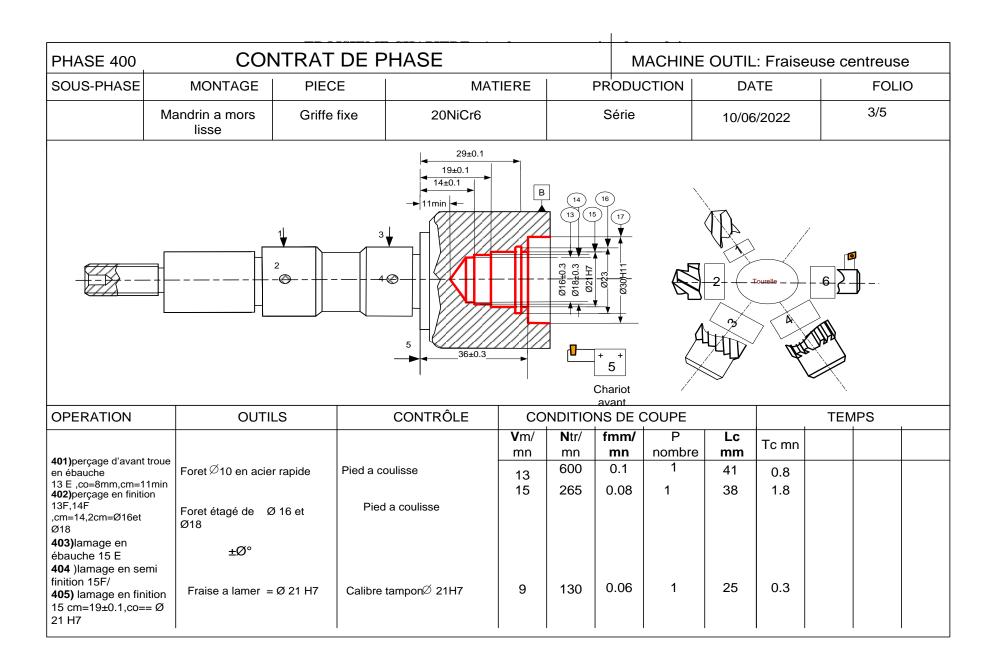

Phase	Nom de phase	Opérations
d'usinage		
100	Contrôle de brut	В
200	Fraisage centrage	DIF- D2F-AF
300	Tournage	CF -G4/2-G2F-G3F-12 F -3F- G4F
400	Perçage	G5F-15E-15F/2- 15F- 16F-17F
500	Fraisage	18E-18 F
600	Fraisage	19E-19F/2-19F
700	Rectification	G4RF
	cylindrique	G4M


UNIVERS BISK		NOM :GAHMOU	CHE PREN	ОМ :МОНАМ	ED SECTION : C	ONSTRUCTION	N MECANIQUE
ENSEMBLE Embrayage a PIECE : griff	griffes	NOMBRE : série MATIERE : 20NiCr6 BRUT : Estampé	FEUILLE D	'ANALYSE DE	FABRICATION	FOLIO	1/6
PHASES	SOUS- PHASES	OPERATIONS	М-О	APPAREILS	CRO	QUIS D'USINAC	GES
100 CONTROL E DE BRUT		Vérifier cotes et spécifications	Atelier de contrôle	Appareillages	Vérifier les cotes, les tolér	ances et l'état de capable.	surfacessi le brut est
200 FRAISAGE CENTRAGE		201 Dressage de face D1, D2 202 centrage A avec 2 centre opposés sur l'axe de la pièce -avec un centrage long -la pièce est immobile entre les tètes de fraise Cm=146±0.3 Co=6.3±0.05	FC	Pieds a coulisse	A O La pièce est isostatique, le l'isostatisme	Ø=0.3 B	Surépaisseur de 2 mm de la barre éstampée change pas sur A , D1 et D2

PHASE 200		CON	CONTRAT DE PHASE MACHINE OUTIL: Fraiseuse centreu					CHINE OUTIL: Fraiseuse centreuse						
SOUS-PHASE		MONTAGE	PIECE		MA	ΓIERE	I	PRODU	CTION	DA	TE		FOLIO	
	Vé a c	entrage long	Griffe fix	ке	20NiCr6 sé			série	érie 10/06		/2022		1/5	
A1F	B Ra6.3 A1F D2 Surépaisseur de 2 mm de la barre éstampéq													
OPERATION		OUTI	LS		CONTRÔLE	СО		NS DE C	OUPE			TEN	/IPS	i
						V m/ mn	N tr/ mn	f mm/ tr	P nombre	Lc mm	Tc mn			
201 dressage de face en meme temps D1F et DCm=146		Fraise 2 taille plaquette en métalliq Ø 80,z=6	carbure	Pie	ed a coulisse	45	180	86.4	1	94	1.08			S
202)centrage de AF ,2 centres er meme temps	٦ F	oret a centrer apides Ø 6.3		F	Pied a coulisse	11	600	54	1	15	0.2			

Tableau (09): Feuille D'analyse De Fabrication

UNIVERSITE DE BISKRA		NOM :GAHMO	UCHE	PRENOM :MOHAMED SECTION :CONSTRUCTION MECANIQUE							
ENSEMBLE : Embrayage a griffes PIECE : griffe mobile		NOMBRE : série MATIERE : 20NiCr6 BRUT : Estampé	FEUII	LE D'ANALYSF	E DE FABRICATION	FOLIO	2/6				
PHASES	SOUS- PHASES	OPERATIONS	М-О	APPAREILS	S CROQUIS D'USINAGES						
300 TOURNAGE		301 copiage -Avec 4 passes de dégrossissage - passe de finition 1F, 2F, 3F 4E, 5F 6F et 1F les cotes obtenues sont des cotes appareil 302 semi-finition	TSA	-Pied a coulisse -Outil a plaquette en carbure métallique -Gabarit de copiage -Pied a coulisse -outil a plaquette en carbure métallique	B 9 9 17±0 5 36±0.3 3±0.3 3±0.3 3×45° +		Sur toutes les surfaces				



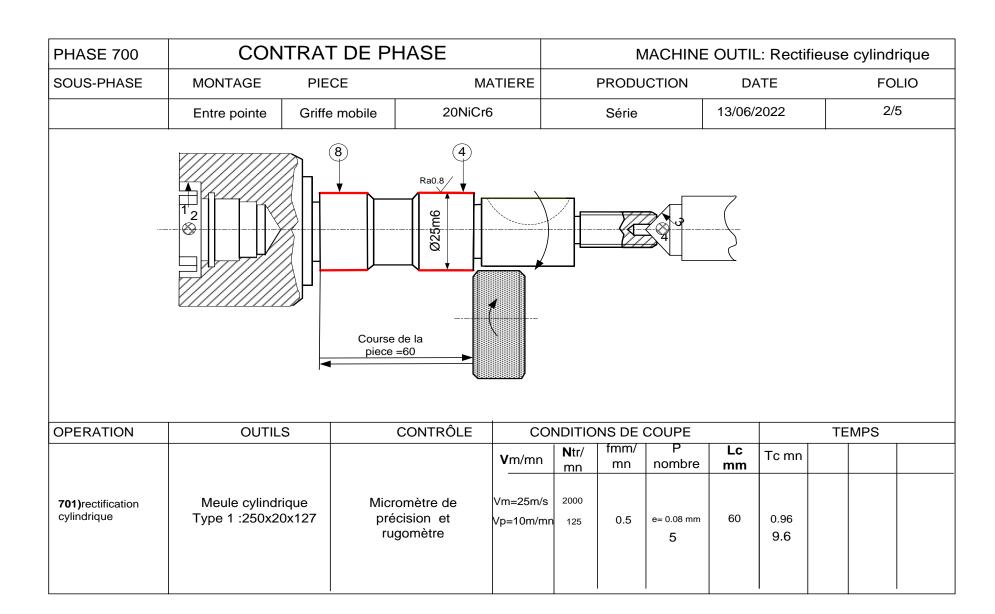
	TROISIEME CHAPITRE : Analyse et concention de produit												
OPERATION	OUTILS	CONTRÔLE	CC	NDITIO	NS DE	COUPE			TE	MPS			
303)finition de	0.00		Vm/ mn	N tr/ mn	fmm/ tr	P nombre	Lc mm	Tc mn					
gorge G1f Co=2, cm=123±0.3	Outil a gorger a plaquette rapportée en carbure métallique	Pied a coulisse	40	600	0.1	1	7	0.16					
304)finition de gorge G2F Co=2, cm=92±0.3	Outil a gorger a plaquette rapportée en carbure métallique	Pied a coulisse	40	600	0.1	1	5	0.15					
305)finition de gorge G3F Co=1.5 cm=36±0.1	Outil a gorger a plaquette rapportée en carbure métallique	Pied a coulisse	40	600	0.1	1	15	0.25					
306) finition de filetage 12F	Outil a plaquette en carbure métallique a fileter	Jauge de filetage M12 pas =1 mm	20	530	1	2	25	0.05					
307) finition de 3 3F 2cm=Ø21g6	Outil en carbure métallique de finition	Calibre machoire Ø25m6	80	1000	0.08	1	35	0.44					
308) finition de 3 3F 2cm= Ø25m6	Outil en carbure métallique de finition	Calibre mâchoire Ø25m6	80	900	0.08	1	55	0.76					

UNIVERSITE D	E BISKRA		NO	N AMAHOM: MC	OM :GAHMOUCHE PRE D SECTION :CONSTRUCTION MECANIQUE	E	
ENSEMBLE : Embrayage a griffes PIECE : griffe mobile MATIERE : 20NiCr6 BRUT : Estampé		FEUILLE	D'ANALYS	FOLIO	3/6		
PHASES	SOUS- PHASES	OPERATIONS	M-O	APPAREIL S	CROQUIS D'US	NAGES	
400 PERÇAGE		401 perçage d'avant trou Ø=8 402 perçages en finition avec foret étagé 402 lamage de 15 403 lamage (F) 404) lamage en finition 405) gorgeage en finition	TSA	Pied a coulisse -foret Ø=8 en acier rapide Pied a coulisse -fraise a lamer en acier rapide -calibre Ø21H7 - alésoir Outil a gorger en acier rapide	Ra 1.6 sur surface 16	29±0.1 19±0.1 11min 5 36±0.3	016±0.3 016±0.3 0201H7 020 020 020 020 020 020 020 030 040 050 050 050 050 050 050 05

406 alésage en ébauche	-Pied a coulisse -outil avec barre a grain en carbure métallique	
407 finition d'alésage	Pied a coulisse Outil a grain en carbure métallique	

Tableau (10) : FEUILLE D'ANALYSE DE FABRICATION

UNIVERSITE DE I	BISKRA	NOM	1:GAHM	OUCHE PRENOM :	MOHAMED	SECTION :CONSTRUCTIO	N MECANIQUE	
ENSEMBLE : Embi griffes PIECE : griffe m		NOMBRE : série MATIERE : 20NiCr6 BRUT : Estampé		FEUILLE D'ANAL	YSE DE FA	BRICATION	FOLIO	4/6
PHASES	SOUS- PHASES	OPERATIONS	М-О	APPAREILS		CROQUIS D'US	INAGES	
500 FRAISAGE		501)rainurage 18F Co=6P9 Cm =12.5h11 Cm = 105±0.3	FH	Pied a coulisse Fraise disque 3 taille en acier rapide Ø 50 de largeur 5mm Fraise disque a 3taille en acier rapide Ø50 et épaisseur 6mm Calibre 6P6	Ra3.2	sur la rainure 18	105±0.3	3 3 4 ⊗ 5


PHASE 500	CON	TRAT DE PI		MACHINE OUTIL: Fraiseuse Horizontale							ntale	
SOUS-PHASE	MONTAGE	PIECE	MATIE	RE		PRODU	CTION	DA	ATE		FO	LIO
	Mixte vé court +mandrin lisse	Griffe mobile	20NiCr6			Série		13/06/2	2022		2/	5
		R12.5	18	10	5±0.3		Ra3.2/	4				
OPERATION	OUTILS	3	CONTRÔLE	CO	NDITIO	NS DE (TE	MPS	
				/m/ mn	Ntr/ mn	fmm/ mn	P nombre	Lc mm	Tt mn			
501) rainurage 18E	Fraise 3 tailles er acier rapide		a coulisse et e profondeur	10	127	0.06	1	10	1.31			
502) finition de rainure 18F co =6P9 cm=105±0.3	Fraise 3 tailles en a rapide d'epaisseur 6P9 ,et de Ø25mm	1 000	alon	15	191	0.02	1	10	2.61			

UNIVERSITE	DE BISKRA	NOM :GAHMOUCHE PRENOM :MOHAMED SECTION :CONSTRUCTION MECANIQUE							
ENSEMBLE : Emb		NOMBRE : série MATIERE : 20NiCr6 BRUT : Estampé	FEUILLE D'ANALYSE DE FABRICATION FOLIO 5						
PHASES	SOUS- PHASES	OPERATIONS	M-O	APPAREILS	CROQUIS D'	USINAGES			
600 FRAISAGE		a)on décale le plan de symétrie des encoches a 45° b) on tangente la génératrice de la fraise avec la surface 1 et on usine 1, on tourne de 90° le plateau et on usine 2, et ainsi de suite, jusqu'à la surface 4 c)on tangente la fraise sur 5, on l'usine, puis on tourne le plateau de 90° pour terminer, jusqu'à la surface 8	FH	Pied a coulisse -fraise disque ø50 et épaisseur 8mm en acier rapide -Plateau a trous	Tangence de la traise avec (\$) Usinage des encoches 5,6,7,8	Usinage des encoches 1,2,3,4	40		

	603 finition des encoches Cm=9±0.1 Cm =144±0.3	Calibre mâchoire Fraise disque de ø50 et épaisseur 12±0.1	45° 22.5° 1 8
--	---	--	---------------

Tableau (12): Feuille D'analyse De Fabrication

UNIVERSITE DE	BISKRA	NOM	/ :GAHMOUC	CHE PRENC	OM :MOHAMED SECTION :CONSTRUCTION	ON MECANIQUE				
ENSEMBLE : Embra griffes PIECE : griffe mobi		NOMBRE : série MATIERE : 20NiCr6 BRUT : Estampé	FEUILLE	D'ANALYSI	E DE FABRICATION	FOLIO	6/6			
PHASES	SOUS- PHASES	OPERATIONS	M-O	APPAREILS	CROQUIS D'USINAGES					
700 RECTIFICATION CYLINDRIQUE		701 rectification cylindrique de finition avec 5 passes de va et viens	RC	Micromètre de précision 0.01 Meule abrasif cylindrique Type 1 250x20x127 Régometre	88 Ra0.8 9mg220					

Bibliographie:

[1].[2] Chevallier, guide du dessinateur industriel, ed Hachette, France, P.P.197,204.

[3]. Disponible sur:

https://www.skf.com/fr/products/rolling-bearings/roller-bearings/needle-roller-bearings/needle-roller-and-cage-assemblies

visité Le :20/05/2022/

[4].Disponible sur:

https://www.moveandup.fr

visité Le :20/05/2022/

[5]. Disponible sur

https://www.futura-sciences.com

visité Le :20/05/2022/

[6].Disponible sur

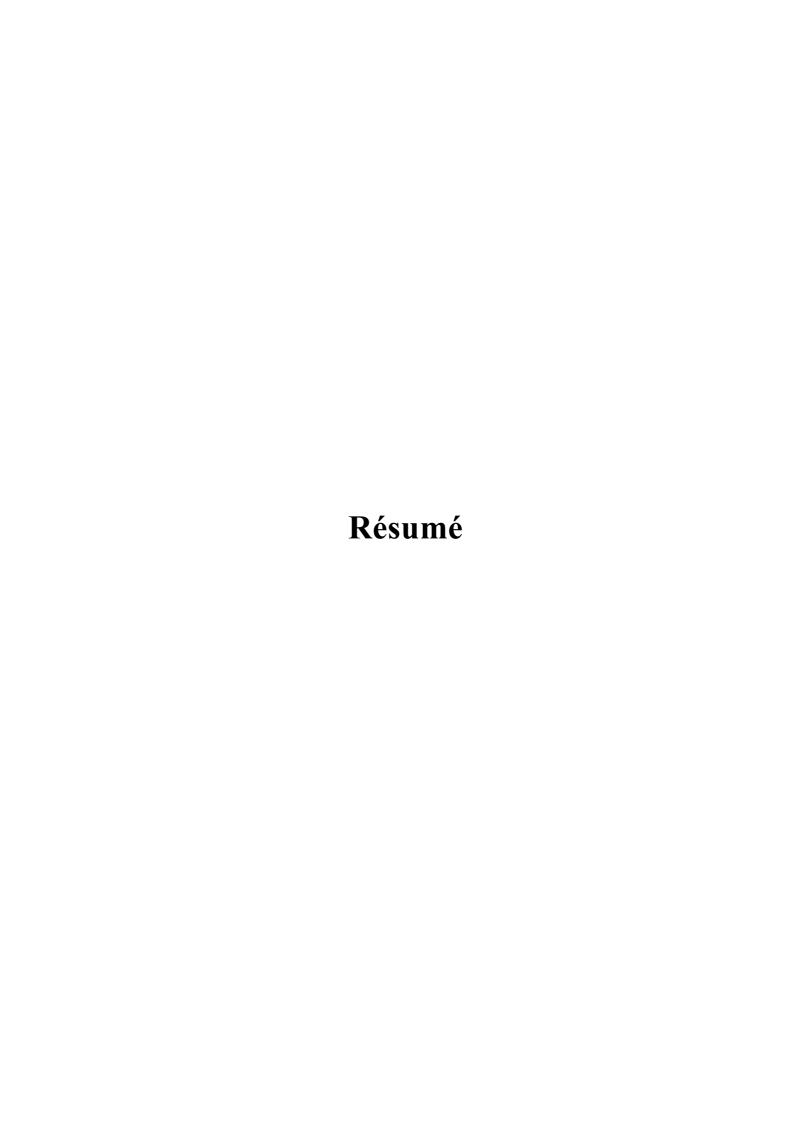
https://help.solidworks.com/2016/english/solidworks/sldworks/r_welcome_sw_online_help.htm_visité: Le :20/05/2022.

[7]. Disponible sur

https://pdfcoffee.com/gamme-usinage-pdf-free.html

visité Le :20/05/2022

[8].A.Saber, l'analyse de fabrication le préparateur le bureau de methodes, ed1983,P.117


Conclusion générale

Ce projet est consacré à l'étude de réalisation d'un embrayage à griffes pour la production en série.

En étudiant l'analyse de dessin d'ensemble et les contraintes de montage, nous avons arrivé à extraire le dessin de définition de l'arbre à griffes, sujet de notre étude qu'on a jugé le plus important

Suivis par une utilisation de logiciel « Solidworks » et de logiciel « Visio », on a pu dessiner chaque pièce a part, et faire une nouvelle conception de l'assemblage.

On a terminé ce travail par l'usinage de l'arbre à griffes pour mettre a jour sa production en série, analysant les contraintes et les exigences technologiques de dessin industriel avec les démarches de la méthode développée, on a abouti a une analyse complète avec des feuilles d'analyse de contrat de phase et des gammes d'usinage.

Résumé

Cette étude a pour objectif, d'élaborer l'analyse d'un **embrayage à griffes** pour une production en série, elle concerne l'analyse de sa conception et son usinage .

Notre travail est divisé en deux parties, sa première partie concerne la conception réalisée par les outils (CAO) « Solidworks2016 et Visio2003 ».

Dans sa deuxième partie, on a utilisé la méthode analytique d'élaboration d'usinage avec des gammes d'usinage pour chaque phase de production

C'est notre tentative de faire le lien entre le bureau d'étude et le bureau de méthodes.

Mots clé: embrayage à griffes, CAO, Solidworks, Visio, Bureau d'Etudes, Bureau de méthodes.

Abstract:

This study aims to develop the analysis of a claw clutch for mass production. It concerns the analysis of its design and its machining.

Our work is divided into two parts, its first part concerns the design carried out by the tools (CAD) "Solidworks2016 and Visio2003".

In its second part, we used the analytical method of machining development with machining ranges for each production phase.

This is our attempt to make the link between the design office and the methods office.

Keywords: claw clutch, CAD, Solidworks, Visio, Design office, Methods office.

ملخص:

تهدف هذه الدراسة إلى تطوير تحليل القابض المخلب للإنتاج بالجملة، وتتعلق بتحليل تصميمه وتشكيله. ينقسم عملنا إلى جزأين ، الجزء الأول يتعلق بالتصميم الذي نفذته الأدوات (Visio2003").

في الجزء الثاني ، استخدمنا الطريقة التحليلية لتطوير الآلات مع نطاقات المعالجة لكل مرحلة من مراحل الإنتاج، في محاولة منا للربط بين مكتب الدراسات ومكتب الطرق.

الكلمات المفتاحية: مخلب ، Visio ، Solidworks ، CAD ، مكتب الدراسات، مكتب الطرق.