Université Mohamed Khider de Biskra

Faculté des sciences et de la technologie Department de chimie industrielle

MÉMOIRE DE MASTER

Domaine : Sciences et Techniques Filière : Génie des procédés Spécialité : Génie chimique

Réf. : Entrez la référence du document

Présenté et soutenu par : **Tina Djaber Amine**

Le : dimanche 26 juin 2022

Calcul Technologique et simulation du procédé de distillation

Jury :							
Mr.	Merzougui Abdelkrim	Pr	Université de Biskra	Président			
Mr.	Hasseine Abdelmalek	Pr	Université de Biskra	Encadreur			
Mr.	Laiadi Djemoui	МСВ	Université de Biskra	Examinateur			

Résumé

Généralement, l'utilisation de simulateurs dans l'industrie est effectuée sans avoir un support théorique approprié. Parfois, cette situation est la conséquence à la fois du manque de temps et du dynamisme l l'application de modèles thermodynamiques n'est souvent pas correctement prise en compte pour le processus spécifique analysé. Un fait indésirable peut apparaître, par exemple, lorsqu'un mauvais package de propriétés est choisi ou encore plus lorsque cette étape de sélection est complètement ignorée. Le but de cet article est de prouver que la sélection habituelle des modèles thermodynamiques est appropriée ou non pour le processus de raffinage primaire. Pour cela, un logiciel de simulation et deux modèles thermodynamiques disponibles ont été analysés. En particulier, pour la distillation atmosphérique du pétrole brut (Topping), les ingénieurs utilisent presque par défaut le package thermodynamique Peng-Robinson dans le simulateur Aspen Hysys et Chao-Seader dans Aspen Plus. Bien que l'utilisation des packages de propriétés thermodynamiques implique tout un support théorique, celui-ci n'est pas pris en compte au moment de leur élection. L'étude présentée dans ce mémoire s'inscrit dans le cadre de l'étude de propriété thermodynamique en utilisant les équations d'états cubiques et leur précisions dans le calcul des propriétés thermodynamiques et en conséquence de faire choisir une meilleur équation pour une meilleure prédiction de ces paramètres .

Mots Clés : distillation, simulation , modèle thermodynamique, ASPEN HYSYS , plateau, reflux.

ملخص

بشكل عام ، يتم استخدام أجهزة المحاكاة في الصناعة دون الحصول على دعم نظري مناسب. في بعض الأحيان يكون هذا الموقف نتيجة لضيق الوقت والديناميكية ، غالبًا ما لا يتم أخذ تطبيق النماذج الديناميكية الحرارية في الاعتبار بشكل صحيح للعملية المحددة التي يتم تحليلها. قد تظهر حقيقة غير مرغوب فيها ، على سبيل المثال ، عند اختيار حزمة خاصية خاطئة أو أكثر من ذلك عند تخطي خطوة التحديد هذه تمامًا. الغرض من هذه المقالة هو إثبات أن الاختيار المعتاد للنماذج الديناميكية الحرارية مناسب أو غير مناسب لعملية التكرير الأولية. لهذا الغرض ، تم تحليل برنامج محاكاة واثنين من النماذج الديناميكية الحرارية المتال ، عند منكل عالمية التحرير على وجه الخصوص ، بالنسبة للتقطير الجوي للنفط الخام (Topping) ، يستخدم المهندسون بشكل افتراضي حزمة حامي أن استخدام حزم المعتاد من أن محاكية واثنين من النماذج الديناميكية الحرارية المتاحة. وقال الأولية. لهذا الغرض ، تم تحليل برنامج محاكاة واثنين من النماذج الديناميكية الحرارية المتاحة. على وجه الخصوص ، بالنسبة للتقطير الجوي للنفط الخام (Topping) ، يستخدم المهندسون بشكل افتراضي حزمة من أن التخابهم حزم الخصائص الديناميكية الحرارية ينطوي على دعم نظري كامل ، إلا أن هذا لم يؤخذ في الاعتبار في وقت انتخابهم.

الدراسة المقدمة في هذه الأطروحة هي جزء من دراسة الخصائص الديناميكية الحرارية باستخدام المعادلات التكعيبية للحالات ودقتها في حساب الخصائص الديناميكية الحرارية وبالتالي اختيار معادلة أفضل لتنبؤ أفضل لهذه المعلمات. ا**لكلمات المفتاحية**: التقطير ، المحاكاة ، النموذج الديناميكي الحراري ، ASPEN HYSYS، صينية، الارتداد.

Abstract

Generally, the use of simulators in industry is done without having proper theoretical support. Sometimes this situation is the consequence of both the lack of time and the dynamism l the application of thermodynamic models is often not correctly taken into account for the specific process analyzed. An undesirable fact can appear, for example, when a wrong property package is chosen or even more so when this selection step is completely skipped. The purpose of this memory is to prove that the usual selection of thermodynamic models is appropriate or not for the primary refining process. For this, simulation software and two available thermodynamic models were analyzed. In particular, for atmospheric distillation of crude oil (Topping), engineers use almost by default the **Peng-Robinson** thermodynamic package in the **Aspen Hysys** simulator and **Chao-Seader** in Aspen Plus. Although the use of the packages of thermodynamic properties implies a whole theoretical support, this one is not taken into account at the time of their election. The study presented in this thesis is part of the study of thermodynamic property using the cubic equations of states and their precision in the calculation of the thermodynamic properties and consequently to choose a better equation for a better prediction. of these parameters.

Keywords: Distillations, simulation, plate, ASPEN HYSYS, equilibrium, reflux.

Remerciement

En premier lieu et avant tout, je tiens à remercier "Dieu" le tout puissant qui m'a donné le courage, la volonté et la force pour accomplir ce modeste travail et de m'avoir éclairé le chemin de la réussite.

Je remercie vivement mon Encadreur Mr. HASSEINE Abdelmalek pour son aide précieuse et ses conseils judicieux ainsi que les membres de jury qui ont accepté d'examiner mon travail et tous les enseignants du département de Génie des Procédés pour leur contribution et leur disponibilité à orienter les étudiants.

Je tiens à remercier également tous les membres de ma famille pour leur soutien moral et leurs encouragements durant toutes mes années d'études.

Un spécial remerciement pour Mr. LAIADI Djemoui pour ses orientations, ses précieux conseils et sa contribution dans l'élaboration de ce travail.

Finalement, mes remerciements à ceux et celles qui ont contribué de près ou de loin à l'accomplissement de ce travail de recherche.

Nédicaces

A mon exemple éternel, mon soutien moral et source de joie et de bonheur, celui qui s'est toujours sacrifié pour me voir réussir à toi mon père.

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma vie et mon bonheur ; maman que j'adore.

A mes frères et sœurs qui n'ont cessé d'être pour moi des exemples de persévérance, de courage et de générosité.

<u>Sommaire</u>

Introduction générale

Chapit	re l Généralité sur la distillation :	15
I.1	Historique	16
1.2	Définition de la distillation	16
1.3	Principe de la distillation	16
1.4	Les types de distillation	17
1.4.1	1 La distillation discontinue	17
1.4.2	2 La distillation continue	17
1.5	L'équilibre Liquide-Vapeur (ELV)	18
1.6	Lois fondamentales de transfert de matière	19
1.6.1	1 Loi de Raoult	19
1.6.2	2 Lois de DALTON	19
1.7	Volatilités	20
1.7.1	1 Volatilité absolue	20
1.7.2	2 Volatilité relative	20
1.7.3	3 Utilisation de la volatilité relative:	21
18	Description d'une colonne de distillation :	21
1.0	Description d'une colonne de distillation :	==
1.9	Bilan matière et thermique de la colonne	23
1.9 1.9	Bilan matière et thermique de la colonne 1 Zone de rectification	23 24
I.9 I.9.1 I.9.2	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement	23 24 25
1.9 1.9.1 1.9.2 1.9.3	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash	23 24 25 25
I.9 I.9.1 I.9.2 I.9.2 I.9.3	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash Les différents types de colonnes de distillation	23 24 25 25 25
I.9 I.9.1 I.9.2 I.9.2 I.9.3 I.10	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage	23 24 25 25 25 26
I.9 I.9.1 I.9.2 I.9.3 I.10 I.10 I.10	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage 6 Colonnes à plateaux	23 24 25 25 25 26 26
I.9 I.9.1 I.9.2 I.9.3 I.10 I.10 I.10 I.11	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage 6 2 7 Colonnes à plateaux	23 24 25 25 26 26 26 27
I.9 I.9.1 I.9.2 I.9.3 I.10 I.10 I.10 I.11 I.11	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage 6 2 6 Colonnes à plateaux 7 Plateaux à calottes :	23 24 25 25 26 26 26 27 27
I.9 I.9.1 I.9.2 I.9.3 I.10 I.10 I.10 I.11 I.11 I.11	Bilan matière et thermique de la colonne 1 Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage 6 2 7 Colonnes à garnissage 6 2 6 Plateaux à calottes : 2 Plateaux perforés à déversoirs :	23 24 25 25 26 26 27 27 27
I.9 I.9.1 I.9.2 I.9.3 I.10 I.10 I.10 I.11 I.11 I.11 I.11	Bilan matière et thermique de la colonne I Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage 6 2 7 Colonnes à plateaux 1 Plateaux à calottes : 2 Plateaux à clapets:	23 24 25 25 26 26 26 27 27 27 27 27
I.9 I.9.1 I.9.2 I.9.3 I.10 I.10 I.11 I.11 I.11 I.11 I.11 I.11	Bilan matière et thermique de la colonne I. Zone de rectification 2. Zone d'épuisement 3. Zone de flash Les différents types de colonnes de distillation 1.1 Colonnes à garnissage 2.2 Colonnes à plateaux Différents types de plateaux 1.1 Plateaux à calottes : 2.2 Plateaux perforés à déversoirs : 2.3 Les plateaux à clapets: .4 Plateaux uniflux :	23 24 25 25 26 26 26 27 27 27 27 28 28
I.9 I.9.1 I.9.2 I.9.2 I.10 I.10 I.10 I.11 I.11 I.11 I.11 I.11	Bilan matière et thermique de la colonne I Zone de rectification 2 Zone d'épuisement 3 Zone de flash Les différents types de colonnes de distillation 1 Colonnes à garnissage 2 Colonnes à plateaux Différents types de plateaux 1 Plateaux à calottes : .2 Plateaux perforés à déversoirs : .3 Les plateaux a clapets: .4 Plateaux à jets directionnels (jet tray) :	23 24 25 25 25 26 26 27 27 27 27 28 28 28
I.0 I.9 I.9.2 I.9.2 I.9.2 I.10 I.10 I.10 I.11 I.11 I.11 I.11 I.11	Bilan matière et thermique de la colonne I Zone de rectification 2 Zone d'épuisement 3 Zone de flash Les différents types de colonnes de distillation .1 Colonnes à garnissage. .2 Colonnes à plateaux. Différents types de plateaux .1 Plateaux à calottes : .2 Plateaux perforés à déversoirs : .3 Les plateaux à clapets: .4 Plateaux uniflux : .5 Plateaux à jets directionnels (jet tray) : .6 Plateaux perforés sans déversoirs :	23 24 25 25 25 26 26 26 27 27 27 27 28 28 28
I.0 I.9 I.9.2 I.9.2 I.9.3 I.10 I.10 I.10 I.11 I.11 I.11 I.11 I.11	Bilan matière et thermique de la colonne I Zone de rectification 2 Zone d'épuisement 3 Zone de flash 4 Les différents types de colonnes de distillation 5 Colonnes à garnissage 6 Plateaux perforés sans déversoirs : 6 Plateaux perforés sans déversoirs :	23 24 25 25 25 26 26 26 27 27 27 27 27 27 28 28 28 28

I.12.2	Le condenseur	29
I.12.3	Le rebouilleur	30
I.12.4	Ballon de reflux	30
I.13 Les	appareillages annexes	30
I.13.1	L'échangeur de chaleurs	30
I.13.2	Les pompes	30
I.13.3	Les appareils de mesure, de contrôle et de régulation	30
Chapitre I	l Distillation des mélanges complexes :	31
Introductio	on	32
ll.1 La	distillation des mélanges complexes : La méthode (Short-cuts)	33
11.1.1	La méthode Fenske-Underwood-Gilliland (FUG)	33
II.1.2	Méthode de Fenske : "Fonctionnement à taux de reflux total" :	36
II.1.3	Répartition des autres composés (non-clés)[[18]	37
II.1.4	Reflux minimal par la méthode de Underwood :	38
II.1.5	Taux de reflux optimal	39
II.1.6	Méthode de Gilliland : "Nombre de plateaux théoriques à reflux optimal" :	39
II.1.7	Position du plateau d'alimentaion :	40
II.2 Dis	tillation multicomposants : solution rigoureuse	41
II.2.1	Modélisation mathématique des colonnes multi-étagées de séparation liquide-vapeu	ır42
II.2.2	Formulation des équations du modèle	44
II.2.3	Approches fondamentales de la simulation des colonnes de séparation liquide-vapeu	r45
II.2.4	Approche mathématique de la résolution du modèle MESH	45
II.2.5	Approche séquentielle	46
II.2.6	Les approches des corrections simultanées	47
II.2.7	Principaux algorithmes de l'approche des corrections simultanées	47
Chapitre I	II Calcul de la colonne :	48
Introductio	on :	49
III.1 Do	nnées de départ	49
III.2 Co	mpositions imposées des courants sortants	49
III.3 Cal	cul de spécification des deux courants distillat (D) et Résidu(R)	50
III.4 Dé [.]	termination des paramètres opératoires de la colonne :	51
III.4.1	La température au sommet de la colonne	51
111.4.2	La température au fond de la colonne	51
III.4.3	Calcul des volatilités relatives α :	52
111.4.4	Estimation de la volatilité relative moyenne	52
III.5 Dé	termination du nombre de plateaux théoriques. Méthode de F.U.G	53
III.5.1	Détermination de <i>Nmin</i> :	53

III.6	Rép	partition des autres composés (non – clés)53	
III.7	Calcul de taux de reflux minimal :5		
111.8	Position du plateau d'alimentation :5		
111.9	Cor	nparaison entre les valeurs de la simulation et le calcul analytique :	
Discus	sion		
Chapit	re l'	V Simulation de la colonne :	
Introd	uctio	on :60	
IV.1	Déf	inition de simulation61	
IV.2	Prir	ncipes de fonctionnement et rôle des simulateurs61	
IV.3	Тур	e de simulation62	
IV.3	8.1	La simulation statique (steady state)62	
IV.3	8.2	La simulation dynamique (transient state)62	
IV.4	Déf	inition du logiciel Aspen HYSYS62	
IV.5	Les	concepts de la base du simulateur HYSYS63	
IV.6	Stru	ucture générale du HYSYS64	
IV.7	Le (Choix du modèle thermodynamique64	
IV.7	'.1	Les équations d'état (EoS)65	
IV.7	.2	Modèles d'activités67	
IV.7	.3	Ensemble de méthodes67	
IV.8	Pro	blématique68	
IV.9	Mé	thode de détermination de travaille par HYSYS :69	
IV.10	F	tésultat de la simulation de la colonne :76	
IV.1	.0.1	Stream 2 : (distillat) :	
IV.1	.0.2	Stream : 3 (résidu) produit de fond :78	
IV.11	١	/ariation des paramétrés dans la colonne81	
IV.12	I	nterprétation des courb Hysys :82	
IV.13	F	tésultats et discussion	
Bibliog	jrap	hie	
Annex	e		

Listes des figures

Figure I.I :Schéma d'une colonne de distillation (à plateaux)	22
Figure I.II :Colonne à garnissage en vrac (à gauche) structuré (à droite)	26
Figure I.III :Types de plateaux	29
Figure II.I :Algorithm for multicomponent distillation by FUG method	35
Figure II.II : Schéma général d'une colonne de distillation	43
Figure II.III : Schéma général d'un plateau d'équilibre	43
Figure II.IV : Organigramme des approches de résolution du modèle mathématique des colonnes	multi-
étagées de séparation liquide-vapeur. [25]	46
Figure i IV.I : Structure générale du HYSYS [32]	64
Figure IV.II : New Case	70
Figure IV.III : Choix des composés	70
Figure IV.IV : Choix de l'équation thermodynamique	71
Figure IV.V : Choix du système d'unités	71
Figure IV.VI : palette d'organigramme	72
Figure IV.VII : Le flowsheet	72
Figure IV.VIII : Création du flux d'alimentation	73
Figure IV.IX : Spécification de la colonne.	73
Figure IV.X : Définition du profile de pression	74
Figure IV.XI : Estimation de la température	74
Figure IV.XII : Spécification du distillat et du taux de reflux	75
Figure IV.XIII : Espace monitor	75
Figure IV.XIV : Introduire d'autres spécifications.	76
Figure IV.XV : Convergence de la colonne	76
Figure IV.XVI : Conditions du distillat	77
Figure IV.XVII : Propriétés du distillat	77
Figure IV.XVIII : Conditions de la simulation pour le résidu.	78
Figure IV.XIX : Propriétés du résidu	78
Figure IV.XX : les compositions de différents courants	79
Figure IV.XXI : les compositions de différents courants	79
Figure IV.XXII : profile de température en fonction de la position du plateau.	81
Figure IV.XXIII : Profil de débit molaire en fonction du nombre de plateaux	82
Figure IV.XXIV : la composition molaire des constituants en fonction de la position du plateau.	

Liste des tableaux

Tableau III.I : La composition de la charge.	
Tableau III.II : composition imposées des courants sortant	50
Tableau III.III : Résultats de la résolution (en titre molaire et débit molaire)	50
Tableau III.IV : lectures effectuées à partir du Monogramme de Scheibel et Jenny	51
Tableau III.V : lectures effectuées à partir du Monogramme de Scheibel et Jenny	52
Tableau III.VI : Volatilités relative	53
Tableau III.VII : les compositions de différents courants	54
Tableau III.VIII : les valeurs du paramètre q	54
Tableau III.IX : résultats des itérations	55
Tableau III.X: calcul de <i>Rmin</i>	55
Tableau III.XI : récapitulation des résultats	56
Tableau III.XII : Tableau comparatif des résultats	56
Tableau III.XIII : Tableau comparatif des résultats	57
Tableau III.XIV : Tableau IV-4 : Tableau comparatif des résultats (les valeurs de k)	57
Tableau III.XV : Tableau comparatif des résultats	57
Tableau IV.I : les conditions de différents courants (worksheet)	80
Tableau IV.II : steady state profiles	80
Tableau IV.III : La composition des constituants sur chaque plateau.	81

Liste des abréviations

- ELV- LVE : L'équilibre Liquide-Vapeur
- **FUG** : FENSKE-UNDERWOOD- GILLILAND.
- **EoS** : Les équations d'état
- **CS** : Chao-Seader.
- GS : Grayson-Streed .
- HC : les hydrocarbures.
- **PR** : Peng-Robinson PR
- DDL : degré de libeté
- **SRK** : Equation de SOAVE-REDLICH-KWONG.
- **RK** : Equation de REDLICH-K WONG.
- LK : Le constituant clé léger.
- HK : Le constituant clé lourd.
- **PFD** : Process Flow Diagram

<u>Nomenclature</u>

Xi: concentration massique du constituant « i » en phase liquide.

- X'i: concentration molaire du constituants « i » en phase liquide.
- Y'i: concentration molaire du constituants « i » en phase vapeur.
- Yi : concentration massique du constituants « i » en phase vapeur.

T : températures (°C).

L': débit molaire de la charge (K moles/h).

D': débit molaire du distillat (K moles/h).

R': débit molaire du résidu (K moles/h).

Q_R: charge thermique du four (kcal/h).

Q_C: charge thermique du condenseur (kcal/h).

 H_D : enthalpie de la phase vapeur du distillat à l'état vapeur (Kcal/K moles).

 H_R : enthalpie de la phase vapeur provenant du four (Kcal/K moles).

 h_D : enthalpie de la phase liquide du distillat à l'état liquide (Kcal/K moles).

 h_R : enthalpie du résidu (Kcal/K moles).

 H_0 : Enthalpie de la phase vapeur de la charge Kcal/Kmol

 h_0 : Enthalpie de la phase liquide de la charge Kcal/Kmol

 α : Volatilité relative de l'élément i.

N : Nombre de plateaux théorique.

Nmin : Nombre de plateaux minimal.

 \boldsymbol{R} : Taux de reflux .

Rmin : Taux de reflux minimal.

- *Rop* : Taux de reflux optimal.
- **heta** : Paramètre conventionnel déterminé a partir d'une autre équation d'underwood.
 - i : Constante d'équilibre de l'élément « i » .
- Cp : Chaleur spécifique (kcal/kg°C).

Introduction Générale

La simulation est devenue de nos jours la méthode de modélisation des procédés industriels, elle est beaucoup utilisée vu les avantages qu'elle offre aux industriels et aux chercheurs académiques dans la faciliter de générer le comportement d'un procédé quelconque, surtout lorsqu'il s'agit de prévoir ou d'étudier des systèmes ou des réactions difficilement réalisables en pratique. L'avantage majeur de la simulation est la fourniture d'un aperçu du comportement du système en se rapprochant d'avantage de la réalité. La simulation informatique peut être classée comme une méthode commode qui ne coûte pas chère et sans intervention sur le procédé réel en cours de fonctionnement, plusieurs simulateurs sous formes de codes et de logiciels sont mis en œuvre et sont disponibles pour la conception des nouvelles unités ou pour l'optimisation des procédés réels.

La simulation permet de représenter par des modèles mathématiques les différents phénomènes de transfert de masse, d'énergie et de quantité de mouvement qui se produisent dans les différentes opérations unitaires.

Le développement de l'informatique dans le domaine de simulation, nous permet de résoudre le problème de calcul manuel long, en utilisant comme outil des logiciels de simulation. Les simulateurs existants tels que Aspen Plus, ChemCAD, Hysim, Hysys, Pro-II sont les plus vendus et qui deviennent de plus en plus indispensables pour concevoir de nouvelles unités et pour optimiser les procédés industriels qui fonctionnent parfois loin de leur optimum.

Les objectifs majeurs des simulateurs de procédés sont les suivants :

Résoudre les équations de bilans matière et énergie pour l'ensemble des appareils du procédé

Calculer les caractéristiques (débit, composition, température, pression, propriétés physiques- Enthalpie, Entropie, viscosité, masse volumique, taux de vaporisation) pour tous les fluides qui circulent entre les appareils

Fournir les éléments nécessaires au dimensionnement des équipements, tels que les quantités de chaleur échangées ; diamètre, hauteur et le nombre de plateaux d'une colonne.

La distillation est une des méthodes de séparation les plus utilisées industriellement. Cette opération permet la séparation et la purification des mélanges de constituants dont les températures d'ébullition sont différentes, en mettant à profit la différence de volatilité (capacité à s'évaporer selon la température) des constituants puis en réalisant une succession de condensations et de vaporisations pour terminer par la récupération d'un des constituants.

Dans l'industrie, la majeure des processus de distillation implique plus de deux composants. Les séparations multi-composantes sont effectuées en utilisant le même type de colonnes de distillation, de rebouilleurs, de condenseurs, d'échangeurs thermiques... etc... Dans le cas de mélanges multi-composants, il est nécessaire d'utiliser une approche analytique. On applique plusieurs méthodes de raccourci sont utilisées pour effectuer des calculs dans des systèmes multi-composantes. Bien que les méthodes informatiques rigoureuses soient disponibles pour résoudre des problèmes de séparation multi-composants,

Il existe plusieurs méthodes pour le calcul de la distillation complexe, les majorités d'elle sont des méthodes numériques basé sur la résolution des équations de bilans matières, bilans enthalpiques et d'équilibres thermodynamiques de tous les étages ; il existe des logicielles comme UniSim ou Aspen permettent de résoudre ces problèmes (résolution exacte mais complexe). Comme il existe la solution approximative par la méthode de FENSKEUNDERWOOD-GILLILAND (FUG).

Un calcul rigoureux des colonnes de distillation doit s'effectuer plateau par plateau, ce qui rend l'opération fastidieuse et longue, surtout lorsqu'il s'agit des colonnes de distillation multiconstituants. Cependant, il existe des méthodes simples et rapides pour le calcul et le dimensionnement des colonnes de distillation traitant les mélanges complexes dites « schort-cut méthodes », ces méthodes reposent sur des formules empiriques développées à cet effet, qui ont montré une grande approche et une bonne similitude avec les cas réels.

Le présent travail se veut comme objectif essentiel le traitement d'un problème de distillation de mélanges complexes.

L'étude présentée dans ce mémoire s'inscrit dans le cadre de l'étude de propriété thermodynamique en utilisant les équations d'états cubiques et leur précisions dans le calcul des propriétés thermodynamiques et en conséquence de faire choisir une meilleur équation pour une meilleure prédiction de ces paramètres .

Pour mener à bien cette étude, nous avons structuré notre mémoire comme suit :

Une partie théorique qui regroupe deux chapitres :

Le premier chapitre comporte une description générale de la procédé de distillation et la colonne de distillation.

Le deuxième chapitre : distillation de mélanges complexes, dans lequel on a détaillé les méthodes utilisées pour le calcul des colonnes de distillation, que ce soit par les méthodes rigoureuses utilisant les bilans matière plateau par plateau, ou les méthodes rapides dites « short-cut methods » connues aussi par les méthodes de Fenske-Underwood-Guilliland.

La partie pratique renferme deux chapitres :

Le troisième chapitre : Calcul de la colonne de distillation, Une partie calcul constituée d'un chapitre présentant les paramètres de fonctionnement et le dimensionnement de la colonne.

Le quatrième chapitre sera consacré à la présentation de logiciel Aspen HYSYS et la simulation en général et les résultats de simulation obtenus à laide HYSYS sont présentés. Les résultats obtenus avec chaque modèle thermodynamique PR et CS sont comparés en termes de l'efficacité.

Finalement le travail est terminé par une conclusion générale qui récapitule les résultats les plus importants de cette étude ainsi les recommandations.

Chapitre I : Généralité sur ^la distillation

I.1 Historique

En effet, la distillation est un ancien procédé qui remonte à l'an 2000 avant J.C. On considère que les premières distillations se sont réalisées en Chine, en Egypte et dans la Mésopotamie dans le cadre médicinal et également dans le but de créer du baume, des essences et des parfums. Vers 1810 avant J.C, la parfumerie du roi Zimrilim dans la Mésopotamie a employé cette méthode pour faire tous les mois des centaines de litres de baumes, d'essences et de l'encens de cèdre, de cyprès, de gingembre et de myrrhe. Les distillations effectuées ont pour objectif de produire des cosmétiques, des substances médicinales et des substances utilisées dans l'embaumement des morts et dans la réalisation de rituels spirituels. La reine Cléopâtre connaissait l'art de la distillation et on pense qu'elle a fait un rapport sur ce procédé qui a été perdu. Au Ier siècle, le physicien grec Pedanius Dioscurides a cité ce procédé après avoir observé une condensation dans le couvercle d'un récipient où du mercure avait été chauffé.

Les historiens affirment que l'alambic a été très probablement inventé vers 200 ou 300 après J.C par Marie, la juive ou par Zosime de Panoplie, un alchimiste égyptien dont la sœur, Theosebeia, a inventé beaucoup de modèles d'alambics et de condensateurs de reflux [1].

I.2 Définition de la distillation

La distillation est une des méthodes de séparation les plus utilisées industriellement. Cette opération permet la séparation et la purification des mélanges de constituants dont les températures d'ébullition sont différentes, en mettant à profit la différence de volatilité (capacité à s'évaporer selon la température) des constituants puis en réalisant une succession de condensations et de vaporisations pour terminer par la récupération d'un des constituants. **[2,3,4]**

I.3 Principe de la distillation

La distillation consiste à chauffer jusqu'à l'ébullition un mélange liquide, le constituant le plus volatile s'évapore le premier. Par condensation de la phase vapeur, on récupère un liquide nommé distillat ou extrait (dit aussi produit de tête) avec une concentration élevée du composé le plus volatil. La phase liquide non évaporée constitue le résidu ou le raffinat (appelée également produit de pied ou de fond). **[5,6]**

Comme la thermodynamique la montre, le contact des deux phases conduit à un change des constituants, les plus volatils s'accumulent dans la vapeur et sont éliminés au sommet de la colonne alors que les éléments lourds passent en phase liquide et sont extraits du fond de la colonne,

Généralité sur la distillation

Cette répartition des constituants entre les deux phases se traduit entre la tête et le fond de la colonne par un gradient de température qui dérive directement du gradient de concentration. L'échange réciproque des constituants d'une phase vers l'autre par diffusion conduit à un équilibre théorique. Un tel système en équilibre constitue un étage théorique, il est caractérisé par des équations entre les concentrations des constituants dans chaque phase traduisant ainsi une sélectivité élémentaire de fractionnement. La distillation ordonne ces contacts en série, sous forme de cascade afin d'amplifier la sélectivité de l'étage théorique. **[5,6]**

Le principe des différentes techniques de distillation fait appel aux lois qui régissent l'équilibre liquide - vapeur des corps purs et des mélanges.

I.4 Les types de distillation

Selon le procédé de fonctionnement de l'opération de distillation, on distingue : La distillation discontinue et la distillation continue

I.4.1 La distillation discontinue

La distillation discontinue ou « distillation batch » est utilisée pour les produits à forte valeur ajoutée dans l'industrie pharmaceutique, agroalimentaire, régénération de solvant et fonctionne en régime transitoire.

En distillation discontinue, il y a une variation constante au cours du temps des compositions, des débits et des températures dans la colonne. **[3,6,7]**

En distillation discontinue, le chauffage est appliqué dans un réservoir en fond de colonne (bouilleur), où le mélange est introduit. Les produits les plus légers sont recueillis en premier dans le condenseur qui se trouve en tête de colonne. Lors du passage des différents composés légers, la température en tête de colonne s'accroît.

En fin d'opération, il ne reste plus que le résidu lourd en bas de colonne. C'est pareil que pour la distillation continue, il est très difficile de donner une estimation du coût de ce procédé du fait de la variété des produits traités. **[8]**

La distillation continue

La plupart des colonnes de distillation utilisées dans l'industrie du pétrole et dans les industries chimiques et pétrochimiques fonctionnent en continu.

En distillation continue, le système est en équilibre massique et thermique permanent. Le mélange à traiter est introduit sur le plateau d'alimentation de la colonne. Les composés les plus

volatils se vaporisent à partir du liquide contenu dans la colonne et atteignent le plateau supérieur.

En montant, les vapeurs s'enrichissent en composés volatils. La phase vapeur ainsi enrichie est collectée en haut de la colonne, puis condensée pour fournir un distillat léger.

La phase liquide tombe en cascade vers le bas, s'enrichit en éléments lourds et perd ses éléments légers. Plus le nombre de plateaux ou la hauteur de la colonne est important, meilleure est la séparation. Le but étant de trouver un compromis entre le rendement et le coût de l'opération. Il est très difficile de donner une estimation du coût de ce procédé du fait de la variété des produits traités. Il faut noter qu'avec cette technique il est difficile de séparer des produits dont l'écart de températures d'ébullition est inférieur à 1 degré. En ce qui concerne les rejets générés par ce procédé, la partie non récupérable est généralement incinérée dans un centre de traitement cependant dans le cas où elle est fortement aqueuse, elle est envoyée dans un réseau de traitement biologique.**[8,9]**

L'équilibre Liquide-Vapeur (ELV)

Tout corps pur se vaporise à température constant sous une pression donnée, un mélange passe progressivement de l'état liquide à l'état vapeur par augmentation de température à pression constante et la composition des deux phases supposée en équilibre évolue constamment au cours de la transformation.

L'équilibre liquide-vapeur est un état dans lequel un liquide et sa vapeur (phase gazeuse) sont en équilibre, c'est-à-dire qu'il y a autant de vaporisation (transformation du liquide au gaz) que de liquéfaction (transformation du gaz au liquide) à l'échelle moléculaire. À l'échelle macromoléculaire on n'observe donc aucun changement dans le temps.

A toute température T comprise entre température de bulle et température de rosée sous la pression P, correspond un équilibre liquide-vapeur, caractérisé par les quantités, les compositions et l'égalité des températures des deux phases en présence.

La composition de chaque phase à l'équilibre n'est donc fonction que de la pression et de la température. **[3,6,7]**

Les différents mélanges de liquide peuvent être classés, d'après le nombre de leurs constituants, en mélanges binaires, ternaires... Les mélanges binaires, qui ont été les plus étudiés, seront seuls considérés ici. On distingue, d'après la solubilité réciproque des constituants :

Les mélanges homogènes comprenant :

Les mélanges normaux parmi lesquels on rencontre les mélanges idéaux.

Les mélanges anormaux ou azéotropiques.

Les mélanges hétérogènes.

Lois fondamentales de transfert de matière

Loi de Raoult

La loi de Raoult relie la pression partielle d'un composant dans la phase vapeur à la concentration dans la phase liquide, Cette loi permet d'exprimer la proportionnalité, pour une température et une pression données, entre la phase vapeur et les compositions de la phase liquide

$$\boldsymbol{P}_i = \boldsymbol{P}_i^0 \cdot \boldsymbol{x}_i \tag{I.1}$$

Avec P ° la tension de vapeur saturante qui est obtenue par l'équation de FRIEDEL :

$$P^{0} = \exp(a + \frac{b}{T} + C \cdot \ln T + d \cdot T^{e})$$
 (I.2)

Où a, b, c, et e sont des constantes

Cette loi est applicable que pour les solutions idéales, c'est à dire les solutions dont les forces intermoléculaires sont identiques ou nulles quelque soit la composition.

a. Point d'ébullition

C'est l'apparition de la première bulle de vapeur lorsqu'on chauffe le liquide (liquidevapeur).

Lois de DALTON

La loi de Dalton s'applique aux gaz et aux vapeurs sans tenir compte du liquide au contact de la vapeur. On peut l'énoncer de la manière suivante :

$$P_T = \sum_{i}^{n} P_i \tag{I.3}$$

 P_i : pression partielle du constituant i .

n : nombre de constituants du mélange.

 P_T : pression totale du mélange.

La loi de Dalton relie la concentration d'un composé présent dans un mélange idéal de gaz ou de vapeur à sa pression partielle :

$$\boldsymbol{P}_i = \boldsymbol{P}_T \cdot \boldsymbol{y}_i \tag{I.4}$$

b. Point de rosé

C'est l'apparition de la première goutte de liquide lorsqu'on refroidit la vapeur (vapeurliquide).

I.6.2.1 La loi de HENRY

Dans le cas de mélange réel, la pression partielle d'un constituant A est proportionnelle à sa fraction molaire dans la phase liquide :

$$P_A = E_A X_A \tag{I.5}$$

Où : *E_A* : constant d'HENRY

Volatilités

La volatilité désigne la plus ou moins grande facilité de vaporisation d'une substance. On distingue la volatilité absolue et la volatilité relative.

I.7.1 Volatilité absolue

Un composé est d'autant plus volatil que sa pression de vapeur saturante est élevée c'està-dire que sa température d'ébullition est basse. Pour tout composé A, d'un mélange, l'équilibre liquide-vapeur (ELV) est caractérisé par la volatilité absolue (coefficient de partage entre deux phases) K_A :

$$K_A = \frac{y_A}{x_A} \tag{I.6}$$

La détermination des valeurs des K_A peut se faire soit expérimentalement soit analytiquement en utilisant les modèles thermodynamiques appropriés.

I.7.2 Volatilité relative

Dans un mélange liquide renfermant deux composants i et j, elle est définie comme le rapport entre les volatilités absolues de chaque composant dans le mélange liquide. Elle est exprimée généralement par rapport à la plus grande volatilité, de sorte que sa valeur est supérieure à l'unité.

$$\alpha_{ij} = \frac{K_i}{K_j} \tag{I.7}$$

La séparation entre i et j est d'autant plus difficile que α_{ii} est voisin de 1.

On trouvera ci-après le diagramme de DePriester permettant la détermination des volatilités d'hydrocarbures légers, sous différentes conditions de pressions et de températures.

I.7.3 Utilisation de la volatilité relative:

Dans les calculs de la rectification des mélanges complexes, on sera amené à effectuer des séries de calcul d'équilibre pour chaque zone. Pour éviter le travail lent et fastidieux des approximations successives, on peut utiliser une méthode simplifiée et rapide donnant une précision assez suffisante. Cette méthode fait intervenir la notion de la volatilité relative αi étant le rapport des coefficients d'équilibre du constituant i à celui d'un constituant de référence choisit généralement comme étant l'élément le plus lourd (le moins volatile du mélange).

I.8 Description d'une colonne de distillation :

La colonne de distillation est un appareil cylindrique vertical, constitué d'une succession de plateaux ou de garnissages, dont le rôle consiste à mettre en contact une phase vapeur et une phase liquide de manière à effectuer une séparation des constituants présents dans la charge. Cette séparation se fait grâce à un transfert de matière dont la force motrice dépende d'une part des différences de concentration et d'autre part des équilibres liquide-vapeur intervenant entre ces deux phases. [10]

Dans une colonne de distillation (Figure I.I), le liquide se déplace par gravité de haut en bas, et la vapeur de bas en haut, grâce à l'énergie de pression utilisée pour assurer un bon barbotage. Le liquide arrivant au fond de la colonne est partiellement vaporisé dans le rebouilleur qui crée la phase vapeur nécessaire à la distillation, le liquide non évaporé est extrait du fond de la colonne et constitue le résidu. La vapeur arrivant en tête de la colonne est condensée, une partie du produit condensée est envoyée en tête de la colonne en qualité de reflux, le reste est soutiré en tant que distillat (produit de tête). **[10]**

La colonne est devisée en trois zones :

Zone d'alimentation : c'est l'entrée du mélange à fractionner. Zone de rectification : se situe au-dessus de la zone d'alimentation. Zone d'épuisement : se situe au-dessous de la zone d'alimentation

Généralité sur la distillation

Figure I.I : Schéma d'une colonne de distillation (à plateaux).

I.9 Bilan matière et thermique de la colonne

On écrit les bilans sur une colonne à distiller fonctionnant en continu comme suite :

Bilan global :

$$L' = D' + R' \tag{I.8}$$

L': Débit molaire de la charge.

D' : Débit molaire du Distillat.

R': Débit molaire du Résidu.

Bilan matière partiel :

On va seulement multiplie par la fraction du constituant soit massique soit molaire.

$$L'.X'_{L,i} = D'.Y'_{D,i} + R'.X'_{R,i}$$
(I.9)

 X'_i : Concentration molaire du constituant «i» en phase liquide.

 Y'_i : Concentration molaire du constituant «i» en phase vapeur.

Xi : Concentration massique du constituant «i» en phase liquide.

Yi : Concentration massique du constituant «i» en phase vapeur.

Bilan thermique:

Un bilan thermique consiste en un bilan des gains et des pertes de chaleur dans un système donné. Etablir comme suit :

$$L'h_L + Q_R = D'H_D + R'h_R + Q_C$$
 (I. 10)

$$L'h_L = \left(H_D + \frac{Q_C}{D'}\right) + \left(h_R - \frac{Q_R}{R'}\right)$$
(I.11)

$$L'h_L = D'H'_D + R'h'_R$$
 (I. 12)

 h_L : Enthalpie de la phase liquide de la charge (Kcal/Kmoles).

 H_D : Enthalpie de la phase vapeur du distillat à l'état vapeur (Kcal/Kmoles).

 H_R : Enthalpie de la phase vapeur provenant du four (Kcal/Kmoles).

24

I.9.1 Zone de rectification

La zone de rectification, a pour objectif d'éliminer les produits lourds du distillat.

Bilan matière global :

$$G'_{n} = D' + g'_{n-1}$$
 (I.13)

Bilan matière partiel :

$$G'_{n}Y'_{n} = D'.Y'_{D,i} + g'_{n-1}X'_{n-1}$$
 (I.14)

Le taux de reflux R_f est défini comme étant la quantité de reflux g'_x renvoyée à la colonne sur la quantité de distillat D':

$$R_f = \frac{g'_x}{D'} \tag{I.15}$$

En admettant que les débits liquides et vapeur sont constants le long de la colonne c'est à dire que :

$$g'_{n-1} = g'_n = g'_x = g'$$
 (I. 16)

Et :

$$G'_{n-1} = g'_n = G' = D' + g'$$
 (I.17)

$$Y'_{n} = \left(\frac{g'}{G'}\right)X'_{n-1} + \left(\frac{D'+g'}{D'}\right)Y'_{D}$$
 (I. 18)

$$Y'_{n} = R'_{f}X'_{n-1} + (1 + R'_{f})Y'_{D}$$
 (I. 19)

Bilan thermique :

$$G'_{n}H_{n} = g'_{n-1}h_{n-1} + D'H'_{D} + Q_{C}$$
 (I.20)

$$G'_{n}H_{n} = g'_{n-1}h_{n-1} + D'\left[H'_{D} + \frac{Q_{c}}{D'}\right]$$
 (I.21)

$$G'_{n}H_{n} = g'_{n-1}h_{n-1} + D'H_{D}$$
 (I.22)

I.9.2 Zone d'épuisement

La zone d'épuisement a pour objectif d'appauvrir le résidu en produits légers.

Bilan matière global :

$$G'_{n-1} = G'_n + R'$$
 (I.23)

Bilan matière partiel :

$$G'_{n-1}X'_{n+1} = G'_{n}Y'_{n,i} + R'X'_{R,i}$$
 (I.24)

Bilan thermique :

$$g'_{n+1}h_{n+1} = Q_R = G'_nH_n + R' \cdot h_R$$
 (I.25)

$$g'_{n+1}h_{n+1} = Q_R = G'_n H_n + R' \cdot \left[h_R - \frac{Q_R}{R'}\right]$$
 (I.26)

$$g'_{n+1}h_{n+1} = Q_R = G'_nH_n + R'_H_R$$
 (I.27)

$$X'_{n+1} = \frac{G'_n}{g'_{n+1}}Y'_n + \frac{R'}{g'_{n+1}}X'_R$$
(I.28)

I.9.3 Zone de flash

Bilan matière :

$$L' = G'_0 + g'_0$$
 (I.29)

Bilan matière partiel :

$$L' X'_{L} = G'_{0}Y'_{0,i} + g'_{0}X'_{0,i}$$
 (I.30)

Bilan thermique :

$$L'.h_{L} = G'_{0}H_{0} + g'_{0}h_{0}$$
 (I.31)

I.10 Les différents types de colonnes de distillation

La réalisation de contact entre les phases (liquide et vapeur) se fait par deux types de colonne dont les éléments de contacte sont différents :

Vapeur Soutirage

Vapeur Taux de rebouillage = Soutirage

I.10.1 Colonnes à garnissage

Elles sont utilisées dans la distillation et l'absorption. Ces colonnes (Figure I.II) réalisent un contre- courant continu. C'est pourquoi elles sont remplies d'éléments solides (garnissages). On emploie généralement comme garnissage du coke ou de la brique qui ont l'avantage d'être particulièrement bon marché. Techniquement, une colonne à garnissage comporte les équipements suivants :

Des tronçons de garnissage (de 0.3 à 10m de hauteur selon le diamètre de la colonne)

Des grilles support pour les différents tronçons de garnissage

Des collecteurs permettant de récupérer l'ensemble du liquide descendant du tronçon supérieur

Des distributeurs permettant d'assurer une redistribution du liquide sur la surface du garnissage, au niveau de l'alimentation ou du reflux mais également entre deux tronçons.

Le garnissage efficace doit être tel que la surface par unité de volume soit la plus grande possible, bonne distribution du liquide et du gaz et faibles pertes de charges. On distingue deux types de garnissage : garnissage en vrac et garnissage structuré (Figure I.II) [10]

I.10.2 Colonnes à plateaux

Les colonnes à plateaux sont utilisées pour réaliser un contact entre une phase gazeuse et une phase liquide de façon à amener celles-ci le plus près possible de l'état d'équilibre. Les transferts de matière et de chaleur entre les phases sont d'autant plus importants que la surface de contact et la turbulence des phases sont plus grandes. Les colonnes à plateaux ont été mises au point pour la distillation, opération dans laquelle la résistance au transfert de matière est plus importante dans la phase vapeur que dans la phase liquide. Les plateaux sont donc conçus pour assurer une dispersion de la phase vapeur au sein du liquide .

I.11 Différents types de plateaux

Les plateaux d'une colonne ont pour objectif de mettre en contact le liquide, qui redescend par gravité, avec la vapeur qui monte. Ils comportent :

Une aire active percée de trous, éventuellement équipés de clapets ou de cloches d'un barrage permettant de retenir sur le plateau une certaine épaisseur de liquide d'un déversoir permettant d'amener le liquide du plateau considéré vers le plateau inférieur ces deux derniers étant remplacés par des tubes déversoirs pour des petites colonnes. On distingue plusieurs types de plateaux :

I.11.1 Plateaux à calottes :

C'est le modèle le plus ancien il se rencontre encore dans les industries pétrolières ou chimiques. [11][12] Il est constitué d'une plaque perforée, chaque trou étant muni d'une cheminée, celle-ci sert à guider une calotte dont la fixation est assurée par une tige et un contreécrou. [13] Une centaine de formes différentes de calottes ont été imaginées et conduisent à des efficacités de contact plus ou moins bonnes. [13] Les calottes peuvent êtres disposées en carré ou en triangle. [11]

Une certaine quantité de liquide est maintenue sur le plateau grâce à un déversoir qui assure l'écoulement du liquide vers le plateau inférieur. La qualité prédominante d'un plateau à calottes est sa faculté d'adaptation à une très large gamme de débits liquide et vapeur. Son utilisation est toutefois restreinte en raison de son coût élevé et des fortes pertes de charge qu'il crée dans la colonne. **[12]**

I.11.2 Plateaux perforés à déversoirs :

Les plateaux perforés ont un prix de revient faible et une simplicité de construction et de fonctionnement **[13]**, ils n'ont pas obtenu beaucoup de succès, car les performances ne demeurant acceptables que pour des variations de débit très faible autour de la valeur optimale pour laquelle ils ont été calculés .la valeur traverse verticalement la couche de liquide. **[10]**

I.11.3 Les plateaux à clapets:

C'est un plateau dont les orifices sont équipés de clapets. **[11]** La hauteur de soulèvement de ces derniers est fonction du débit de vapeur. Les vapeurs s'échappent horizontalement dans le liquide. **[14]**

Les plateaux a clapets se sont progressivement substitués aux plateaux a calottes car leur performances sont légèrement supérieures pour un prix de revient plus faible. [11][12]

Il existe une grande variété de forme de clapets : ronds, triangulaires allongés. Certains modèles offrent la possibilité de tarer le clapet en fonction du débit de vapeur. **[12]**

I.11.4 Plateaux uniflux :

C'est une variante du plateau à calottes. Le plateau est décomposé en bandes ayant une section en S et l'échappement de la vapeur aux échancrures s'effectue vers le déversoir aval, ce qui favorise l'écoulement du liquide sur le plateau. [10]

Par contre la dispersion de la vapeur dans le liquide est moins homogène c.à.d. que le contact liquide-vapeur est moins bon que pour les types de plateaux considérés précédemment. [10]

I.11.5 Plateaux à jets directionnels (jet tray) :

Dans le plateau sont découpées des languettes leur inclinaison est dans le sens de l'écoulement du liquide sur le plateau, l'échappement orienté de la vapeur sous les languettes facilite l'écoulement du liquide, et permet de diminuer le gradient liquide sur le plateau. La perte de charge est moins importante et le prix de revient faible, la construction est très simple. **[5, 6]**

Mais il faut avoir une pression bien déterminée pour empêcher le passage de liquide par les languettes.

Ces derniers sont mobiles est articulés au plateau par une charnière, ce qui apparent au modèle a soupapes.

I.11.6 Plateaux perforés sans déversoirs :

Ils sont du type perforé, donc de construction peut onéreuse. Liquide et vapeur circulent à contre courant par les mêmes orifices, de sorte que l'ensemble peut être traité comme une colonne a garnissage . Le niveau liquide sur le plateaux correspond a la balance dynamique des écoulement liquide et vapeur à travers les orifices . Ces plateaux ont une bonne efficacité et un prix de revient peut élevé, ils présentent les mêmes inconvénients que les plateaux perforés. **[10]**

Généralité sur la distillation

Figure | I.III : Types de plateaux.

I.12 Les appareillages d'une installation de distillation

I.12.1 colonne

La colonne de fractionnement est la partie essentielle dans une unité de distillation. Dans sa très grande majorité c'est une tour cylindrique verticale de hauteur et de diamètre variable, formé d'une virole et de deux fonds. L'intérieur est divisé en compartiments horizontaux appelés plateaux. Généralement la colonne peut atteindre près de 50m de hauteur et 6m de diamètre .Elle est montée verticalement et repose sur des pieds ou une jupe.

I.12.2 Le condenseur

C'est également un échangeur de chaleur dans lequel la vapeur sortant en tête de colonne peut être refroidie pour être enfin condensée.

Les condensations les plus souvent rencontrées sont :

I.12.2.1 Condensation totale

Toutes les vapeurs sont condensées en un liquide se séparant ensuite entre reflux et distillat, Condenseur total n'est plus un étage de séparation. Par rapport à une colonne conçue sur la base d'un condenseur partiel, il faut donc rajouter un étage interne à la colonne si le condenseur est doit être total.

En fait, la construction de McCabe et Thiele est exactement la même, que le condenseur soit total ou partiel, mais elle commence au deuxième plateau (au lieu du premier) dans le cas d'un condenseur total.

I.12.2.2 Condenseur partiel :

Un condenseur partiel est un étage d'équilibre qui effectue une séparation (le distillat et le reflux n'ont pas la même composition). On demande donc au condenseur de liquéfier distillat et reflux, on parle donc de condenseur total. Un condenseur total n'est plus un étage de séparation.

I.12.3 Le rebouilleur

C'est un échangeur de chaleur, disposé au fond de la colonne, souvent de type à faisceaux tubulaires, dont le rôle est de porter, à l'ébullition, le liquide à distiller moyennement un échange de chaleur avec un fluide caloporteur. **[14]**

I.12.4 Ballon de reflux

C'est un ballon situé au-dessous du condenseur pour accumule les produits de tète condensés et surtout pour contenir le liquide de reflux. [14]

I.13 Les appareillages annexes

I.13.1 L'échangeur de chaleurs

Ils sont utilisés pour récupérer la chaleur, par exemple un échangeur préchauffe la charge d'alimentation par le liquide chaud du bas de la colonne afin de valoriser les rejets thermiques. [15]

I.13.2 Les pompes

Elles sont indispensables pour assurer la circulation des liquides au sien de l'installation et pour compenser les pertes de charges dans les différents éléments. [14]

I.13.3 Les appareils de mesure, de contrôle et de régulation

Pour éviter la perturbation des conditions de fonctionnements, certains appareils de contrôle sont à installer. Ces derniers permettent de suivre en temps réel l'évolution des différents paramètres opératoire (température, pression). Par conséquent, ils faciliteront l'intervention si l'incident qui survient risque d'altérer le bon fonctionnement. [14]

Chapitre II: **Distillation des** mélanges complexes

Introduction

Dans l'industrie, la majeure des processus de distillation implique plus de deux composants. Les séparations multi-composantes sont effectuées en utilisant le même type de colonnes de distillation, de rebouilleurs, de condenseurs, d'échangeurs thermiques... etc...

La séparation de ces constituants repose sur les mêmes principes que ceux qui ont été énoncés pour les mélanges binaires, bien que l'application en soit délicate. Si l'on excepte le cas des soutirages latéraux, la colonne répartit l'alimentation en un distillat en tête et un soutirât en bas de colonne. On se ramène au cas des binaires en faisant choix de deux constituants de volatilités voisines, les "constituants-clefs".

Dans le cas de mélanges multi-composants, il est nécessaire d'utiliser une approche analytique. Le schéma de séparation fait intervenir deux principaux composants du mélange. Le composant principal léger (Yi) a une concentration limite maximale dans le résidu et le composant principal lourd (Xi) a une concentration limite maximale dans le distillat.

On applique plusieurs méthodes de raccourci sont utilisées pour effectuer des calculs dans des systèmes multi-composantes. Les méthodes de calcul qui permettent de connaître les valeurs conjuguées du taux de reflux et du nombre de plateaux théoriques nécessaires pour effectuer une séparation peuvent être rassemblées en deux groupes :

- Les méthodes dites abrégées (Short-cuts),
- Les méthodes dites progressives de calcul plateau par plateau.

Ceux-ci impliquent généralement une évaluation du nombre minimal de plateaux, du taux de reflux minimal et du nombre de plateaux au reflux fini pour des distillations simple. Bien que les méthodes informatiques rigoureuses soient disponibles pour résoudre des problèmes de séparation multi-composants, les méthodes approximatives sont utilisées en pratique. Une méthode approximative largement utilisée est généralement mentionnée comme la méthode de **FENSKE-UNDERWOOD- GILLILAND.**

II.1 La distillation des mélanges complexes : La méthode (Short-cuts)

Avant l'avènement de l'ordinateur numérique moderne, diverses méthodes de « short-cut» ont été développées pour simplifier la tâche de conception de colonnes multicomposants. Bien que des programmes informatiques soient normalement disponibles pour la résolution rigoureuse des équations MESH, les méthodes abrégées sont toujours utiles dans le travail de conception préliminaire et comme aide à la définition des problèmes pour la solution informatique. L'utilisation intelligente des méthodes de raccourcis peut réduire le temps et les coûts informatiques. **[16]**

Les méthodes de short-cut disponibles peuvent être divisées en deux classes :

1. Simplification des procédures rigoureuses étape par étape pour permettre aux calculs d'être faits à la main ou graphiquement. Des exemples typiques de cette approche sont les méthodes données par **Smith et Brinkley (1960) et Hengstebeck (1976).**

2. Les méthodes empiriques, qui s'appuient sur les performances des colonnes opératoires, ou sur les résultats de conceptions rigoureuses. Des exemples typiques de ces méthodes sont la corrélation de Gilliland et la corrélation d'Erbar-Maddox

Ce chapitre développe une méthode approximative supplémentaire pour la conception préliminaire et l'optimisation de la distillation simple, appelée **la méthode Fenske-Underwood-Gilliland (FUG).**

II.1.1 La méthode Fenske-Underwood-Gilliland (FUG).

Les méthodes approximatives continuent à être utilisées en pratique pour des buts divers, y compris la conception préliminaire, des études paramétriques pour établir des conditions de conception optimums et pour des études de synthèse de processus pour déterminer des ordres de séparation optimaux. Dans ce chapitre nous étudierons le calcul d'une colonne par la méthode approximative FUG qui est largement utilisée pour faire la conception préliminaire et l'optimisation de distillation simple.

La plus populaire de ces méthodes raccourcies est la méthode Fenske Underwood-Gilliland (FUG). Les hypothèses de base d'une telle méthode sont :

1. Le système est idéal.

2. Débordement molaire constant (comme dans la méthode de McCabe Thiele pour les mélanges binaires).

3. La séparation s'opère essentiellement entre le composant clé léger et le composant clé lourd.

La clé légère (**LK**) est le composant le plus léger apparaissant en bas et la clé lourde (**HK**) est le composant le plus lourd apparaissant en haut. Dans la méthode **FUG** :

1. L'équation de Fenske est utilisée pour calculer le nombre minimum de plateaux, Nmin qui est le nombre de plaques requises pour effectuer une séparation spécifiée au reflux total, c'est-à-dire que la valeur minimale des équations de N.

2. L'équation d'Underwood est utilisée pour estimer le reflux minimum, Rmin

3. La corrélation de Gilliland est utilisée pour calculer le nombre réel de plateaux, N (pour tout R donné), ou le taux de reflux, R, (pour tout N donné) en fonction des valeurs limites précédentes Nmin et Rmin

f Figure II.I : Algorithm for multicomponent distillation by FUG method. [17]
II.1.2 Méthode de Fenske : "Fonctionnement à taux de reflux total" :

Dans la rectification on utilise deux méthode d'idéalisations du procédé permettant d'établir les cas limites du fonctionnement de la colonne, l'un des cas est le fonctionnement à reflux total qui correspondant à un nombre minimal de plateaux théoriques et l'autre est le fonctionnement à reflux minimal demandant la séparation spécifiée un nombre infini de plateaux.

A reflux total lorsque les concentrations de deux constituants (i et j) dans les produits obtenus (distillat et résidu), les volatilités relatives de ces constituants et le nombre minimal de plateaux est donné par la formule connue de Fenske.[18]

Fenske (1932) a été le premier à dériver une équation pour calculer le nombre minimum de plateaux pour la distillation multicomposant au reflux total. La dérivation était basée sur l'hypothèse que les étapes sont des étapes d'équilibre.

Pour un binaire, l'équation de Fenske permettant de calculer ce nombre minimum de plateaux dans une colonne fonctionnant à reflux total est donnée par :

$$N_{min} + 1 = \frac{\ln \frac{x_D (1 - x_W)}{x_W (1 - x_D)}}{\ln \alpha_{AB}}$$
(II. 1)

$$\begin{split} N_{min} + 1 : \text{Représente le nombre d'étages théoriques total y compris le bouilleur.} \\ \text{Si on se place au dernier étage en haut de la colonne, } n = N_{min} \text{ on a alors} \end{split}$$

$$\left(\frac{x_{i,\text{Nmin}+1}}{x_{i,1}}\right)\left(\frac{x_{j,1}}{x_{j,\text{Nmin}+1}}\right) = \prod_{k=1}^{\text{Nmin}} \alpha_k$$
(II. 2)

On considéré le couple de composés i (la cléf légére) et j (la clef lourde) sur le plateau n, et on pose :

 $x_{i,1} \ et \ x_{j,1} \ les \ fractions \ molaires \ en \ bas \ de \ colonne: \ x_{i,B} \ et \ x_{j,B}$

Si la volatilité du couple i-j reste constante dans la colonne, c'est-à-dire $_{k}$ $_{ij}\!=\!$ constante,alors :

$$\left(\frac{x_{i,\text{Nmin}+1}}{x_{i,1}}\right)\left(\frac{x_{j,1}}{x_{j,\text{Nmin}+1}}\right) = \alpha_{ij}^{N_{min}}$$
(II. 3)

On obtient alors l'équation de Fenske suivante :

$$N_{min} = \frac{\log\left(\frac{x_{i,\text{Nmin}+1}}{x_{i,1}}\right)\left(\frac{x_{j,1}}{x_{j,\text{Nmin}+1}}\right)}{\log\alpha_{ij}} = \frac{\log\left(\frac{x_{i,D}}{x_{i,B}}\right)\left(\frac{x_{j,B}}{x_{j,D}}\right)}{\log\alpha_{ij}}$$
(II. 4)

Une Forme souvent plus pratique de l'équation de Fenske utilise les débits plutôt que les fractions molaires.

$$\left(\frac{x_{i,\text{Nmin}+1}}{x_{j,\text{Nmin}+1}}\right) = \left(\frac{D.x_{i,\text{Nmin}+1}}{D.x_{j,\text{Nmin}+1}}\right) = \left(\frac{d_i}{d_j}\right)et\left(\frac{x_{i,1}}{x_{j,1}}\right) = \left(\frac{b_i}{b_j}\right)$$
(II. 5)

Si **D** et **B** sont les débits totaux de distillat et de résidu, on appelle di et bi les débits molaires de chaque composé « i » dans le distillat et **dj** et **bj** ceux dans le résidu :

Et l'équation de Fenske s'écrit alors :

$$N_{min} = \frac{\log\left(\frac{d_i}{d_j} \cdot \frac{b_j}{b_i}\right)}{\log\alpha_{ij}}$$
(II.6)

Avec i = clé légère et j = clé lourde

II.1.3 Répartition des autres composés (non-clés)

Choisissons la clé lourde comme référence et utilisons la loi de Fenske pour les couples (i,r) où « i » est un composé non-clé :

$$\left(\frac{d_i}{b_i}\right) = \left(\frac{d_r}{b_r}\right) \cdot \alpha_{ir}^{N_{min}} \tag{II.7}$$

Or : $\mathbf{f}_i = d_i + b_i$ avec $\mathbf{f}_i = d\acute{e}bit$ molaire du composé i dans l'alimentation :

$$b_{i} = \frac{f_{i}}{1 + (d_{r}/b_{r})(\alpha_{ir})_{m}^{N_{min}}}$$
(II.8)

$$d_{i} = \frac{f_{i}(d_{r}/b_{r})(\alpha_{ir})_{m}^{N_{min}}}{1 + (d_{r}/b_{r})(\alpha_{ir})_{m}^{N_{min}}}$$
(II. 9)

II.1.4 Reflux minimal par la méthode de Underwood :

Le reflux minimum correspond au cas limite d'une colonne ayant un nombre infini de plateaux. C'est à dire qu'il existe dans la colonne une (ou plusieurs) région pour laquelle les courants qui entrent dans un plateau sont déjà à l'équilibre.

• Pour les binaires, cette situation correspondait à l'intersection ou à la tangence des droites opératoire et d'alimentation avec la courbe d'équilibre

• La détermination du reflux minimum pour les mélanges complexes résulte de la résolution d'un ensemble d'équation caractérisant des bilans matières, les relations d'équilibre et l'état thermodynamique de l'alimentation.

• Le développement des équations, long et fastidieux n'est pas présenté et nous allons simplement donner les relations obtenues par Underwood (ChemEng.Prog. 1948; 44 :603) dans le cas où il n'y a pas de composé distribué Distillation des mélanges complexe. **[18]**

La méthode consiste d'abord à trouver (par itération) la valeur du paramètre θ tel que:

$$\sum_{i=1}^{n} \frac{\alpha_{ir} z_i}{\alpha_{ir} - \theta} = 1 - q \qquad (II. 10)$$

Avec : $aHK < \theta < aLK$

et où :

 \mathbf{Z}_i = Fraction molaire dans l'alimentation du composé i

LK = fraction de récupération du composant clé légère

HK = fraction de récupération du composant clé lourd

• *n* est le nombre de composants,

• α_{ir} est la volatilité relative moyenne du composant i par rapport au composant principal lourd r,

• q est le nombre de moles du liquide saturé produit au plateau d'alimentation par mole de l'alimentation et

• est un paramètre, dont la valeur est une inconnue qui doit être déterminée par itérations successives. La valeur correcte de $\boldsymbol{\theta}$ se situe entre la volatilité relative des deux composants principaux clé légère et clé lourde.

Chapitre II

On choisit comme référence la clé lourde et les volatilités sont estimées à la température moyenne de la colonne. Le paramètre q, qui caractérise l'état thermodynamique de l'alimentation par rapport à ceux de la vapeur et du liquide

Puis, on utilise cette valeur de q pour trouver la valeur du reflux minimum $\mathbf{Rmin} = \mathbf{L}/\mathbf{D}$:

$$R_{min} + 1 = \sum_{i=1}^{n} \frac{\alpha_{ir} x_{iD}}{\alpha_{ir} - \theta}$$
(II. 11)

Où *xiD* est la fraction molaire du composant i dans distillat.

II.1.5 Taux de reflux optimal

A partir du taux de reflux opératoire choisi, l'étude du procédé de rectification montre qu'à chaque valeur du taux de reflux, correspond un nombre fini de plateaux théoriques et que ce nombre diminue quand le taux de reflux s'accroît. Pour cela on utilise la formule propose par GILLILAND.

En général on utilise la règle suivante pour le choix du reflux réel d'opération [18] :

$$\frac{R}{R_{min}} = 1.3 \tag{II.12}$$

II.1.6 Méthode de Gilliland : "Nombre de plateaux théoriques à reflux optimal" :

Gilliland a proposé une corrélation empirique entre le taux de reflux, et le nombre de plateaux théoriques. Si « N » est le nombre de plateaux théorique, correspondant à un taux de reflux opératoire (R)opt, les deux fonctions sont reliées entre elles par une courbe de corrélation.[6]

$$\frac{N - N_{min}}{N + 1} = \frac{R - R_{min}}{R + 1}$$
(II. 13)

Les résultats de Gilliland ont été corrélés par Eduljee (Hydro. Proc. 1975; 54 (9) 120) suivant:

$$X = \frac{R - R_{min}}{R + 1} \tag{II. 14}$$

$$Y = \frac{N - N_{min}}{N + 1} \tag{II.15}$$

$$Y = 0.75 - 0.75 X^{0.5668}$$
(II. 16)

II.1.7 Position du plateau d'alimentaion :

La relation de **Kirkbride** (1944) permet le calcul du rapport du nombre d'étages dans la zone de rectification, N_R , sur le nombre d'étages dans la zone d'épuisement N_S :

$$\frac{N_R}{N_S} = \left[\left(\frac{z_{\rm HK}}{z_{\rm LK}} \right) \left(\frac{x_{\rm B.LK}}{x_{\rm D.HK}} \right)^2 \left(\frac{B}{D} \right) \right]^{0.206}$$
(II. 17)

La somme (N_R+N_S) étant connue, on trouve alors la position de l'alimentation.

Il faut retenir que la position optimale de l'alimentation est celle qui perturbe le moins le fonctionnement du plateau. **[17]**

II.2 Distillation multicomposants : solution rigoureuse

Avant les années 1950, les calculs de colonne étaient effectués à la main. Bien que des procédures de calcul rigoureuses aient été disponibles, elles étaient difficiles à appliquer pour toutes les colonnes, sauf pour les très petites. Les méthodes raccourcies étaient donc le principal outil de conception. Des procédures rigoureuses n'ont été utilisées que pour les petites colonnes ou pour les vérifications finales de la conception. Les imprécisions et les incertitudes dans les procédures de raccourci étaient généralement prises en compte par la sur conception.

L'introduction des ordinateurs a entièrement renversé la procédure de conception. Des calculs rigoureux, qui prenaient autrefois plusieurs jours, parfois des semaines, même pour une colonne relativement simple, peuvent maintenant être effectués rapidement et efficacement à l'aide d'un ordinateur. Il ne faut plus tolérer les imprécisions et les incertitudes inhérentes aux procédures raccourcies. Dans la pratique de la distillation moderne, les méthodes rigoureuses sont le principal outil de conception. [16]

L'utilisation des ordinateurs a également conduit à un développement rapide de procédures plus rigoureuses. Les méthodes rigoureuses développées dans les années 1930 ont été remplacées par des méthodes plus efficaces. De plus, des développements ont eu lieu pour permettre l'application de méthodes rigoureuses à de nombreux fractionneurs complexes, dont certains ne pouvaient pas être modélisés de manière adéquate par des méthodes raccourcies.

Avec la précision et les capacités supérieures de la rigueur moderne méthodes, une colonne ne doit pas être conçue sans elles. Un raccourci le calcul est moins précis et, dans certains cas, peut donner résultats trompeurs. Dans la plupart des travaux de conception de colonnes modernes, le rôle des calculs de raccourci se limite à éliminer les options de conception les moins souhaitables, à fournir au concepteur une estimation initiale pour l'étape rigoureuse et à dépanner la conception finale. Les méthodes rigoureuses sont utilisées comme conception principale et outil d'optimisation. **[16]**

Les étapes de base de toute procédure de solution rigoureuse seront :

1. Spécification du problème ; une spécification complète est essentielle pour les méthodes informatiques.

2. Sélection de valeurs pour les variables d'itération ; par exemple, les températures d'étage estimées et les débits de liquide et de vapeur (les profils de température et de débit de la colonne).

3. Une procédure de calcul pour la solution des équations d'étape.

4. Une procédure de sélection de nouvelles valeurs pour les variables d'itération pour chaque ensemble de calculs d'essai.

5. Une procédure pour tester la convergence ; pour vérifier si une solution satisfaisante a été trouvée. **[19]**

Il convient de considérer les méthodes disponibles sous les quatre rubriques suivantes :

- 1. Méthode Lewis-Matheson.
- 2. Méthode de Thiele-Geddes.
- 3. Méthodes de relaxation.
- 4. Méthodes d'algèbre linéaire. [19]

II.2.1 Modélisation mathématique des colonnes multi-étagées de séparation liquide-vapeur

La Figure II.II représente le schéma général d'une colonne de distillation comportant N plateaux théoriques. Le condenseur, quelque soit son type (partiel ou total), est l'étage n°1 et le rebouilleur l'étage n° N. L'étage n°2 est dit plateau de tête et l'étage N-1 est dit le plateau de fond.

Chaque plateau j est alimenté par un débit vapeur, V_{j+1} est un débit liquide Lj-1 venant respectivement des deux plateaux adjacents j+1 et j-1. De même, quittant le plateau j un débit vapeur Vj et un autre liquide Lj pour alimenter respectivement les deux plateaux adjacents j-1j et j+1. [20]

Sur chaque plateau peut être défini une alimentation vapeur FVj et une alimentation liquide *FL*, un soutirage liquide Uj, un soutirage vapeur Wj et une perte ou apport de chaleur Qj (**Figure 0.IV**).

Figure II.II : Schéma général d'une colonne de distillation.

Figure f II.III : Schéma général d'un plateau d'équilibre.

II.2.2 Formulation des équations du modèle

II.2.2.1 Hypothèses du modèle

Sur chaque plateau, on considère les équilibres suivants :

- Équilibre mécanique : la pression de la phase vapeur est égale à la pression de la phase liquide
- Équilibre thermique : la température de la phase liquide est égale à la température de la phase vapeur
- Équilibre thermodynamique : égalité des fugacités dans chaque phase pour chaque constituant

On fait aussi l'hypothèse d'absence de réactions chimiques et que chacune des phases vapeur et liquide sont parfaitement agitées. [20]

II.2.2.2Équations du modèle (MESH Equations)

A chaque plateau d'équilibre, on associe les quatre équations suivantes :

Équations M-Bilan matière pour chaque composant

 $M_{i,j} = L_{j-1}x_{i,j-1} + V_{j+1}y_{i,j+1} + F_j z_{i,j}$ $- (L_j + U_j)x_{i,j} - (V_j + W_j)y_{i,j} = 0$

Équations E - relation phase-équilibre pour chaque composant

 $E_{ij} = y_{ij} - K_{ij} x_{ij} = 0$

Équations S—Sommations des fractions molaires

$$(S_y)_j = \sum_{i=1}^C y_{i,j} - 1.0 = 0$$

 $(S_x)_j = \sum_{i=1}^C x_{i,j} - 1.0 = 0$

Équation H—bilan énergétique

 $H_j = L_{j-1}h_{L_{j-1}} + V_{j+1}h_{V_{j+1}} + F_jh_{F_j} - (L_j + U_j)h_{L_j} - (V_j + W_j)h_{V_j} - Q_j = 0$

Ces quatre équations sont désignées sous l'appellation M.E.S.H . Pour sa résolution, le modèle peut être formulé de deux façons selon qu'on utilise les fractions molaires ou les débits partiels. [17]

II.2.3 Approches fondamentales de la simulation des colonnes de séparation liquide-vapeur

La simulation des colonnes de séparation liquide vapeur à plateaux, a fait l'objet d'un nombre très important de travaux [21], une étude rétrospective, nous a permis d'identifier différents algorithmes de base. Aussi, nous avons pu constater que chacun de ces algorithmes se caractérise des autres par sa procédure de calcul et par l'application pour laquelle il est destiné. Toutefois, très peu de travaux [21, 22, 23, 16] ont été menés dans l'objectif de synthétiser ces différents algorithmes et de définir une approche fondamentale de résolution.

De ce fait, il nous est paru nécessaire d'établir une classification des différents algorithmes pour la résolution du modèle MESH. Cette classification nous permettra par la suite de comprendre les particularités de chaque approche et de préconiser leurs domaines d'applications appropriés.

II.2.4 Approche mathématique de la résolution du modèle MESH

Le modèle de la colonne est constitué d'un grand nombre d'équations algébriques non linéaires. Les mathématiques nous offrent plusieurs possibilités pour résoudre ce système d'équations [25, 26]. Parmi ces méthodes numériques, nous citerons :

La substitution et l'élimination, Les méthodes directes (sans calcul des dérivées partielles), L'approche séquentielle, L'approche simultanée,

Les deux premières approches sont à éliminer car elles nécessitent des manipulations spéciales des équations qui sont impossibles à effectuer sur le modèle MESH. Par contre, les deux dernières sont retenues. L'approche séquentielle consiste à découpler le système d'équations en sous systèmes qui sont résolus séquentiellement selon une procédure itérative. L'approche des corrections simultanées consiste à résoudre toutes les équations du système simultanément (Figure II.IV). Dans les paragraphes qui suivent, nous présenterons ces deux approches mathématiques appliquées à la résolution du système d'équations du modèle M.E.S.H. [20]

Figure | II.IV : Organigramme des approches de résolution du modèle mathématique des colonnes multi- étagées de séparation liquide-vapeur. [20]

II.2.5 Approche séquentielle

Elle consiste à fractionner le système MESH en sous-systèmes d'équations qui sont résolues séquentiellement. Les équations de bilan de matière sont résolues indépendamment pour générer les profils de distribution des compositions. Ensuite, les profils de température et de débits sont obtenus à partir des autres équations du modèle soit simultanément ou séparément. Dans l'approche séquentielle, un choix judicieux doit être porté sur quatre aspects importants pour la résolution du modèle, à savoir :

Le choix des variables indépendantes,

Le découplage du système d'équations en sous systèmes,

L'association variable équations,

L'ordre de résolutions.

Les trois principaux algorithmes de base de l'approche séquentielle sont :

L'algorithme Bubble-Point,

L'algorithme Sum-Rate,

L'algorithme 2N-Newton.

Ces algorithmes ont connu beaucoup de modifications relatives à l'amélioration des propriétés de convergence et à la minimisation du temps de calcul. [20]

II.2.6 Les approches des corrections simultanées

Contrairement à l'approche séquentielle, l'approche des corrections simultanées consiste à résoudre l'ensemble des équations M.E.S.H simultanément. Dans l'approche des corrections simultanées, on doit tenir compte des trois points suivants :

> Le choix des variables indépendantes, L'arrangement des équations, La méthode numérique de résolution. **[20]**

Principaux algorithmes de l'approche des corrections simultanées

Plusieurs algorithmes de l'approche corrections simultanées ont été développés depuis les premiers travaux sur la simulation des colonnes de distillation. Les plus connus sont ceux de Naphtali et Sandholm [27] et de Goldstein et Stanfield [28]. Sur la base de ces deux algorithmes, d'autres auteurs ont développé des variantes améliorées. Nous citerons à titre d'exemple les travaux de Gallun et Steven [29]. De nos jours, les algorithmes de type « Inside Out » sont les plus utilisés pour la simulation des colonnes de séparation.

Chapitre III ;

Calcul de la colonne

Chapitre III

Introduction :

Notre travail dans ce chapitre est de vérifier les dimensions de la colonne par deux méthodes :

Une méthode approximative qui consiste à calculer les dimensions de la colonne .Elle permet de calculer le bilan matière et déterminer les différentes pressions et températures, cette méthode est basée sur les équilibres liquide-vapeur .

Une simulation HYSYS pour vérifier les paramètres et les paramètres de la colonne.

III.1 Données de départ

Le mélange d'alimentation suivant doit être séparé par distillation ordinaire à **120 psia** pour obtenir **92 %** en moles de nC_4 dans le distillat liquide et **81,0 %** en moles de iC_5 dans les queues.

L'alimentation est donnée sous forme de liquide à point de bulle .

la température de l'alimentation également = 180,8 °F = 82.22 °C

Pas de chute de pression au condenseur ou à l'étage. Par conséquent, la pression au fond également = 120 psia.

La composition et les débits partiels de la charge sont regroupés dans le tableau III.1

		Alimentation		
\mathbf{N}°		Constituants Débit molaire (lbmol/l		Fraction molaire
01	C ₃	Propane <i>C</i> 3H8	5	0,5
02	iC4	Isobutane <i>iC4H10</i>	15	0,15
03	(LK)nC ₄	n-Butane <i>nC4H10</i>	25	0,25
04	(HK)iC ₅	Isopentane <i>iC5H</i> 12	20	0,20
05	nC5	n-Pentane <i>nC5H</i> 12	35	0,35
	$\sum t$	totale	100	1

 Tableau
 III.I
 : La composition de la charge.

III.2 Compositions imposées des courants sortants

Les compositions des deux courants, distillat (tête de colonne) et résidu (fond de colonne) sont précisées dans le tableau [†] III.II

Les teneurs admises					
Dans le distillat Dans le résidu					
Y _{nC4}	0.49	X _{nC4}	0.04		
Y _{iC5}	0.07	X _{iC5}	0,34		

Tableau i III.II : composition imposées des courants sortant.

III.3 Calcul de spécification des deux courants distillat (**D**) et Résidu(**R**)

Le constituant clé léger est nC_4 .

Le constituant clé lourd est iC_5 .

L'analyse des deux courants montre qu'il reste cinq titres à déterminer (5 inconnues) pour une spécification totale des deux courants. Les cinq équations nécessaires sont obtenues en écrivant les bilans macroscopiques des constituants :

$$L.X_{LC3} = D.Y_{C3} + R.X_{BC3}$$
 (III. 1)

$$L.X_{LiC4} = D.Y_{iC4} + R.X_{BiC4}$$
(III.2)

$$L.X_{LnC4} = D.Y_{nC4} + R.X_{BnC4}$$
(III.3)

$$L.X_{LiC5} = D.Y_{iC5} + R.X_{BiC5}$$
(III.4)

$$L.X_{LnC5} = D.Y_{nC5} + R.X_{BnC5}$$
 (III. 5)

En procédant par substitution, on arrive à résoudre progressivement le système d'équation . Les résultats de la résolution sont regroupés dans le tableau f III.III

	<i>D′</i> 46 , 725 lbmol/h		<i>R</i> ′ 53 , 275 lbmol/h	
Constituants	Xi	Di	Xi	Ri
СЗН8	0.107	5.000	0.00	0.000
iC4H10	0.32	15.000	0.00	0.000
nC4H10	0.49	23.125	0.04	1.875
iC5H12	0.07	3.6	0,34	16.400
nC5H12	0.00	0.000	0.64	35.000
Total	1.000	46.275	1.000	53.275

Tableau | III.III : Résultats de la résolution (en titre molaire et débit molaire) .

III.4 Détermination des paramètres opératoires de la colonne (Estimation des points de rosée et de bulle) :

III.4.1 La température au sommet de la colonne

Pour la vérification de la température au sommet de la colonne on utilise l'équation de l'isotherme de la phase vapeur au sommet de la colonne :

$$\sum x_i = \sum \frac{y_i}{K_I} = 1 \tag{III.6}$$

Connaissant la pression $Ps = 8,3 \ bars$, on propose une température T_1 . A l'aide du monogramme de Scheibel et Jenny (annexe **01**), on détermine les volatilités Ki et on calcul le terme $\sum y_i \cdot k_i$ On continue l'opération jusqu'à ce qu'on obtienne l'égalité $\sum y_i \cdot k_i = 1$.

Constituants	70 °C			60 °C	
	x_d	K _i	y_i/K_i	K _i	y_i/K_i
C ₃	0.107	2.6	0.04	2.20	0.24
iC4	0.32	1.3	0.25	1.06	0.35
(LK)nC ₄	0.49	0.88	0.6	0.77	0.42
(HK)iC5	0.07	0.46	0.04	0.36	0.01
nC5	0.00	/	/	/	/
		$\sum y_i. k_i$	= 0.94	y _i . k	_i = 1

Tableau III.VI: lectures effectuées	à partir du Monogramme	de Scheibel et Jenny
---------------------------------------	------------------------	----------------------

III.4.2 La température au fond de la colonne

On procède de la même façon mais en utilisant l'équation de l'isotherme de la phase liquide au fond de la colonne :

$$\sum y_i = \sum K_i \cdot x_i = 1 \tag{III.7}$$

Chapitre III Calcul de la colonne						
	100 °C 110°C		0°C			
Constituants	Xd	K _i	y_i/K_i	K _i	y_i/K_i	
C ₃	/	/	/	/	/	
iC4	/	/	/	/	/	
(LK)nC ₄	0.02	1.85	0.04	2.1	0.04	
(HK)iC5	0.34	0.94	0.32	1.1	0.37	
nC ₅	0.64	0.82	0.52	0.96	0.61	
		$\sum y_i \cdot k_i = 0 \cdot 88$		$y_i \cdot k_i$	= 1.02	

Tableau III.V : lectures effectuées à partir du Monogramme de Scheibel et Jenny.

III.4.3 Calcul des volatilités relatives α :

On calcule les volatilités relatives des constituants aux différentes zones de la colonne en utilisant l'équation :

$$\alpha_i = \frac{K_i}{K_{HK}} \tag{III.8}$$

K_i: constante d'équilibre de l'élément i.

K_{HK}: constante d'équilibre de le constituant clé lourd **iC5**.

III.4.4 Estimation de la volatilité relative moyenne

La volatilité *Ki* change avec la température ; de même pour la volatilité relative. Par conséquent, on est amené à considérer une volatilité moyenne. Cette moyenne peut être estimée de différentes façons :

Valeur de la volatilité à la température moyenne :
$$T_{moy} = \frac{Ttête+Tpied}{2}$$
 (III. 9)

Moyenne arithmétique :
$$\bar{\alpha} = \frac{\alpha t \hat{e} t e^{+} \alpha p i e d}{2}$$
 (III. 10)

Moyennes géométriques de la volatilité :

$$\bar{\alpha}_{g\acute{e}om} = \left(\alpha_{t\acute{e}te}, \alpha_{pied} \right)^{\frac{1}{2}}$$
(III. 11)

$$\bar{\alpha}_{g\acute{e}om} = \left(\alpha_{t\acute{e}te}, \alpha_{alim}, \alpha_{pied} \right)^{\frac{1}{3}}$$
(III. 12)

Constituants	Rect	ification	épuisement		
	K _i	α _i	K _i	α _i	α_{geom}
C3	2.1	5.24	3.88	3.63	4.36
iC ₄	1.056	5.63	2.26	2.12	2.36
(LK)nC₄	0.818	2.04	1.863	1.74	1.88
(HK)iC₅	0.401	1.00	1.068	1.00	1.00
nC₅	0.329	0.82	0.922	0.86	0.84

Tableau III.VI : Volatilités relative.

III.5 Détermination du nombre de plateaux théoriques. Méthode de F.U.G

III.5.1 Détermination de *Nmin* :

La formule de Fenske est appliquée l'équation (III.13) et aux deux éléments clés nC_4H_{10} (légère) et iC_5H_{12} (lourd). L'équation de Fenske permettant de calculer ce nombre minimum de plateaux dans une colonne fonctionnant à reflux total est donnée par :

$$N_{min} = \frac{\log\left[\frac{d_{nC4}}{d_{iC5}}\frac{b_{iC5}}{b_{nC4}}\right]}{\log(\alpha_{nC4,iC5})_{geom}} = \frac{\log\left[\frac{23.125}{3.6}\frac{16.4}{1.875}\right]}{\log 1.88} = 6.38$$
(III. 13)

III.6 Répartition des autres composés (non – clés)

Pour calculer la distribution des composants non clés au reflux total, utilisez pour les composants clés plus légers que légers, LK, Eq. (II. 9), et utilisez l'équation. (II. 8) pour la clé plus lourde que lourde, HK, avec iC5 comme composant de référence, r, et la valeur ci-dessus de Nmin.

On obtient les résultats suivants :

Chapitre III			Calcul de la colonne
Constituant	Alimentation	Distillat	Résidu
C₃	5	5.000	0.000
iC4	15	14.60	0.4
(LK)nC₄	25	22.9	2.1
(HK)iC₅	20	3.70	16.3
nC₅	35	2.7	32.3
Totale (lbmol/h)	100	48.9	51.1

Tableau i III.VII : les compositions de différents courants.

III.7 Calcul de taux de reflux minimal :

Le taux de reflux minimum correspond au cas limite d'une colonne ayant un nombre infini de plateaux. Sa détermination pour les mélanges complexes résulte de la résolution d'un ensemble d'équation caractérisant des bilans matières, les relations d'équilibre et l'état thermodynamique de l'alimentation.

Dans le présent travail, la charge à traiter est introduite dans la colonne sous forme de liquide saturé (porté à sa température d'ébullition, [q = 1]).

L'é theemodynamiquede l'alimentat	valeur du paramètre q
liquide en ébullition	1
vapeur saturante	0
liquide sous-refroidi	$1 + \frac{T_{\acute{e}b} - T_A}{\Delta H_{VAP}}$
vapeur surchauffée	$1 + \frac{C_p(T_r - T_A)}{\Delta H_{VAP}}$

TableauIII.VIII : les valeurs du paramètre q.

Les itérations de la résolution par approximations successives sont regroupées dans le **Tableau 0.XI**

Constituants	x _i	α _i	$x_i. \alpha_i$		θ		
				1.5	1.3	1.317	
C ₃	0.05	4.36	0.218	0.076	0.071	0.071	
iC4	0.15	2.36	0.356	0.414	0.336	0.341	
(LK)nC ₄	0.25	1.88	0.47	1.237	0.81	0.835	
(HK)iC5	0.20	1.00	0.20	-0.40	-0.666	-0.631	
nC ₅	0.35	0.84	0.294	-0.445	-0.639	-0.616	
	\sum tota	le		0.882	-0088	0.00	

Tableau | III.IX : résultats des itérations.

Les résultats nécessaires à l'application de l'équation (II.10)pour le calcul de *Rmin* sont regroupés dans le tableau III.X

1	\mathbf{x}_i . \mathbf{u}_i	
4.36	0.44472	0.146
2.36	0.710328	0.681
1.88	0.87984	1.563
1.00	0.0756	-0.238
0.84	0.0462	-0.0968
min+1	2.0486	
ı	1.0486	
2	4.36 2.36 1.88 1.00 0.84 Rmin+1	4.36 0.44472 2.36 0.710328 1.88 0.87984 1.00 0.0756 0.84 0.0462 Rmin+1 n

Tableau |III.X: calcul de Rmin.

La dernière étape consiste à calculer :

le taux de reflux opératoire (*Ropér*.) à partir de la relation usuellement utilisée (provenant de l'analyse technico-économique) :

$Rop\acute{er.} = 1,2 Rmin = 1.2(1.0486) = 1.258$

le nombre de plateaux (étages) théoriques *N* nécessaires en utilisant ou le diagramme de Gilliland ou la corrélation d'Eduljee.

L'ensemble des résultats de cette dernière étape est récapitulé dans le tableau III.XI.

Calcul de la colonne

L'état thermodynamique de l'alimentation.	Ropér	$X = \frac{R - R_{min}}{R + 1}$	$Y = 0,75 - 0,75 X^{0,5668}$	$N = \frac{Y + Nmin}{1 - Y}$
liquide à point de bulle	1.258	0.07676	0.57495	16.023

III.8 Position du plateau d'alimentation :

En utilisant la distribution de Fenske, D = 48,9 lbmol/h et B = 51,1 lbmol/h

$$\frac{N_R}{N_S} = \left[\left(\frac{z_{\rm iC5.F}}{z_{\rm nC4.F}} \right) \left(\frac{x_{\rm nC4.F}}{x_{\rm iC5.F}} \right)^2 \left(\frac{B}{D} \right) \right]^{0.206} = \left[\left(\frac{0.20}{0.25} \right) \left(\frac{0.041}{0.075} \right)^2 \left(\frac{51.1}{48.9} \right) \right]^{0.206} = 0.721$$

La somme (NR+NS) étant connue, on trouve alors la position de l'alimentation.

Donc, la position du plateau d'alimentation = 6.5

III.9 Comparaison entre les valeurs de la simulation et le calcul analytique :

Les tableaux ci-dessous récapitules la comparaison entre les valeurs trouvées analytiquement et celles simulées .

Constituants	Disti	illat	Résidu			
	analytique	simulé	analytique	simulé		
C3	5.00	4.9975	0.000	0.0025		
iC4	14.60	14.6505	0.4	0.3494		
(LK)nC ₄	22.9	22.8977	2.1	2.1023		
(HK)iC5	3.7	3.6543	16.3	16.3457		
nC ₅	2.7	2.57	32.3	32.43		
\sum totale	48.9	48.77	51.1	51.230		

Tableau | III.XII : Tableau comparatif des résultats (Composition molaire du distillat et du résidu).

Chapitre III

Calcul de la colonne

Constituants	Dist	illat	Ré	sidu
	analytique	simulé	analytique	simulé
C ₃	0.102	0.1025	0.000	0.000
iC ₄	0.298	0.3004	0.00782	0.0068
(LK)nC ₄	0.468	0.4695	0.041	0.041
(HK)iC5	0.0756	0.0749	0.3189	0.3191
nC5	0.055	0.0527	0.632	0.6330
\sum totale	1.000	1.00	1.000	1.000

Tableau | III.XIII : Tableau comparatif des résultats (Composition molaire du distillat et du résidu).

Constituants	Di	stillat		Résidu
	analytique	simulé	analytique	simulé
C ₃	2.100	2.202	3.880	3.914
iC4	1.056	1.103	2.260	2253
(LK)nC ₄	0.818	0.8595	1.863	1.860
(HK)iC5	0.401	0.4142	1.068	1.043
nC ₅	0.329	0.3516	0.922	0.9194

 Tableau |
 III.XIV
 : Tableau IV-4 : Tableau comparatif des résultats (les valeurs de k).

paramètres	Valeurs Calculé (méthode approximative)	Simulé (méthode précise
Température de tête (°C)	60	62.52
Température de fond (°C)	110	109.6
le nombre de plateaux N	16.023	15.236
Le nombre minimum de plateaux <i>Nmin</i>	6.38	6.151
Le taux de reflux minimum <i>Rmin</i>	1.048	1.083
Le taux de reflux R	1.258	1.3
Position du plateau d'alimentaion	6.5	6.544

Tableau | III.XV : Tableau comparatif des résultats.

Chapitre III

Discussion

Les résultats sont presque identiques en ce qui concerne le calcul des débits molaires et massiques ainsi que les compostions, de même pour les nombres d'étages théoriques et le plateau d'alimentation.

A partir du tableaux ci-dessus, nous remarquons que l'erreur est très faible. De cela, nous concluons que les valeurs obtenues par la simulation et les calculs analytiques sont très proches

Chapitre IV: Simulation de la colonne

Chapitre 04

Introduction :

Les méthodes de simulation, conçues pour être utilisées en statistique et en recherche opérationnelle, ont connu et connaissent encore un développement rapide dû à l'extraordinaire évolution des ordinateurs. Des applications se rencontrent tant dans l'industrie qu'en économie, ou encore en sciences sociales, en physique des particules, en astronomie et dans de nombreux autres domaines.

Dans beaucoup de situations, que ce soit de la vie courante ou dans la recherche scientifique, le chercheur est confronté à des problèmes dont il recherche des solutions sur la base de certaines hypothèses et contraintes de départ. Pour résoudre ce type de problème, il existe des méthodes analytiques applicables à des situations où le modèle permet de traiter les différentes variables par des équations mathématiquement maniables, et des méthodes numériques où la complexité du modèle impose un morcellement du problème, notamment par l'identification des différentes variables qui entrent en jeu et l'étude de leurs interactions. Cette dernière approche s'accompagne souvent d'une importante masse de calculs. Les techniques de simulation sont des techniques numériques : Simuler un phénomène signifie essentiellement reconstituer de façon fictive son évolution.

L'avantage majeur de la simulation est la fourniture d'un bon aperçu du comportement du système réel. Cet aperçu peut être difficile de l'avoir à travers l'expérience et l'intuition seule, en particulier pour les systèmes complexes avec plusieurs variables interactives. Dés que le modèle mathématique répond aux ajustements de changement des paramètres comme un procédé réel, la simulation peut être classée comme une méthode commode qui ne coûte pas chère et sans danger pour la compréhension du comportement du procédé réel et sans intervention sur le procédé en cours de fonctionnement.

Il existe un très grand nombre de logiciels de simulation des procédés chimiques. On présente une liste non-exhaustive des logiciels les plus utilisés au niveau mondial tell que : (Aspen), (Chemcad), (DesignII), (Hysys), (Ideas), (Indiss), (Prosim), (ProII), (Sim42). **[29]**

IV.1 Définition de simulation

La simulation est définie comme étant la représentation d'un phénomène physique à l'aide de modèles mathématiques simples permettant de décrire son comportement. Ces modèles sont basés sur la vérification des phénomènes de transfert de masse, d'énergie et de quantité de mouvement qui se produisent dans les différentes opérations unitaires .

IV.2 Principes de fonctionnement et rôle des simulateurs

Les simulateurs de procédés utilisés classiquement dans l'industrie, peuvent être considérés comme des modèles de connaissance. Ils sont basés sur la résolution de bilans de masse et d'énergie, des équations d'équilibres thermodynamiques, ... et sont à même de fournir l'information de base pour la conception. Ils sont principalement utilisés pour la conception de nouveaux procédés (dimensionnement d'appareil, analyse du fonctionnement pour différentes conditions opératoires, optimisation), pour l'optimisation de procédés existants et l'évaluation de changements effectués sur les conditions opératoires. Avant même de parler de modèles d'opération de transformation de la matière, il faut des modèles pour prédire les propriétés physiques de la matière. C'est pourquoi ces simulateurs disposent tous d'une base de données thermodynamiques contenant les propriétés des corps purs (masse molaire, température d'ébullition sous conditions normales, paramètres des lois de tension de vapeur, ...). Cette base de données est enrichie d'un ensemble de modèles thermodynamiques permettant d'estimer les propriétés des mélanges. [30]

Tout simulateur industriel de procédés chimiques est organisé autour des modules suivants :

Une base de données des corps purs et un ensemble de méthodes pour estimer les propriétés des mélanges appelés aussi modèles thermodynamiques.

Un schéma de procédé permettant de décrire les liaisons entre les différentes opérations unitaires constituant l'unité (PFD pour Process Flow Diagram).

Des modules de calcul des différentes opérations unitaires contenant les équations relatives à leur fonctionnement : réacteur chimique, colonne de distillation, colonne de séparation, échangeurs de chaleur, pertes des charges, etc

Un ensemble de méthodes numériques de résolution des équations des modèles. Avec ce type de logiciel, les ingénieurs peuvent à partir de la donnée des corps purs présents dans le procédé et du schéma de procédé, développer un modèle du processus reposant sur la mise en commun des équations décrivant les différentes opérations unitaires, les réactions chimiques, les propriétés des substances et des mélanges, qui puisse aussi communiquer avec d'autres applications comme Excel, Visual Basic et Matlab, ...[30]

IV.3 Type de simulation

On peut distinguer principalement deux types de simulation dans le cas des procédés chimiques :

IV.3.1 La simulation statique (steady state)

La simulation statique a pour caractéristique fondamentale d'être dédiée aux calcul de bilan matière et enthalpique ainsi qu'aux calculs d'équilibres entre phases. Les performances des appareils sont estimées à partir des valeurs fournies par l'utilisateur tout en calculant l'évolution du système en régime stationnaire.

Le procédé est décomposé en blocs représentant les différentes opérations unitaires mises en œuvre. Les blocs sont liés entre eux par des flux de matière ou d'énergie.

IV.3.2 La simulation dynamique (transient state)

La simulation dynamique d'un procédé vise à définir les propriétés des courants en fonction du temps, pendant des situations transitoires où le régime n'est pas stable.

Par les moyens de simulation dynamique, il est possible de suivre le comportement des variables principales du procédé quand elle sont sujettes de perturbations quelconque dans les opérations industrielles **[31].**

IV.4 Définition du logiciel Aspen HYSYS

Aspen HYSYS est un outil de modélisation de processus de simulation en régime permanant, la conception performance, le suivi, l'optimisation et la planification des activités pour les produits chimiques, les produits chimiques de spécialité, la pétrochimie et les industries et la métallurgie. **[32]**

HYSYS n'est pas le logiciel de simulation le plus flexible, ni le plus utilisé dans l'industrie, mais il a l'avantage d'être convivial et facile à utiliser une fois que les éléments de base sont compris. HYSYS a été développé pour l'industrie du pétrole, bien qu'il soit utilisé pour d'autres types de procédés chimiques.

Les simulations sont accomplies en utilisant les outils des menus. En plus, il dispose d'une interface graphique pour la construction des diagrammes du procédé (PDF – Process Flow Diagrams).

IV.5 Les concepts de la base du simulateur HYSYS

HYSYS est un simulateur de conception orientée-objets. Tout changement spécifié sur un élément est répercuté dans tout le modèle. C'est un logiciel de simulation interactif intégrant la gestion d'événements (Event drivent) : C'est-à-dire qu'à tout moment, un accès instantané à l'information est possible, de même que toute nouvelle information est traitée sur demande et que les calculs qui en découlent s'effectuent de manière automatique. Deuxièmement, il allie le concept d'opérations modulaires à celui de résolution non-séquentielle. Non seulement toute nouvelle information est traitée dès son arrivée mais elle est propagée tout au long du Flowsheet. Dans ce qui suit, on définit les principaux concepts de base et vocabulaires associés, qui sont utilisés pendant les étapes de construction d'un modèle dans le simulateur HYSYS. [33]

« Flowsheet » : c'est un ensemble d'objets « Flowsheet Elements » (courants de matière, d'énergie, d'opérations unitaires, de variables opératoires) qui constituent tout ou une partie du procédé simulé et qui utilisent la même base de données thermodynamique « Fluid Package ». Ce simulateur possède une Architecture Multi-Flowsheet : il n'y a pas de limite par rapport au nombre de Flowsheets. On peut préalablement construire des Flowsheets pour les utiliser dans une autre simulation, ou organiser la description de procédés complexes en le scindant en sous-Flowsheets qui sont des modèles plus concis (ceci permet de hiérarchiser un processus très complexe). Il possède un certain nombre d'entités particulières : un « Process Flow Diagram » (PFD), un « Workbook ». [33]

« Fluid Package » : il permet de définir les composants chimiques présents dans le procédé simulé et leurs affecte les propriétés chimiques et physiques contenues dans la base de données des corps purs. Il permet aussi de définir les modèles thermodynamiques qui seront utilisés pour le calcul des propriétés des mélanges et de définir les cinétiques des réactions chimiques mises en jeu dans le procédé.

« Process Flow Diagram » : ce diagramme permet de visualiser les courants et les opérations unitaires, représentées par des symboles dans le « Flowsheet », ainsi que la connectivité entre les courants, les opérations unitaires et les tableaux des propriétés des courants.

« Workbook » : il permet d'avoir accès à l'information sur les courants et les opérations unitaires sous forme de tableau de données.

« Desktop » : c'est l'espace principal de HYSYS pour visualiser les fenêtres lors de la conception. « Property view » : il contient l'information décrivant un objet (opération ou courant). « Simulation Case » (fichier de simulation) : c'est l'ensemble des « Fluid Packages » « Flowsheets » et « Flowsheet Elements » qui constituent le modèle. [33]

IV.6 Structure générale du HYSYS

Figure IV.I : Structure générale du HYSYS [32].

IV.7 Le Choix du modèle thermodynamique

Une méthode thermodynamique est un ensemble de propriétés physico-chimiques permettant la modélisation d'un système afin de mener une étude prédictive sur la qualité et la quantité autour de ce système. Les méthodes thermodynamiques existent sous deux formes notamment le modèle de coefficient d'activité et le modèle des équations d'états.

Le travail de la simulation commence par le choix du modèle thermodynamique convenable à notre système, et qui assure le minimum d'écart de résultats par apport aux données de design.

Chapitre 04

IV.7.1 Les équations d'état (EoS)

Les équations cubiques d'état sont largement utilisés dans la simulation de processus et les calculs d'équilibre liquide-vapeur ont été appliquées à la représentation de propriétés de composés purs et de mélanges. L'historique de l'apparition de ces équations d'état revu en 1662. La loi de Boyle était la première expression d'une équation d'état, le physicien et le chimiste irlandais Robert Boyle a exécuté une série d'expériences. Il a noté que le volume du gaz a varié inversement avec la pression (PV = constant). Cette relation a été aussi attribuée à Edme Mariotte et appelée la loi de Mariotte. Cependant, le travail de Mariotte n'a pas été publié jusqu'à 1676 [34].

Les modèles thermodynamiques basés sur les équations d'état sont utilisés pour le calcul des systèmes d'hydrocarbure et des systèmes de faible non idéalité . Ils peuvent être utilisés pour calculer des propriétés thermodynamiques telle que la constante d'équilibre K, l'entropie, l'enthalpie et la densité. Leurs supériorités par rapport aux autres modèles résident dans le fait de l'utilisation des coefficients d'interaction binaires. **[35].**

IV.7.1.1 Equation de **REDLICH-K WONG** (**RK**):

Considérer comme la plus simple des équations d'état, elle est très utilisée pour prédire d'état de la phase vapeur. [36]

$$R = \frac{RT}{V-b} - \frac{a}{\sqrt{T}\frac{1}{V(V+b)}}$$
(III. 1)

Où a et b sont uniquement fonction des composés chimiques, et de la composition, ainsi :

$$\begin{cases} a = a^* \frac{R^2 T_c^{2.5}}{P_c} \\ b = b^* \frac{R^2 T_c}{P_c} \end{cases}$$
(III. 2)

Avec a*= 0.4278023 et b* = 0.08664035.

IV.7.1.2 Equation de SOAVE-REDLICH-KWONG (SRK):

Cette équation modifiée celle de REDLICH-KWONG, par l'introduction d'une fonction (T) qui dépend du facteur acentrique. [37]

L'équation de SOAVE est de la même forme générale :

$$R = \frac{RT}{V-b} - \frac{a(T)}{V(V+b)}$$
(III. 3)

SOAVE a introduit les relations suivantes pour exprimer la fonction (T):

$$a(T) = a_c a(T_R) \tag{III.4}$$

Avec :

$$a(T_R) = \left(1 + m\left(1 - \sqrt{T_R}\right)\right)^2$$
(III. 5)

IV.7.1.3 Equation d'état de PENG-ROBINSON (1976) :

L'équation de PENG-ROBINSON diffère de l'équation de SOAVE par l'expression du terme d'attraction. Elle a été introduite en vue d'améliorer les résultats obtenus par l'équation de SAOVE, notamment en ce qui concerne le calcul des densités en phase liquide, sans modifier le nombre de paramètres :

$$R = \frac{RT}{V - b} - \frac{a}{V^2 + 2Vb - V^2}$$
(III. 6)

Pour un corps pur, les paramètres *a* et b sont calculés à partir des coordonnées du point critique (mesurables expérimentalement) selon :

$$a = 0.45724 \frac{R^2 T_c^2}{P_c} \alpha$$
 (III.7)

$$b = \frac{0.077796 RT_c}{P_c}$$
(III.8)

L'équation de Peng-Robinson est recommandée pour les calculs d'équilibres liquidevapeur des hydrocarbures sous pression (application en pétrochimie, au gaz naturel). Ses résultats sont comparables à l'équation SRK. Avec cette dernière, l'équation de Peng-Robinson est essentielle et relativement irremplaçable pour les calculs d'équilibres liquidevapeur sous pression. [37]

IV.7.2 Modèles d'activités

En thermodynamique, l'activité chimique d'une espèce chimique exprime l'écart entre les propriétés de cette espèce pure ou dans un mélange réel et les propriétés de cette même espèce dans un état standard (sous 1bar et 25°C) à la même température. La notion activité chimique est surtout employée pour les phases liquide et solide.

L'approche « Activité » est une approche plus empirique que les équations d'états. Les mélanges non-idéaux présentent de grands problèmes lors des simulations. Il est alors nécessaire de prédire les coefficients d'activités non-idéaux de la phase liquide et les coefficients de fugacité de la phase vapeur.

Ces modèles sont surtout recommandés pour les solutions non idéales comportant des constituants polaires (acides, alcool). Pour les solutions idéales, les coefficients seront 1. Ce cas n'arrive pas alors il faut obtenir des valeurs pour ces coefficients.

Les corrélations sont basées sur l'excès d'énergie libre de Gibbs qui représente la non idéalité d'une solution. Le couplage de cette technique avec l'équation de Gibbs-Duhern permet d'obtenir des valeurs de coefficients d'activité. [32]

Exemple de modèles d'activité

UNIQUAC. NRTL. MARGULES. WILSON.

IV.7.3 Ensemble de méthodes

IV.7.3.1 Modèle Chao Seader

Le modèle Chao-Seader est une ancienne méthode semi-empirique datant de 1961. Cette méthode est souvent utilisée pour calculer l'équilibre liquide-vapeur pour les hydrocarbures lourds et l'hydrogène, où la pression est moins de 1500 psia et une température entre -17,78°C et 260°C

La méthode de Chao-Seader (CS) est la combinaison d'un ensemble de méthodes couplée à une corrélation (option set dans les logiciels de thermodynamique). Dans la méthode de Chao-Seader, la phase gaz est modélisée par l'équation d'état de Redlich-Kwong, et la phase liquide est modélisée par la théorie des solutions régulières de Scatchard-Hildebrand. [36]

IV.7.3.2 Modèle Grayson Streed

La méthode Grayson-Streed (GS) est une méthode plus vieille, semi-empirique. La corrélation est une extension de la méthode Chao-Seader avec accentuation spéciale sur l'hydrogène. Cette méthode a été adoptée pour les systèmes appliquent des hautes pressions et température **[38].**

La corrélation GS est recommandée pour simuler des systèmes d'hydrocarbures lourds avec un teneur en H_2 élevé, tel que les unités de l'hydrotraitement. La corrélation GS peut être utilisée pour la simulation des unités de Topping et les fractions lourdes sous vide, et pour le calcul de fugacités de la phase liquides pour N2, CO₂ et H₂S.

IV.8 Problématique

Le modèle de simulation consiste en un groupe d'équations qui caractérisent le comportement des unités opérationnelles dans un processus. Ces équations ont une quantité considérable de termes liés aux propriétés physiques et thermodynamiques des composants et des mélanges impliqués. Il est donc indispensable d'inclure dans le cas de simulation un groupe d'équations pour le calcul de ces propriétés. Le groupe de variables à spécifier comprend des valeurs de température, de pression, de composition et certaines valeurs empiriques pour chacun des composants dans tous les flux de processus. Tout cas de simulation réalisé nécessite de connaître les valeurs des propriétés physico-chimiques et thermodynamiques du mélange. Ceci est nécessaire pour tous les composants à utiliser dans le processus. [39].

Les valeurs sont nécessaires pour toutes les conditions-composition, pression et températurequi peuvent apparaître dans le fonctionnement normal d'une installation industrielle. [39].

Dans l'industrie, cette situation est en effet peu susceptible de se produire en raison du dynamisme et de la grande quantité de valeurs étudiées [40].

Une bonne sélection des techniques sera essentielle pour une analyse précise des dispositifs et flux présentés dans ce cas de simulation. Il ne suffit pas d'avoir le simulateur le plus sophistiqué disponible sur le marché, si un mauvais choix de méthode est fait, dans ce cas, des résultats erronés ou imprécis seront jamais obtenus.

Chapitre 04

Lorsqu'une option thermodynamique est sélectionnée, le modèle et les autres modèles associés sont utilisés pour le calcul des propriétés thermodynamiques et de transport. Ces derniers sont nécessaires pour développer le cas de simulation.

Dans l'industrie pétrolière, les équations d'état (EOS) ont joué un rôle central dans la modélisation thermodynamique de l'équilibre vapeur-liquide (LVE) des hydrocarbures (HC). Néanmoins, les EOS ont tendance à offrir des résultats inexacts dans certaines conditions.

Pour les applications pétrochimiques, pétrolières et gazières, en particulier une distillation primaire de pétrole brut (Topping), un ensemble des logiciels de simulateurs recommande la sélection du package thermodynamique basé sur l'EOS Peng-Robinson (PR)

Les coupes de gaz naturel et de pétrole sont composées principalement pour les hydrocarbures. Ces mélanges complexes sont traités comme des "pseudocomposants". Généralement, les modèles thermodynamiques sont utilisés pour les applications de raffinage du pétrole brut. Dans le cas particulier du raffinage primaire, un autre ensemble de simulateurs recommande le package thermodynamique Chao-Sea (CS).

Dans cette partie, on a essayé Utiliser la corrélation Chao-Seader ou Grayson-Streed pour les propriétés thermodynamiques afin de calculer les compositions des produits, les températures des étages, les débits et les compositions inter-étages, le service du rebouilleur et le service du condenseur pour les spécifications de distillation et Comparer les résultats.

IV.9 Méthode de détermination de travaille par HYSYS :

La simulation de procédé par hysys a été réalisé en passent par les étapes suivantes :

Commencer une nouvelle tâche

Pour créer un nouveau cas, il suffit de sélectionner New Case dans le menu File.

🕑 i 🔚 🤊 🖃 🐷 🖬 i		Untitled - Asp	en HYSYS V10 - aspenONE		- 🗗 🗙
File Home View Cu	stomize Resources			Search aspenONE Ex	change 🔽 🔉 🔞
🔏 Cut 📃 📕	Methods Assistant 🔣 Map Components	Hypotheticals Manager	Associate Fluid Package		
Component Fluid	SB Reactions 🖏 Update Properties	Petroleum	Oil Convert to	PVT Laboratory	
Paste Lists Packages	Lo Componentes	Assays Remove Duplicates	Manager Refining Assay 🖽 Options	Measurements'	
Proposition (Component Lists × +	Reming · A hypotheticals	01	PVI Data	*
All Items					ĺ
Component Lists	List Name	Source	Associated Fluid Packages	Status	
Fluid Packages					
Petroleum Assays					
Component Maps					
log User Properties					
	Add Copy	Delete			
Terre					
A Properties	Import • Export				
□-{□ Simulation					
Safety Analysis	Messages				+ # ×
(Carrow Archele	Required Info : Fluid Packages Select prop	erty package			
Chergy Analysis	Required Info : Components Empty comp Required Info : Master Component List Fr	ionent list npty component list			
-					
				Responsiveness: 5 100% (∋ —

Figure IV.II : New Case.

Choix des composés du procédé

L'étape suivante est l'introduction des composants. Sélectionner la page Components, en cliquant sur son signet. Pour sélectionner les composants désirés pour la simulation, une des possibilités est de cliquer deux fois sur le composant dans la liste, il est ainsi transférer directement dans la Current Component List.

Databank: HYSYS				Select: Pure Component	ts 🔻 Filter: 🛛	All Families
Component	Туре	Group		Search for:	Search by:	Full Name/Synonym
Propane	Pure Component					1
i-Butane	Pure Component			Simulation Name	Full Name / Synonym	Formula
n-Butane	Pure Component		< Add	Methane	C1	CH4
i-Pentane	Pure Component			Ethane	C2	C2H6
n-Pentane	Pure Component			n-Hexane	C6	C6H14
			Replace	n-Heptane	C7	C7H16
				n-Octane	C8	C8H18
				n-Nonane	C9	C9H20
			Remove	n-Decane	C10	C10H22
				n-C11	C11	C11H24
				n-C12	C12	C12H26
				n-C13	C13	C13H28
				n-C14	C14	C14H30
				n-C15	C15	C15H32

Créer un Fluid Package.

Presser la touche Add pour créer un Fluid Package : choisir l'équation d'état voulue. Dans notre cas, ce sera Peng - Robinson.

Chapitre 04			Simulation de la colo
Set Up Binary Coeffs StabTest Phase	Order Tabular Notes		
Package Type: HYSYS		Component List Selection	onent List - 1 [HYSYS Databanks] View
Property Package Selection	Options		Parameters
Glycol Package	Enthalpy	Property Package EOS 👻	
Grayson Streed	Density	Costald	
IAPWS-IF97	Modify Tc, Pc for H2, He	Modify Tc, Pc for H2, He	
Kabadi-Danner	Indexed Viscosity	HYSYS Viscosity	
Lee-Kesler-Plocker	Peng-Robinson Options	HYSYS	
NBS Steam	EOS Solution Methods	Cubic EOS Analytical Method	
NRTL	Phase Identification	Default	
Peng-Robinson	Surface Tension Method	HYSYS Method	
PR-Twu DPSI/	Thermal Conductivity	API 12A3.2-1 Method	
Sour PR	mennarconadeanty		
Sour SRK			
SRK			
SRK-Twu			
Suisim (Suitur Recovery)			
	Property Pkg	ОК	

Figure IV.IV : Choix de l'équation thermodynamique.

la sélection du système d'unité

Choisir l'ensemble d'unités. Pour cela, il vous faut sélectionner **format** dans le **menu bar**. Le menu suivant va apparaitre,Et ensuit sélectionnez **eng unit**.

Simulation Reports	Set defaults options	s for units of mea	sureme	nt			
Equipment	Display Units						
Units Of Measure	Sispiny on C						
Units Of Measure Simulation Reports Equipment Units Of Measure Aspen Properties Options Resources Options		Unit		View			
Resources Options	Acidity	mg KOH/g	-	Add			
Resources Options	Act. Gas Flow	ACT_m3/h					
	Act. Vol. Flow	m3/h		Delete			
	Actual Liquid Flo	m3/s		A			
	Actual Mass Der	kg/m3		Z *			
	Angle	deg					
	API Fire Equatio	Btu/hr-ft1.64					
	Area	m2					
	AreaPerVolume	m2/m3					
	BWR 'Alpha'	m9/mol3			- П		
	BWR 'B'	Its options for units of measurement aits Unit ' mg KOH/g as Flow ACT_m3/h ol. Flow m3/h Liquid Fle m3/s Mass Det kg/m3 * Equatio Btu/nrf1.64 er/Volume m2/m3 'Alpha' m9/mol3 'B' m6/mol2 Units Sets et Name NewUser Copy Delete 'EN 'SJ 'ser					
	Available Units Sets			-			
	Unit Set Name	NewUser		Сору			
	Field			Delete			
	SI						
	EuroSI			View Users			
	Safety EN						
	Safety SI						
	NewUser						

Figure IV.V : Choix du système d'unités.

la création du procédé (Dessiner le flowsheet)

Pour dessiner l'organigramme il faut travaillerez avec la palette d'organigramme, qui ressemble à ceci :

me
Chapitre 04	Simulation de la coloni
月 Model Palette	- 🗆 X
Views	Streams Flowsheets Material Stream
All Dynamics & Control External Model	

Figure IV.VI : palette d'organigramme.

Choisir les icones nécessaire puis les ajouté au flowsheet.

Créer un Flux d'alimentation "Feed" :

Nous sommes maintenant en mesure de définir le stream d'alimentation. Ceci peut être fait en employant la commande des spécifications sur la barre de menu ou par une double clique directement sur le stream. Taper alim, le nom du nouveau flux, dans la case Stream Name, Il reste ensuite à remplir les cases avec les propriétés qu'on connaisse. Une fois que les cases sont remplis, presser le bouton OK. Le flux est maintenant complètement défini.

laterial Stream: FE	ED				 \times
rksheet Attachm	ents Dynamics				
Worksheet	Stream Name	FEED	Vapour Phase	Liquid Phase	
Conditions	Vapour / Phase Fraction	0,0080	0,0080	0,9920	
Properties	Temperature [F]	180,8	180,8	180,8	
Composition	Pressure [psia]	120,0	120,0	120,0	
Oil & Gas Feed	Molar Flow [Ibmole/h]	100,0	0,8032	99,20	
K Value	Mass Flow [kg/h]	2955	22,10	2933	
User Variables	Std Ideal Liq Vol Flow [m3/h]	4,900	3,778e-002	4,862	
Notes	Molar Enthalpy [kJ/kgmole]	-1,530e+005	-1,276e+005	-1,532e+005	
Jost Parameters	Molar Entropy [kJ/kgmole-C]	104,5	157,8	104,1	
Normalized Yields	Heat Flow [kJ/h]	-6,940e+006	-4,650e+004	-6,893e+006	
	Liq Vol Flow @Std Cond [m3/h]	4,874	3,753e-002	4,836	
	Fluid Package	Basis-1			
	Utility Type				

Figure IV.VIII : Création du flux d'alimentation.

Entrée les paramètres d'équipement

Pour modifier les spécifications de la colonne, double-cliquez sur la tour et un sous-menu apparaîtra.

La première page de l'Input Expert apparaît. Lorsque vous installer une colonne, HYSYS fournit certaines valeurs par défaut qu'il est possible de modifier.

Figure IV.IX : Spécification de la colonne.

Presser le bouton Next pour avancer à la page suivante qui permet de définir le profil de pression. Dans notre cas, le profil de pression est supposé linéaire. Entrer les valeurs suivantes :

Figure IV.X : Définition du profile de pression.

Presser le bouton Next pour avancer à la page Optional Estimate. Bien que HYSYS ne requiert pas d'estimation pour faire converger la colonne, une bonne estimation permettra d'atteindre la solution plus rapidement.

Figure IV.XI : Estimation de la température.

Chapitre 04	Simulation	de la	coloni
Distillation Column Input Expert	_		×
Reflux Ratio 2,579 Flow Basis	48,900		
Prev Done Side Ops > Specifications (page 5 of 5)	Cance	el	

Figure IV.XII : Spécification du distillat et du taux de reflux.

Presser le bouton Done.

Cliquer sur l'Active Check Box du taux de reflux pour que ce soit uniquement une approximation et pas une spécification. Le nombre de DDL augmente de 1.

esign Paramete	ers Side Ops Internals F	Rating Worksheet Performance	Flowsheet Reac	tions Dynamic	s					
Design	Optional Checks		Profile							
onnections onitor	Input Summary	View Initial Estimates			ature v	/s. Tra	y Posit	tion fr	om To	р
pees Summary ubcooling iotes	Iter Step Equ	uilibrium Heat / Spec	Temp Press Flows	8,000	Temperature					
				•	2	4	6	8	10	12
	Specifications									
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current			
	Reflux Ratio	2,579	<empty></empty>	<empty></empty>	~		V			
	Distillate Rate	48,90 lbmole/h	48,90	0,0000	V	•	I			
	Deflum Dete	<empty></empty>	<empty></empty>	<empty></empty>						
	nellux nate									
	Btms Prod Rate	<empty></empty>	<empty></empty>	<empty></empty>		Y				
	Btms Prod Rate	<empty></empty>	<empty></empty>	<empty></empty>						

Figure IV.XIII : Espace monitor.

Il faut ensuite ajouter une spécification, pour cela il faut ouvrir la page **Specs.** Se positionner sur column temperatur et presser le bouton **Add Specs.** On veut que la température au condenseur (1_Main TS) soit de 55°C. La nouvelle spécification apparaît dans la liste. Il faut ensuite retourner à la page Monitor.

sign Parameter	rs Side Ops Internals Ra	ting Worksheet Performance	Flowsheet Reac	tions Dynamic	s							
Jonactions Aonitor pecs pecs Summary ubcooling lotes	Input Summary	Input Summary View Initial Estimates Iter Step Equilibrium Heat / Spec				/s. Tra	y Posit			p		
	O 2 4 5 8 10 Specifications -											
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current					
	Reflux Ratio	2,579	<empty></empty>	<empty></empty>	J							
	Distillate Rate	48,90 lbmole/h	48,90	0,0000	V							
	Reflux Rate	<empty></empty>	<empty></empty>	<empty></empty>								
	Btms Prod Rate	<empty></empty>	<empty></empty>	<empty></empty>								
	Temperature	140,0 F	<empty></empty>	<empty></empty>		\checkmark						

Figure IV.XIV : Introduire d'autres spécifications.

Pour simuler la colonne, il suffit de presser le bouton **Run**. La colonne converge rapidement en quelques itérations. Le profil de température est fournit dans le coin droit de la page.

Design Paramete	ers Side	Ops Intern	als Rating Wo	rksheet Performance	Flowsheet Read	tions Dynamic	s				
Design	Optior	al Checks –			Profile						
Connections Monitor	In	put Summar	ry Vie	w Initial Estimates		Tempera	ature	vs. Tra	y Posi	tion from	тор
Specs Specs Summary Subcooling	lter 1	Step 1,0000	Equilibrium 0,000154	Heat / Spec 0,007699	Temp Press Elowr	220,0	Temperature	,			
Notes	2	1,0000 1,0000	0,000004 0,000000	0,000891 0,000021		160,0 140,0 0	2	4	6	8 10	12
	Specifi	cations —								1	
			S	pecified Value	Current Value	Wt. Error	Active	Estimate	Current		
	Reflu	Reflux Ratio 2,579			2,579	0,0000					
	Distil	Distillate Rate		48,90 lbmole/h	48,90	-0,0000					
	Reflu	x Rate		<empty></empty>	126,1	<empty></empty>					
	Btms	Prod Rate		<empty></empty>	51,10	<empty></empty>					
		View	Add Spe	c Group	Active	Jpdate Inactive	De	orear of Fr	aadom	0	
		View	Add Spe	ec Group	Active	Jpdate Inactive	De	egrees of Fr	eedom	0	

Figure IV.XV : Convergence de la colonne.

IV.10 Résultat de la simulation de la colonne :

IV.10.1 Stream 2 : (distillat) :

Chapitre 04

tillat		— 🗆	\times
ents Dynamics			
Stream Name	distillat	Liquid Phase	
Vapour / Phase Fraction	0,0000	1,0000	
Temperature [F]	143,8	143,8	
Pressure [psia]	120,0	120,0	
Molar Flow [lbmole/h]	48,90	48,90	
Mass Flow [kg/h]	1293	1293	
Std Ideal Liq Vol Flow [m3/h]	2,246	2,246	
Molar Enthalpy [kJ/kgmole]	-1,448e+005	-1,448e+005	
Molar Entropy [kJ/kgmole-C]	92,12	92,12	
Heat Flow [kJ/h]	-3,211e+006	-3,211e+006	
Liq Vol Flow @Std Cond [m3/h]	2,236	2,236	
Fluid Package	Basis-1		
Utility Type			
	tillat	tillat Dynamics Stream Name distillat Vapour / Phase Fraction 0,0000 Temperature [F] 143,8 Pressure [psia] 120,0 Molar Flow [libmole/h] 48,90 Mass Flow [kg/h] 1293 Std Ideal Liq Vol Flow [m3/h] 2,246 Molar Enthalpy [kl/kgmole] -1,448e+005 Molar Entropy [kl/kgmole-C] 92,12 Heat Flow [kl/h] -3,211e+0006 Liq Vol Flow @Std Cond [m3/h] 2,236 Fluid Package Basis-1 Utility Type	tillat Stream Name distillat Liquid Phase Vapour / Phase Fraction 0,0000 1,0000 Temperature [F] 143,8 143,8 Pressure [psia] 120,0 120,0 Molar Flow [libmole/h] 48,90 48,90 Mass Flow [kg/h] 1293 1293 Std Ideal Liq Vol Flow [m3/h] 2,246 2,246 Molar Enthalpy [kl/kgmole] -1,448e+005 -1,448e+005 Molar Entropy [kl/kgmole-C] 92,12 92,12 Heat Flow [kl/h] -3,211e+006 -3,211e+006 Liq Vol Flow @Std Cond [m3/h] 2,236 2,236 Fluid Package Basis-1 Utility Type

		uistillat	Liquid Phase	
Conditions	Molecular Weight	58,28	58,28	- [
Properties	Molar Density [kgmole/m3]	8,885	:	
Composition	ition Mass Density [kg/m3]	517,8	517,8	
Oil & Gas Feed	Act. Volume Flow [m3/h]	2,496	2,496	
Petroleum Assay	Mass Enthalpy [kJ/kg]	-2484	-2484	
K value User Variables	Mass Entropy [kJ/kg-C]	1,581	1,581	
Notes	Heat Capacity [kJ/kgmole-C]	161,0	161,0	
Cost Parameters	Mass Heat Capacity [kJ/kq-C]	2,763	2,763	
Normalized Yields	LHV Molar Basis (Std) [kJ/kgmole]	2,664e+006	2,664e+006	
	HHV Molar Basis (Std) [kJ/kgmole]	2,869e+006	2,869e+006	
	HHV Mass Basis (Std) [kJ/kg]	4,923e+004	4,923e+004	
	CO2 Loading	<empty></empty>	<empty></empty>	
	CO2 Apparent Mole Conc. [kgmole/m3]	<empty></empty>	<empty></empty>	
	CO2 Apparent Wt. Conc. [kgmol/kg]	<empty></empty>	<empty></empty>	

Figure IV.XVII : Propriétés du distillat.

Chapitre 04

IV.10.2	Stream :	3	(résidu)	produit	de	fond	:
			(

🚯 Material S	stream: resid	lu		- 0	\times	
Worksheet	Attachmer	ts Dynamics				
Workst	neet	Stream Name	residu	Liquid Phase		
Condition	ns	Vapour / Phase Fraction	0,0000	1,0000		
Propertie	es	Temperature [F]	231,0	231,0		
Composi	tion	Pressure [psia]	120,0	120,0		
Oil & Ga	s Feed	Molar Flow [lbmole/h]	51,10	51,10		
Petroleur	m Assay	Mass Flow [kg/h]	1662	1662		
User Vari	ables	Std Ideal Liq Vol Flow [m3/h]	2,654	2,654		
Notes		Molar Enthalpy [kJ/kgmole]	-1,588e+005	-1,588e+005		
Cost Para	ameters	Molar Entropy [kJ/kgmole-C]	114,1	114,1		
Normaliz	ed Yields	Heat Flow [kJ/h]	-3,680e+006	-3,680e+006		
		Liq Vol Flow @Std Cond [m3/h]	2,646	2,646		
		Fluid Package	Basis-1			
		Utility Type				
		OK				
Dele	ete	Define from Stream	View Assay	\$		

Figure IV.XVIII : Conditions de la simulation pour le résidu.

Material S	Stream: resi	du		- □	×
Vorksheet	Attachme	nts Dynamics			
Works	heet	Stream Name	residu	Liquid Phase	
Conditio	ns	Molecular Weight	71,70	71,70	
Properties Mola Composition Mass		Molar Density [kgmole/m3]	7,201	=	
		Mass Density [kg/m3]	516,3	516,3	
Oil & Gas Feed Act. Volume Flow [m3/h]			3,219	3,219	
Petroleum Assay Mass Enthalpy [kJ/kg]			-2214	-2214	
User Vari	iables	Mass Entropy [kJ/kg-C]	1,592	1,592	
Notes		Heat Capacity [kJ/kgmole-C]	210,1	210,1	
Cost Para	ameters	Mass Heat Capacity [kJ/kg-C]	2,931		
Normaliz	zed Yields	LHV Molar Basis (Std) [kJ/kgmole]	3,251e+006	3,251e+006	
		HHV Molar Basis (Std) [kJ/kgmole]	3,496e+006	3,496e+006	
		HHV Mass Basis (Std) [kJ/kg]	4,876e+004	4,876e+004	
		CO2 Loading	<empty></empty>	<empty></empty>	
		CO2 Apparent Mole Conc. [kgmole/m3]	<empty></empty>	<empty></empty>	
		CO2 Apparent Wt. Conc. [kgmol/kg]	<empty></empty>	<empty></empty>	Ŧ
		Property Correlation Controls		1	
					•

Figure IV.XIX : Propriétés du résidu.

Design Par	rameters	Side Ops	Internals	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics	Lŕ
Performan	nce	Feeds								
Summary					feed					
Column Pro	files	Flow Rate	e (Ibmole/h)	100,	0				
Plots	ilor	Propane	(lbmole/h)		5,00	D				
Internals Re	sults	i-Butane	(lbmole/h)		15,0	0				- 11
internals ite.	suits	n-Butane	e (Ibmole/h))	25,0	0				- 11
		i-Pentane	e (Ibmole/h)	20,0	D				- 11
		n-Pentan	e (lbmole/ł	n)	35,0	0				- 1
					distillat	residu				
		Flow Rate	e (Ibmole/h	0	48.899	3 51.	1007			
		Propane	(lbmole/h)		4,998	9 0,	0011			
		i-Butane	(lbmole/h)		14,793	6 O ,	2064			_
		n-Butane	e (Ibmole/h))	23,569	5 1,	4305			
		i-Pentane	e (Ibmole/h)	3,371	1 16,	6289			- 11
		n-Pentan	e (lbmole/ł	n)	2,166	3 32,	8337			- 11
										_
L										=
Delete	•][Colum	n Environm	ient	Run	Re	eset	Con	verged	
4			,	"						- F

Figure IV.XX : les compositions de différents courants.

Design	- diameters					
Perfor	mance	Feeds				
Summa	ry		feed			
Column	Profiles	Flow Rate (Ibmole/h)	100,0000			
Feeds /	Products					
Plots Cond /P	Pahailar	Propane	0,0500			
Internal	s Results	i-Butane	0,1500			
interna.	3 Nesults	n-Butane	0,2500			
		i-Pentane	0,2000			
		n-Pentane	0,3500			
		Products	distillat	residu		
		Products	distillat	residu		
		Products Flow Rate (Ibmole/h)	distillat 48,8993	residu 51,1007		
		Products Flow Rate (Ibmole/h)	distillat 48,8993	residu 51,1007		
		Products Flow Rate (Ibmole/h) Propane	distillat 48,8993 0,1022	residu 51,1007 0,0000		
		Products Flow Rate (Ibmole/h) Propane i-Butane	distillat 48,8993 0,1022 0,3025	residu 51,1007 0,0000 0,0040		
		Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane	distillat 48,8993 0,1022 0,3025 0,4820	residu 51,1007 0,0000 0,0040 0,0280		
		Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane	distillat 48,8993 0,1022 0,3025 0,4820 0,0689	residu 51,1007 0,0000 0,0040 0,0280 0,3254		
		Products Flow Rate (lbmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane	distillat 48,8993 0,1022 0,3025 0,4820 0,0689 0,0443	residu 51,1007 0,0000 0,0040 0,0280 0,3254 0,6425		
		Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane	distillat 48,8993 0,1022 0,3025 0,4820 0,0689 0,0443	residu 51,1007 0,0000 0,0040 0,0280 0,3254 0,6425		
		Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane	distillat 48,8993 0,1022 0,3025 0,4820 0,0689 0,0443	residu 51,1007 0,0000 0,0040 0,0280 0,3254 0,6425		
D	elete	Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane Column Environment.	distillat 48,8993 0,1022 0,3025 0,4820 0,0689 0,0443	residu 51,1007 0,0000 0,0040 0,0280 0,3254 0,6425 Reset	Con	verged

Figure IV.XXI : les compositions de différents courants.

Name	feed @COL1	distillat @COL1	residu @COL1
Vapour	0,0080	0,0000	0,0000
Temperature [F]	180,8	143,8	231,0
Pressure [psia]	120,0	120,0	120,0
Molar Flow [lbmole/h]	100,0	48,90	51,10
Mass Flow [kg/h]	2955	1293	1662
Std Ideal Liq Vol Flow [m3/h]	4,900	2,246	2,654
Molar Enthalpy [kJ/kgmole]	-1,530e+005	-1,448e+005	-1,588e+005
Molar Entropy [kJ/kgmole-C]	104,5	92,12	114,1
Heat Flow [kJ/h]	-6,940e+006	-3,211e+006	-3,680e+006

Tableau IV.I : les conditions de différents courants (worksheet).

Design Parar	neters	Side Ops I	nternals	Rating W	orksheet Pe	formance Fl	owsheet Rea	ctions
Parameters	Stea	dy State Profi	les —					
Profiles						Optional Es	timates	
Estimates Efficiencies			Stage	Pressure [psia]	Temp [F]	Net Liquid [lbmole/h]	Net Vapour [lbmole/h]	
Solver	Co	ndenser	0	120,0	120,0	126,1	1,623e-007	
Eluid Pkgs	1_	Main Tower	1	120,0	159,9	122,3	175,0	
riala rikgs	2_	Main Tower	2	120,0	172,1	119,1	171,2	
	3_	Main Tower	3	120,0	182,0	116,9	168,0	
	4_	Main Tower	4	120,0	189,5	115,6	165,8	
	5_	Main Tower	5	120,0	194,8	114,9	164,5	
	6_	Main Tower	6	120,0	198,3	215,1	163,8	
	7_	Main Tower	7	120,0	206,8	216,2	164,0	
	8_	Main Tower	8	120,0	214,1	217,3	165,1	
	9_	Main Tower	9	120,0	220,0	218,4	166,2	
	10_	_Main Tower	10	120,0	224,7	219,4	167,3	
	11_	_Main Tower	11	120,0	228,3	220,1	168,3	
	Ret	ooiler	12	120,0	250,0	51,10	169,0	

Tableau IV.II : steady state profiles.

esign Param	eters	Side Ops	Internals	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics		-
arameters	Con	nposition Es	timates —								-
Profiles Estimates Efficiencies Solver 2/3 Phase Fluid Pkgs			Prop	ane	i-Butane	n-Butane	ane i-Pentane		n-Pentane	Sum	
	C	ondenser		0,1022	0,3025	0,482	6,894	e-002	4,430e-002	1,000	
	1_	_Main To	4,156	5e-002	0,2390	0,481	4 0	,1343	0,1037	1,000	
	2_	_Main To	2,18	1e-002	0,1814	0,426	1 0	0,1958		0 1,00	
	3_	_Main To	1,560	De-002	0,1402	0,356	5 0	,2414	0,2464	1,000	
	4_	_Main To	1,348	Be-002	0,1142	0,296	2 0	,2673	0,3089	1,000	Ξ
	5_	_Main To	1,260	De-002	9,889e-002	0,252	4 0	,2767	0,3594	1,000	
	6_	_Main To	1,216	5e-002	9,021e-002	0,2236	6 0	0,2752	0,3988	1,000	0
	7_	_Main To	4,674	4e-003	6,190e-002	0,184	5 0	,3056	0,4434	1,000	
	8_	_Main To	1,718	Be-003	4,000e-002	0,142	5 0	,3289	0,4870	1,000	
	9_	Main To	6,090	0e-004	2,452e-002	0,103	7 0	,3429	0,5282	1,000	
	10	Main T	2,089	9e-004	1,431e-002	7,151e-00	2 0	,3469	0,5671	1,000	
	11	IMain T	6,910	De-005	7,904e-003	4,648e-00	2 0	,3409	0,6047	1,000	L
	Re	eboiler	2,140	De-005	4,039e-003	2,799e-00	2 0	3254	0,6425	1,000	

Tableau IV.III : La composition des constituants sur chaque plateau.

IV.11 Variation des paramétrés dans la colonne

Chapitre 04

Figure IV.XXIII : Profil de débit molaire en fonction du nombre de plateaux.

Figure IV.XXIV : la composition molaire des constituants en fonction de la position du plateau.

IV.12 Interprétation des courb Hysys :

Figure IV.XXV : La courbe reflète la température en fonction de la position du plateau.

La température diminue du fond vers le haut, sauf entre le cinquième et le sixième plateau qu'on voit que la température varie légèrement, ceci s'explique par le fait que nous sommes dans la zone d'alimentation et que le transfert de matière ne s'est pas encore intensifié. Le profil de température dans la colonne de stabilisation présente une évolution normale le long de la colonne, sauf une présence d'un pic qui est remarqué au niveau du plateau d'alimentation (au niveau du 6éme), ce pic s'explique par la différence entre la température d'alimentation et celle du plateau.

La température est maximale au fond de la colonne ce qui est normale par ce que nous sommes dans le domaine de rebouillage, et minimale au sommet de la colonne par ce que nous sommes dans le domaine de condenseur (reflux froid).

Figure IV.XXVI : Profil de débit molaire en fonction du nombre de plateaux

D'après la figure on constate que le débit de vapeur dans la section de rectification est supérieur à celui de liquide mais quand on arrive (au 6éme plateau) le débit de liquide augmente d'une façon considérable par rapport au débit de vapeur qui est diminué à cause de la fraction liquide vapeur de l'alimentation.

Les lignes parallèles expliquent l'équilibre liquide-vapeur dans chaque plateau.

D'après le graphe, le débit vapeur et important par rapport à celui de la phase liquide dans la section d'enrichissement. Le débit liquide augmente brusquement par rapport à celui de la phase vapeur dans la section d'épuisement à cause de l'alimentation qui se trouve à l'état liquide, et ce graphe prouve une stabilité dans le fonctionnement de la colonne.

Figure IV.XXVII : la composition molaire des constituants en fonction de la position du plateau

La courbe reflète la composition molaire des constituants sur chaque plateau.la plus grande concentration du N-butane se trouve localisée au sommet de la colonne (plateau n 1) et la plus faible concentration au fond de la colonne.

L'effet inverse se réalise pour le isobutane autrement dit la plus grande concentration s'y trouve au fond de la colonne.

Les résultats de la courbe montrent qu'une séparation pure du composant a été obtenue.

Le résultat montre également que la composition de propane s'est vaporisée au niveau de l'entrée d'alimentation située sur le plateau 6.

La courbe montre que l'iso-butane et le n-butane se sont vaporisés et séparés au sommet de la colonne sous forme de distillat, laissant l'iso-pentane et le n-pentane comme liquide au fond de la colonne.

IV.13 Résultats et discussion

Il a été constaté qu'il n'a pas une grande différence entre le modèle PR et celles simulées par CS, les résultats sont presque identiques en ce qui concerne le calcul des débits molaires et massiques ainsi que les compostions, le modèle thermodynamique Peng Robinson donne une meilleure convergence. Les analyses des résultats obtenus par ce modèle nettement en évidence. On constate que le modèle de **Peng Robinson** est le plus adéquat en comparant entre les résultats obtenus lors de la simulation en utilisant le modèle thermodynamique **CS**. Ce modèle montre son efficacité et sa fiabilité pour les mélanges des hydrocarbures à moyenne et haute pression.

La différence a connu une divergence dans la détermination du la charge du rebouilleur et la charge du condenseur. Depuis le chauffage est plus cher que le refroidissement, le principal coût d'exploitation est le coût du vapeur pour chauffer le rebouilleur.

C'est pourquoi il est si important de vérifier votre choix de modèle thermodynamique.

Tous ça est fait en se basant sur une efficacité des plateaux de l'ordre de 1

Conclusion générale

Le calcul de la colonne (l'étude paramétrique), que nous nous sommes fixés comme objectif, nous a servi, dans notre travail, de support pour traiter un problème de distillation de mélanges complexes. A cet effet, nous avons été amenés à étudier et appliquer la méthode dite de Fenske-Underwood-Gilliland (F.U.G). il permet de calculer les bilans et les composition molaires et massiques des différents produits entrant et sortant de la colonne, le taux de reflux minimum et le taux de reflux optimal ainsi que le nombre d'étages minimum et d'étages nécessaires à effectuer la séparation, il permet aussi de localiser l'étage d'alimentation en calculant le nombre d'étages de la section concentration et celui de la section épuisement.

Le simulateur Aspen Hysys utilise l'équation PR, qui est modifiée suivant les règles de mélange', valables pour des systèmes complexes comme le pétrole brut et leurs coupes. Généralement, plus la base théorique d'une corrélation est solide, plus elle en résulte fiable.

En particulier, cette corrélation a été largement prouvée et leurs résultats ont été comparés à ceux obtenus dans des cas réels du procédé de distillation primaire du pétrole brut.

Le simulateur le compense avec leur large base de données brute du monde entier. Son application doit être évitée en dehors de sa plage valide. Aspen Tutorial recommande l'utilisation du modèle CS car son application est fiable grâce à leur large source d'informations.

Le modèle Chao-Sea Bien que la base théorique ne soit pas solide, cette simulateur le compense avec leur large base de données brute du monde entier. Son application doit être évitée en dehors de sa plage valide. Aspen Tutorial recommande l'utilisation du modèle CS car son application est fiable grâce à leur large source d'informations.

[1] https://www.copper-alembic.com/fr/page/histoire-de-la-distillation-des-boissons alcoolisees

[2] S.Belazreg, « Etude de section de débutanisation du complexe GNL1/Z», Mémoire de l'IAP,
(2012). [3] P. Wuithier, « Raffinage et génie chimique», Tome1 ; Edit.Technip : Paris, (1972).

[4] CICILE, « Distillation – Absorption », technique de l'ingénieur, J-2610, J-2611, J-2621 J-2622 J-2623, Edition Tech

[5] M. Lakhdar Aggoune, « Détection de défauts dans les procédés industriels par l'utilisation Des méthodes d'identification paramétrique », Thèse de doctorat, université de Stif, (2015).

[6] G.Ardit, « Technologie chimique industrielle », Edition Eyrolles, paris, (1972).

[7] G.janusz, « Distillation et rectification », Edition OPU. (1984).

[8] F. Busson. Les Bond Graphs multi énergie pour la modélisation et surveillance en génie des procèdes. France, 2002.

[9] H.Perry, W.Gereen, «Perry Chemical Engineer »Handbook, 7éme Edition, McGraw Hill, New York, (1994).

[10] AKEDI MOUNIR MOUHSSEN. MOSTEFA HOUSSEMEDDINE, Mémoire, CONTRIBUTION À L'ÉTUDE D'UNE COLONNE DE DISTILLATION À PLATEAUX : (Dé-butaniseur C-102 de Hassi R'MEL), UNIVERSITE M'HAMED BOUGARA-BOUMERDES.

[11] Jean-Pierre Wauquier, Raffinage du Pétrole, tome2-Procédés de séparation.Edition TECHNIP, (1998)

[12] P.Tambouze « raffinage du pétrole "Matériels et équipement" »Tome 4.

[13] Ronald W. Rousseau « handbook of separation process technology »1987.

[14] AIDE Mémoire Emilian Kaller (Génie chimique).

[15] Melle MOHAMED SEGHIR Zahira . Mémoire présenté en vue de l'obtention du DIPLOME DE MAGISTER. Calcul technologique et simulation du procédé de rectification des gaz (Arzew). Université Abdelhamid Ibn Badis de Mostaganem.

[16] Henry Z.Kister . « distillation DESIGN ». Engineering Advisor Brown & Root Sraun, Alhambra, California.

[17] J. D. Seader SEPARATION PROCESS PRINCIPLES Chemical and Biochemical Operations, THIRD EDITION.

[18] Bernard Grandjean, cour DISTILLATION & EXTRACTION Volume 1,2013.

[19].Coulson & Richardson's. Chemical Engineering, Volume 6, Fourth edition Chemical Engineering Design R. K. Sinnott

[20] MOUNI Nasseredine . Mémoire de Magister. Simulation et optimisation des paramètres technologiques de l'unité de fractionnement des GPL à Haoud Berkaoui. UNIVERSITE M'HAMED BOUGARA-BOUMERDES.

[21] M.S. Ray, Distillation (1980-1990): A Bibliography, Separation Science and Technology, Vol. 27, 1, (1992), pp. 105-128.

[22] J.C. Wang and Y.L. Wang, A Review on the Modeling and simulation of Multistage separation Processes, Proceeding of The International Conference Foundation of computer Aided Chemical Process design, (July 1980), pp. 121-170.

[23]. C.D. Holland, History of the Development of Distillation Computer Models, A.I.Che.E Symposium Series, Vol. 79, 235, (1983), pp. 15-38.

[24]. C.J. King, Separation Processes, McGraw-Hill Edition, New York (1980).

[25] J.B. Riggs, An Introduction to Numerical Methods for Chemical Engineers, Texas Tech University Press, second edition, (1994).

[26] W.H. Press, B.P. Flanery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, Cambridge Press, U.K. (1986).

[27]L.M. Naphtali and D.P Sandholm, Multicomponent Separation Calculations by Linearization, A.I.Ch.En Journal, Vol. 17, 1, (January 1971), pp. 148-153.

[28] R.P. Goldstein and R.B. Stanfield, Flexible Method for the Solution of Distillation Design Problems Using the Newton-Raphson Technique, Industrial and Engineering Chemistry Process design and development Journal, Vol. 09, 1, (January 1970), pp. 78-84.

[29] G.S Eugene, Solution Procedures for Nonideal Equilibrium Stage Processes at Steady State And Unsteady State Described By Algebraic Or Differential Algebraic Equations Ph.D dissertation, Texas A&M University, USA, (1979).

[30] mémoire de fin d'étude « simulation d'une unité de production de méthanol à l'aide de l'aspen plus-hysys » réalisé par : Djebbari, A Université Mohamed Khider – Biskra (2014)

[**31**] Pierre Rouchon « simulation dynamique et commande non linéaire des colonnes a distiller »thèse de doctorat, 1990.

[**32**] Jiménez, M.S.Basualdo, Et J.C.Gómez « nonlinear dynamic modeling of multicomponent batch distillation: a case study » brazilian journal of chemical engineering, vol. 19, no. 03, pp. 307 - 317, july - september 2002

[33] Melle MOHAMED SEGHIR Zahira . Mémoire présenté en vue de l'obtention du DIPLOME DE MAGISTER. Calcul technologique et simulation du procédé de rectification des gaz (Arzew). Université Abdelhamid Ibn Badis de Mostaganem.

[32] cours initiation au simulateur HYSYS, présenté par N. Rebai. Institut Algerien du petrole

[33] mémoire de fin d'étude « simulation d'une unité de production de méthanol à l'aide de l'aspen plus-hysys » réalisé par : Djebbari, A Université Mohamed Khider – Biskra (2014)

[34]. P. Pierre, A to Z of Thermodynamics, Edition Press University of Oxford, (1998).

[35] Rey G. Montemayor « distillation and vapor pressure measurement in petroleum products » West Conshohocken, PA 19428–29592008

[36] Baptiste Bouillot. COURS introduction aux méthodes thermodynamique pour le genie des procedes

[**37**] TOUAT Oussama et BELAIDI Fares. Projet de Fin d'Etude Master. Analyse énergétique et éxergetique d'une centrale à gaz. Université de Bouira.

[38]. Aspen COMThermo, Reference guide ASPEN Technology, edition (2007), pp. 3-191 3-193.

[**39**]. Juan Pablo Gutierrez et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 4, Issue 4 (Version 1), April 2014, pp.190-194

[40]. León Cohen, Diseño y simulación de procesos químicos, (León Cohen Mesonero, 2da Edición Ampliada y modificada. España, 2003).

Annexe : Nomogramme des coefficients d'équilibres des hydrocarbures(Scheibel et Jenny) [7].

Annexe : Diagramme de Guililand (Nombre de plateau théorique N en fonction de taux de reflux rf Dans la distillation des mélanges complexes) [12].

Le package thermodynamique Chao-Sea (CS)

orksheet	Attachmen	ts Dynamics			
Works	heet	Stream Name		distilla	t Liquid Phase
Conditio	ns	Vapour / Phase F	raction	0,000	0 1,0000
Properties Composition Oil & Gas Feed Patroleum Accav		Temperature [F]		146,	8 146,8
		Pressure [psia]		120,	0 120,0
		Molar Flow [lbm	ole/h]	48,9	0 48,90
K Value	m Assay	Mass Flow [kg/h]	129	2 1292
User Vari	iables	Std Ideal Liq Vol	Flow [m3/h]	2,24	5 2,245
Notes		Molar Enthalpy [kJ/kgmole]	-1,445e+00	5 -1,445e+005
Cost Para	ameters	Molar Entropy [k	J/kgmole-C]	92,7	8 92,78
Normaliz	zed Yields	Heat Flow [kJ/h]		-3,204e+00	6 -3,204e+006
		Liq Vol Flow @St	d Cond [m3/h]	2,23	5 2,235
		Fluid Package		Basis-	1
		Utility Type			
			OK		

Conditions du distillat.

🖲 Material Strea	am: distillat	:			— C) ×		
Worksheet At	ttachments	Dynamics						
Worksheet	t St	ream Name	Liquid Phase	<u>*</u>				
Conditions	M	olecular Weig	ht	58,24	58,24	L		
Properties	M	olar Density [kgmole/m3]	8,847	8,847	· E		
Composition	n M	ass Density [k	(g/m3]	515,3	515,3			
Oil & Gas Fe	eed Ac	t. Volume Flo	w [m3/h]	2,507	2,507	7		
K Value	Assay M	ass Enthalpy	[kJ/kg]	-2481	-2481			
User Variable	es M	ass Entropy [d/kg-C]	1,593	1,593	8		
Notes	He	eat Capacity [kJ/kgmole-C]	156,7	156,7	,		
Cost Parame	eters M	ass Heat Capa	acity [kJ/kg-C]	2,690	2,690)		
Normalized '	Yields LH	IV Molar Basi	s (Std) [kJ/kgmole]	2,662e+006	2,662e+006	5		
	H	HV Molar Bas	is (Std) [kJ/kgmole]	2,867e+006	2,867e+006	5		
	H	HV Mass Basis	s (Std) [kJ/kg]	4,923e+004	4,923e+004	4		
	CC	D2 Loading		<empty></empty>	<empty></empty>			
	CC	D2 Apparent I	Mole Conc. [kgmole/m3	<empty></empty>	<empty></empty>			
		02 Apparent \	Wt. Conc. [kamol/ka]	<empty></empty>	<empty></empty>	-		
	[Pr	Property Correlation Controls						
		3] ♣] ♣	▲ 👌 🗙		<u>n</u>			
4								

Propriétés du distillat.

orksheet	Attachmen	ts Dynamics				
Works	heet	Stream Name			résidu	Liquid Phase
Conditio	ns	Vapour / Phase	Fraction		0,0000	1,0000
Propertie	es	Temperature [F]			233,5	233,5
Compos	ition	Pressure [psia]			120,0	120,0
Oil & Gas Feed Petroleum Assay	Molar Flow [lbn	nole/h]		51,10	51,10	
K Value	m Assay	Mass Flow [kg/l	h]		1663	1663
User Var	iables	Std Ideal Liq Vo	l Flow [m3/h]		2,655	2,655
Notes		Molar Enthalpy	[kJ/kgmole]		-1,586e+005	-1,586e+005
Cost Par	ameters	Molar Entropy [kJ/kgmole-C]		114,8	114,8
Normaliz	zed Yields	Heat Flow [kJ/h]		-3,676e+006	-3,676e+006
		Liq Vol Flow @S	Std Cond [m3/h]		2,647	2,647
		Fluid Package			Basis-1	
		Utility Type				
			OK			
Del	ete	Define fro	m Stream	View Accov		-

Conditions de la simulation pour le résidu.

Material S	Stream: résid	u		— 🗆	\times
Vorksheet	Attachmen	ts Dynamics			
Works	heet	Stream Name	résidu	Liquid Phase	*
Conditio	ns	Molecular Weight	71,74	71,74	
Propertie	es	Molar Density [kgmole/m3]	7,171	7,171	=
Composi	ition	Mass Density [kg/m3]	514,4	514,4	
Oil & Ga	s Feed	Act. Volume Flow [m3/h]	3,232	3,232	
K Value	m Assay	Mass Enthalpy [kJ/kg]	-2211	-2211	
User Vari	iables	Mass Entropy [kJ/kg-C]	1,601	1,601	
Notes		Heat Capacity [kJ/kgmole-C]	202,8	202,8	
Cost Para	ameters	Mass Heat Capacity [kJ/kg-C]	2,827	2,827	
Normaliz	zed Yields	LHV Molar Basis (Std) [kJ/kgmole] 3,253	3e+006	3,253e+006	
		HHV Molar Basis (Std) [kJ/kgmole] 3,498	8e+006	3,498e+006	
		HHV Mass Basis (Std) [kJ/kg] 4,876	6e+004	4,876e+004	
		CO2 Loading <e< td=""><td>empty></td><td><empty></empty></td><td></td></e<>	empty>	<empty></empty>	
		CO2 Apparent Mole Conc. [kgmole/m3] <e< td=""><td>empty></td><td><empty></empty></td><td></td></e<>	empty>	<empty></empty>	
		CO2 Apparent Wt. Conc. [kgmol/kg] <e< td=""><td>empty></td><td><empty></empty></td><td>-</td></e<>	empty>	<empty></empty>	-
	l c	Property Correlation Controls		ו	
			A in		
				1	•

Propriétés du résidu.

Design	Parameters	Side Ops	Internals	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics
Perfor	mance	Feeds							
Summar	ry				feed				
Column	Profiles	Flow Rate	e (Ibmole/h)	100,	D			
Feeds / Plots	Products								
Cond /R	eboiler	Propane (Ibmole/h)			5,00	D			
Internal	s Results	i-Butane (lbmole/h)			15,0	D			
		n-Butane	(Ibmole/h)		25,0	D			
		i-Pentane	e (Ibmole/h)	20,0	D			
		n-Pentan	e (lbmole/ł	n)	35,0	D			
		Elow Rate	(lbmole/b		49 900	51 1	1010		
		Flow Rate	e (Ibmole/h)	48,899	0 51,1	1010		
		Propane (Ibmole/h)			4,999	3 0,0	0007		
		i-Butane	(lbmole/h)		14,801	9 0,1	1981		
		n-Butane	(lbmole/h))	23,689	6 1,3	3104		
		i-Pentane	(Ibmole/h)	3,308	2 16,6	5918		
		n-Pentane (Ibmole/h)			2,100	2 32,8	3998		
De	elete	Colum	n Environm	ent	Run	Re	set	Con	verged

Les compositions de différents courants.

resign parameter.	s Side Ops Internals Ratin	g Worksheet Per	formance Flows	heet Reactions	Dynamics
Performance	Feeds				
Summary		feed			
Column Profiles Feeds / Products	Flow Rate (Ibmole/h)	100,0000			
Plots	Propane	0.0500			
Cond./Reboiler	i-Butane	0,1500			
Internals Results	n-Butane	0,2500			
	i-Pentane	0,2000			
	n-Pentane	0,3500			
	Products	distillat	résidu		
	Products	distillat	résidu		
	Flow Rate (lbmole/h)	distillat 48,8990	résidu 51,1010		
	Products Flow Rate (lbmole/h) Propane	distillat 48,8990 0,1022	résidu 51,1010 0,0000		
	Products Flow Rate (lbmole/h) Propane i-Butane	distillat 48,8990 0,1022 0,3027	résidu 51,1010 0,0000 0,0039		
	Products Flow Rate (lbmole/h) Propane i-Butane n-Butane	distillat 48,8990 0,1022 0,3027 0,4845	résidu 51,1010 0,0000 0,0039 0,0256		
	Products Flow Rate (Ibmole/h) Propane i-Butane i-Butane i-Pentane	distillat 48,8990 0,1022 0,3027 0,4845 0,0677	résidu 51,1010 0,0000 0,0039 0,0256 0,3266		
	Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane	distillat 48,8990 0,1022 0,3027 0,4845 0,0677 0,0429	résidu 51,1010 0,0000 0,0039 0,0256 0,3266 0,6438		
	Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane	distillat 48,8990 0,1022 0,3027 0,4845 0,0677 0,0429	résidu 51,1010 0,0000 0,0039 0,0256 0,3266 0,6438		
	Products Flow Rate (Ibmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane	distillat 48,8990 0,1022 0,3027 0,4845 0,0677 0,0429	résidu 51,1010 0,0000 0,0039 0,0256 0,3266 0,3266		
Delete	Products Flow Rate (lbmole/h) Propane i-Butane n-Butane i-Pentane n-Pentane n-Pentane	distillat 48,8990 0,1022 0,3027 0,4845 0,0677 0,0429 Run	résidu 51,1010 0,0000 0,0039 0,0256 0,3266 0,3266 0,6438 Reset	Cor	werged

les compositions de différents courants.

Name	feed @COL1	distillat @COL1	résidu @COL1
Vapour	0,0000	0,0000	0,0000
Temperature [F]	180,8	146,8	233,5
Pressure [psia]	120,0	120,0	120,0
Molar Flow [lbmole/h]	100,0	48,90	51,10
Mass Flow [kg/h]	2955	1292	1663
Std Ideal Liq Vol Flow [m3/h]	4,900	2,245	2,655
Molar Enthalpy [kJ/kgmole]	-1,532e+005	-1,445e+005	-1,586e+005
Molar Entropy [kJ/kgmole-C]	104,2	92,78	114,8
Heat Flow [kJ/h]	-6,947e+006	-3,204e+006	-3,676e+006

Les conditions de différents courants (worksheet).

関 Column	n: T-100 /	COL1 Fluid Pkg	g: Basis-1,	/ Chao Se	ader			_		>	<
Design F	Paramete	rs Side Ops	Internals	Rating	Worksh	eet Pe	erformance	Flowsheet	Reac	tions	
Paramete	rs S	teady State Prof	iles —								-
Profiles			Estimates	timates							
Estimates Efficiencie	s		Stage	tage [psia]		Temp Net Liqu [F] [Ibmole		d Net Va n] [Ibmo	apour le/h]		
2/3 Dhace		Condenser	0	120),0	120,0	12	6,1 1,570	e-007		
Eluid Pkos		1_Main Tower	1	1 120,0		162,5 12		2,5	175,0		
l laid r kgs		2_Main Tower	2	12	0,0	174,4	11	9,2	171,4		Ξ
		3_Main Tower	3	12	0,0	184,1	11	6,9	168,1		
		4_Main Tower	4	12	0,0	191,6	5 11	5,6	165,8		
		5_Main Tower	5	12	0,0	197,0	11	4,9	164,5		
		6_Main Tower	6	12	0,0	200,6	5 21	7,0	163,8		
		7_Main Tower	7	12	0,0	209,3	21	8,2	165,9		
		8_Main Tower	8	12	0,0	216,6	5 21	9,4	167,1		
		9_Main Tower	9	12	0,0	222,6	5 22	0,6	168,3		
		10_Main Towe	10	12	0,0	227,3	3 22	1,8	169,5		
		11_Main Towe	11	12	0,0	230,9	22	2,7	170,7		
		Reboiler	12	120	0,0	250,0	51,	10	171,6		
										•	

steady state profiles.

Design Param	eters	Side Ops	Internals	Rating	Worksheet	Perfo	Performance Flo		Reaction	ns Dynamics	
Parameters	Con	nposition Es	timates —								
Profiles Estimates			Propane		i-Butane	r	n-Butane		ntane	n-Pentane	Sum
Efficiencies	Co	ondenser	6	0,1022		7	0,4845		5e-002	4,295e-002	1,000
Solver	1_	_Main To	4,092	e-002	0,241	3	0,4862		0,1311	0,1004	1,000
2/3 Phase Fluid Pkgs	2_	Main To	2,123e-002		0,184	6	0,4320		0,1917	0,1704	1,000
-	3_Main To		1,509	1,509e-002		2	0,3620		0,2378	0,2419	1,000
	4_	Main To	1,299	1,299e-002		5	0,300	2	0,2650	0,3054	1,000
	5_Main To		1,209	1,209e-002		5	0,254	6	0,2756	0,3572	1,000
	6_	Main To	1,163	1,163e-002		2	0,224	I 3 0 ,	0,2750	0,3978	1,000
	7_Main To 8_Main To		4,272	4,272e-003 1,492e-003		2	0,183	6	0,3061	0,4436	1,000
			1,492			2	0,1401		0,3300	0,4883	1,000
	9_	_Main To	4,998	4,998e-004 1,614e-004 5,015e-005 1,459e-005		002 0,100	5	0,3444	0,5303	1,000	
	10	Main T	1,614			2 6	,805e-00	05e-002			0,5694
	11	_Main T	5,015			3 4	,341e-00	2	0,3422	0,6067	1,000
	Re	boiler	1,459			3 2	2,564e-002		0,3266		1,000

La composition des constituants sur chaque plateau.