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Introduction

In mathematics, optimization theory represents an important tool used by mathematicians

in order to solve maximization and minimization problems, both theoretical and practical ones.

It helps us determine extreme values, study the behaviour of systems, and mainly, control these

systems in a way that helps us take the best decisions.

As a motivation, let us recall a well known concept in mathematics. Given a function y, a

differential equation is a mathematical equation that depends on y and its derivatives. The order

depends on the ”highest” derivative in a sense : A first order differential equation for example

depends on y and its first derivative.

This type of differential equations is called Ordinary differential equations (ODEs for short),

and it is of deterministic variation (it only depends on time).

As of the 50’s, along with the major advancements in mathematics as well as other scientific

fields, random systems (also known as dynamic systems) emerged, and more mathematicians

started studying this new type of random systems, also called ”stochastic”. The differential

equation here depends also on a second component which is stochastic, the equation becomes a

Stochastic differential equations (SDE for short). The new stochastic part is called the diffusion

and hence, ODEs represent a special case of SDE where the diffusion part is equal to zero. Itô’s

Calculus, introduced by Kiyosi Itô, is considered to be one of the first wokrs in the field of

stochastic calculus. We mention also Pardoux and Peng’s[8] important works on BSDE’s, and

many other works that are on the same scale of importance.

Optimization theory, few years later, got included into this new field of stochastic calculus

and dynamical systems, allowing the extention and the developpment of numerous theories, as
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Introduction

well as the generalization of older concepts.

Among the main concepts in optimization theory is the optimal control. That is, a system

provided with a control function that helps us take decisions optimally.

The idea is simple : We suppose a stochastic system dX(t) = b(t,X(t))dt+ σ(t,X(t))dB(t).

We then define a control function u which will be implemented in the system in order to op-

timally control it, according to our cost function J which we want maximized (or minimized).

New optimization methods emerged, such as Bellman’s dynamical programming principle, and

Pontryagin’s principle.

Among the various types of stochastic systems, we are interested in thesis in studying a type

called the Regime switching stochastic systems. These systems have a special property : They

switch their behaviour abruptly, leading to a new system that no longer depends on the previous

one.

This property is somewhat similar to a famous mathematical concept. The Markov property.

This is why regime switching systems usually depend on a Markov chain that plays this important

role in sudden change of its behaviour.

Our aim now is to study the near-optimal controls of such systems using the stochastic

maximum principle. And for that we propose the following apporach :

In Chapter One : We recall some of the main mathematical preliminaries concerning the

stochastic calculus, as well as the stochastic differential equations, and Markov chains.

In Chapter Two : We give the formulation of an optimization problem, then we recall

the stochastic maximum principle, along with the near-optimal controls and Ekeland’s principle.

Later on, we explain the regime switching stochastic systems and how they differ from other

dynamical systems.

In Chapter Three : This chapter is more of an application. We study the necessary and

sufficient conditions of near-optimality in a viral SIRS model. We introduce a Markov chain, in

the system, allowing it to be of regime switching behaviour.
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Chapter 1

Stochastic Calculus Preliminaries

1.1 Stochastic Processes

We consider a filtered probability space (Ω,F ,F,P), which is a probability space, provided

with an increasing sequence of sub-σ-algebras of F called filtration.

Definition 1.1.1 (Stochastic process) We call stochastic process X = (X(t))t∈R every sequence

of real-valued random variables

X(t, .) : (Ω,F) −→ (R,B(R))

ω −→ X(t, ω)

Proposition 1.1.2 For each fixed t ∈ R+, the stochastic process X becomes a random variable,

while for each fixed ω ∈ (Ω,F), the stochastic process X becomes a real function, usually called

trajectory.

Definition 1.1.3 (Adaptability) We say that a stochastic process X is adapted to the filtration

F (F-adapted for simplicity) if and only if ∀t ∈ R+, the random variable X(t) is Ft-measurable.

Remark 1.1.4 It is obvious that every stochastic process X is adapted to its natural filtration

(FX
t )t∈R+

, that is FX
t = σ(X(s), 0 ≤ s ≤ t),∀t ∈ R+.

4



Stochastic Calculus Preliminaries

We define the following class P

P =
{
A× Ω

/
A ⊆ R+,∀t ≥ 0, (A ∩ [0, t])× Ω ∈ B[0, t]×Ft

}
.

The class P is a σ-algebra and is called the class of progressively measurable sets.

Definition 1.1.5 (Progressive measurability) Let X = (X(t))t≥0 be a stochastic process from

(Ω,F) in (R,B(R)). Then X is said to be progressively measurable if X : [0, t] × Ω → R is

measurable from B([0, t])×Ft in (R,B(R)).

1.2 Brownian Motion

Definition 1.2.1 A brownian motion (Wiener process) B = (B(t))t≥0 is characterized by four

properties

1. B(0) = 0 P− a.s.

2. For every ω ∈ Ω, the function t → B(t, ω) is P− a.s continuous.

3. For every s ∈ [0, t], the random variable B(t)−B(s) is a centered gaussian random variable

with variance t−s (B(t)−B(s) ∼ N (0, t−s)) and is independent of the σ-algebra (FB
u )t≥0.

We say that the brownian motion has independent and stationary increments.

4. For every t > 0, B(t) ∼ N (0, t).

Property 1.2.2

� A brownian motion B = (B(t))t≥0 is a gaussian process.

� A brownian motion is nowhere differentiable.

� For every couple (s, t) ∈ R+ × R+, Cov(B(t), B(s)) = t ∧ s.

� A brownian motion has an infinite variation, but its quadratic variation is finite.
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Example 1.2.3 Let B = (B(t))t≥0 be a standard brownian motion. Then the process (B̃(t))t≥0

defined ∀t > 0 by

B̃(t) = tB

(
1

t

)
, B̃(0) = 0

is also a brownian motion (Time inverted brownian motion).

Definition 1.2.4 (Martingale) We say that a stochastic process X = (X(t))t≥0 is a martingale

if it is

1. F-adapted.

2. Integrable : E |X(t)| < ∞,∀t ∈ R+.

3. It verifies the following property ∀t ≥ s

E[X(t)
∣∣Fs] = X(s).

Definition 1.2.5 Let X be a stochastic process verifying 1 and 2. Then X is

� Supermartingale, if E[X(t)
∣∣Fs] ≤ X(s).

� Submartingale, if E[X(t)
∣∣Fs] ≥ X(s).

Remark 1.2.6 A martingale is both a submartingale and a supermartingale at the same time.

Example 1.2.7 A brownian motion B is a martingale with respect to its natural filtration

(FB
t )t≥0.

1.3 Stochastic Integral

The Lebesgue-Stieltjes integral represents an extension or, better said, a generalization of the

Riemann-Stieltjes and Lebesgue integrals. Given an integral
∫ b

a
f(x)dg(x), it is defined when

f : [a, b] → R is Borel-measurable and bounded, while g : [a, b] → R is of bounded variation

in [a, b], or when f is non-negative and g is monotone and right-continuous (càd). If we take

a closer look at these conditions on the function g, we will find that non of them apply on the
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brownian motion, which raises the question on how we will evaluate an integral of the following

form

IT (θ) =

∫ T

0

θ(s)dB(s), (1.1)

where θ = (θ(t))t≥0 is some process, and B = (B(t))t≥0 is a brownian motion.

1.3.1 Wiener Integral

We note

L2 ([0, T ],R) = {f : [0, T ] → R :

∫ T

0

|f(s)|2ds < +∞}.

Definition 1.3.1 We define the Wiener integral

∫ T

0

f(s)dB(s),

where f is a deterministic function.

Remark 1.3.2 We define a scalar product on L2 ([0, T ],R) by

⟨f, g⟩ →
∫ T

0

f(s)g(s)ds. (1.2)

Under the scalar product 1.2, L2 ([0, T ],R) is a Hilbert space.

We define now a sequence of deterministic step functions (fn)n∈N ⊂ L2 ([0, T ],R)

fn(t) =

n∑
i=0

αi1]t
(n)
i ,t

(n)
i+1[

(t),

where (t
(n)
i ) is an increasing sequence in [0, T ].

For every n ∈ N, the Wiener integral of fn is

IT (fn) =

∫ T

0

fn(s)dB(s) =

n∑
i=0

αi(B(t
(n)
i+1)−B(t

(n)
i )).
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Stochastic Calculus Preliminaries

By the characteristics of the brownian motion, and the independence of the increments, we find

that IT (fn) is a centered gaussian random variable with variance

V ar(IT (fn)) =

n∑
i=0

α2
iV ar(B(t

(n)
i+1)−B(t

(n)
i ))

=

n∑
i=0

α2
i

∫ t
(n)
i+1

t
(n)
i

ds

=

∫ T

0

n∑
i=0

α2
i1]t

(n)
i ,t

(n)
i+1[

(t)ds

=

∫ T

0

(fn(s))
2dt.

Remark 1.3.3 Let f ∈ L2 ([0, T ],R). There exists a sequence of step functions (fn)n∈N that

converges to f in L2 ([0, T ],R). We can construct the Wiener Integral IT (fn) of fn, which are

gaussian random variables and form a Cauchy sequence in L2 ([0, T ],R) that is complete. This

sequence then converges to a gaussian random variable that we note IT (f) that does not depend

on the choice of (fn)n∈N. This random variable is called Wiener’s Integral of f with respect to

the brownian motion B.

1.3.2 Itô’s Integral

After defining the integral 1.1 in the case where the integrated function is deterministic, we go

a bit further now and we try to give a sense to the integral

IT (θ) =

∫ T

0

θ(s)dB(s),

where θ is a random variable. The construction method is the same.

Consider a step stochastic process (θn)n∈N defined ∀n ∈ N by

θ(n)(t) =

n∑
i=0

θi1[ti,ti+1[(t), (1.3)

where θi ∈ L2(Ω,Fti ,P), ∀i. Let D be the space of all càglàd (left continuous, with right limit),
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F-adapted processes θ = (θ(t))t≥0 such that

E

[∫ T

0

|θ(s)|2ds

]
< ∞.

It is clear that the step stochastic process θ(n) ∈ D. For every stochastic process θ ∈ D we can

define its stochastic integral by approaching it by a sequence of step stochastic processes. Since

the limit is in L2(Ω,FT ,P), the stochastic integral IT (θ) is simply the limit of IT (θ
(n)) as n tends

to infinity.

Using the same steps in the previous section, we find that

E [IT (θ)] = 0,

and

V ar(IT (θ)) = E

[∫ T

0

θ2(s)ds

]
.

Definition 1.3.4 (Itô process) We call Itô process a real valued stochastic process X = (X(t))t≥0

such that

X(t) = X(0) +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dB(s), (1.4)

where X(0) is F0-measurable, b and σ are both F-adapted, σ is càglàd, and

∫ T

0

|b(s)|ds < +∞,

∫ T

0

|σ(s)|2ds < +∞. (1.5)

Remark 1.3.5 In an Itô process, b(s) is called the drift coefficient, while σ(s) is called the

diffusion coefficient (volatility also in finance).The term X(0) +
∫ t

0
b(s)ds has a finite variation,

and
∫ t

0
σ(s)dB(s) is the martingale part of the Itô process, regarding its form (A well defined

stochastic integral).

Theorem 1.3.6 (Itô’s first formula) Let X = (X(t))t≥0 be an Itô process, f : R → R be a

C2-function. Then we have

f(X(t)) = f(X(0)) +

∫ t

0

Dxf(X(s))dX(s) +
1

2

∫ t

0

Dxxf(X(s))σ2(s)ds. (1.6)
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Theorem 1.3.7 (Itô’s second formula) Let f : R×R → R, f ∈ C2(R×R). Let X = (X(t))t≥0,

Y = (Y (t))t≥0 be two Itô processes. Then we have

f(X(t), Y (t)) = f(X(0), Y (0)) +

∫ t

0

Dxf(X(s), Y (s))dX(s) +

∫ t

0

Dyf(X(s), Y (s))dY (s)

+
1

2

∫ t

0

Dxxf(X(s), Y (s))d⟨X⟩t +
1

2

∫ t

0

Dyyf(X(s), Y (s))d⟨Y ⟩t +
∫ t

0

Dxyf(X(s), Y (s))d⟨X,Y ⟩t,

(1.7)

where ⟨X⟩t denotes the quadratic variation of X.

Remark 1.3.8 In the case where Y (t) = t,∀t ∈ R+, we get the following formula

f(t,X(t)) = f(0, X(0))+

∫ t

0

Dtf(s,X(s))ds+

∫ t

0

Dxf(s,X(s))dX(s)+
1

2

∫ t

0

Dxxf(s,X(s))d⟨X⟩t.

(1.8)

1.4 Stochastic Differential Equation

Let B = (B(t))t≥0 be a d-dimensional brownian motion over a filtered probability space

(Ω,F , (FB
t )t≥0,P) with (FB

t )t≥0 being the natural filtration of the brownian motion B. Let

T > 0, we consider two functions α : [0, T ] × Ω × Rn → Rn and β : [0, T ] × Ω × Rn → Rn×d.

Denote ∥β∥ = trace(ββ⊤). Our aim now is to solve the following stochastic differential equation

X(t) = X(0) +

∫ t

0

α(s,X(s))ds+

∫ t

0

β(s,X(s))dB(s), (1.9)

or in its differential form

dX(t) = α(t,X(t))dt+ β(t,X(t))dB(t). (1.10)

Definition 1.4.1 A (strong) solution to the stochastic differential equation 1.9 is a stochastic

process X = (X(t))t≥0 such that

1. X is progressively measurable.

2.
∫ T

0

(
|α(s,X(s))|+ ∥β(s,X(s))∥2

)
ds < +∞ P− a.s.

10



Stochastic Calculus Preliminaries

3. X(t) = X(0) +
∫ t

0
α(s,X(s))ds+

∫ t

0
β(s,X(s))dB(s), P− a.s.

Example 1.4.2 The stochastic process X = (X(t))t≥0 defined for every t ≥ 0 by X(t) = eB(t)− t
2

is a solution to the SDE : dX(t) = X(t)dB(t).

1.4.1 Existence and Uniqueness of SDE Solutions

Theorem 1.4.3 Consider the SDE 1.9. If α and β satisfy the following conditions

� Lipschitz continuity : There exists C > 0 such that ∀(t, x, y) ∈ R+ × Rn × Rn

|α(t, x)− α(t, y)| ≤ C|x− y|, ||β(t, x)− β(t, y)|| ≤ C|x− y|.

� For every t ∈ R+

E

[∫ T

0

(
|α(t, 0)|2 + ∥β(t, 0)∥2

)
dt

]
< +∞

then the SDE has a unique solution X. Plus, for every t ≥ 0, the solution verifies

E

(∫ T

0

|X(t)|2dt

)
< +∞.

Proof. The proof1 consists of two parts

� Uniqueness : In which we suppose the existence of two distinct solutions X1, X2 to the

SDE 1.9 then we prove that X1 = X2 a.s.

� Existence : A famous way to prove the existence of a solution under the previous conditions

in theorem 1.4.3 is Picard iteration.

Example 1.4.4 The SDE

dX(t) = (a− bX(t))dt+ σdB(t),

with X(0) = x0 and (a, b, σ) ∈ R3 has a unique solution X = (X(t))t≥0 called the Ornstein-

Uhlenbeck process.

1For a fully detailed proof, we suggest seeing [3] p 261-266 and [10] p 68-70.
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1.5 Backward Stochastic Differential Equation

We go now to the concept of Backward stochastic differential equations. We recall the martingal

representation theorem. Denote L2(Ω,FB
T ;Rn) as the set of FB

T -measurable, Rn-valued random

variables X such that E[|X|2] < +∞, and denote M2([0, T ],Rn×d) as the set of all adapted,

Rn×d-valued processes X such that E
[∫ T

0
∥X(t)∥2dt

]
< +∞.

The theorem states that for every ξ ∈ L2(Ω,FB
T ;Rn), there exists a unique σ ∈ M2([0, T ],Rn×d)

such that

ξ = E[ξ] +
∫ T

0

σ(t)dB(t),

which is generalized later for any FB-martingale.

The martingale representation theorem turns out to be a special case of backward stochastic

differential equations where the generator is equal to zero.2 The general case was studied and

proven by Pardoux and Peng.3

Let H2([0, T ],Rn) be the set of all Rn-valued, progressively-measurable stochastic processes

X such that

E
[

sup
0≤t≤T

|X(t)|2
]
< ∞.

Let ξ ∈ L2(Ω,FT ;Rn) be an FT -measurable random variable, f : [0, T ] × Rn × Rn×d → Rn

such that for every (x, z) ∈ Rn × Rn×d, the process (f(t, x, z))t≥0 is progressively measurable.

Definition 1.5.1 (BSDE) We consider now the following equation

−dX(t) = f(t,X(t), Z(t))− Z(t)dB(t), X(T ) = ξ, (1.11)

or using the integral form

X(t) = ξ +

∫ T

t

f(s,X(s), Z(s))ds−
∫ T

t

Z(s)dB(s), 0 ≤ t ≤ T. (1.12)

This equation is called Backward stochastic differential equation (BSDE in short), where f is

the generator, and ξ is the terminal condition.

2See [10]
3See [8].
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Definition 1.5.2 (BSDE Solution) A couple (X(t), Z(t))t≥0 is said to be a solution to the BSDE

1.12 if and only if

1. X and Z are progressively measurable.

2. Z ∈ H2([0, T ],Rn×d) i.e E
[ ∫ T

0
∥Z(t)∥2dt

]
< ∞.

3. We have P-a.s

Xt = ξ +

∫ T

t

f(s,X(s), Z(s))ds−
∫ T

t

Z(s)dB(s), 0 ≤ t ≤ T. (1.13)

1.5.1 Existence and Uniqueness Theorem

Consider the BSDE 1.12. We suppose that the following properties hold

1. f is Lipschitz-continuous in (x, z) : For all (t, x, x′, z, z′) ∈ [0, T ]×Rn×Rn×Rn×d×Rn×d

|f(t, x, z)− f(t, x′, z′)| ≤ K(|x− x′|+ ∥z − z′∥). (1.14)

2. The integrability condition

E

[
|ξ2|+

∫ T

0

|f(r, 0, 0)|2dr

]
< +∞. (1.15)

Then we have the following theorem

Theorem 1.5.3 (Pardoux-Peng) Under conditions 1.14,1.15, the BSDE 1.12 has a unique so-

lution.

Proof. See [1].

Property 1.5.4 Consider the following BSDE

X(t) = ξ +

∫ T

t

f(s,X(s), Z(s))ds−
∫ T

t

Z(s)dB(s), 0 ≤ t ≤ T, (1.16)

then

X(t) = E

[
ξ +

∫ T

t

f(s,X(s), Z(s))ds

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T. (1.17)

13



Stochastic Calculus Preliminaries

Proof. Using conditional expectation

E[X(t)|Ft] = E

[
ξ +

∫ T

t

f(s,X(s), Z(s))ds−
∫ T

t

Z(s)dB(s)

∣∣∣∣Ft

]

= E

[
ξ +

∫ T

t

f(s,X(s), Z(s))ds−
∫ T

0

Z(s)dB(s) +

∫ t

0

Z(s)dB(s)

∣∣∣∣∣Ft

]

= E

[
ξ +

∫ T

t

f(s,X(s), Z(s))ds

∣∣∣∣∣Ft

]
− E

[∫ T

0

Z(s)dB(s)−
∫ t

0

Z(s)dB(s)

∣∣∣∣∣Ft

]

= E

[
ξ +

∫ T

t

f(s,X(s), Z(s))ds

∣∣∣∣∣Ft

]
−
∫ t

0

Z(s)dB(s) +

∫ t

0

Z(s)dB(s)

= E

[
ξ +

∫ T

t

f(s,X(s), Z(s))ds

∣∣∣∣∣Ft

]
.

(1.18)

1.6 Continuous-time Markov Chains

Markov chains, named after russian mathematician Andrey Markov (1856-1922) are stochastic

processes with discrete state spaces that verify the Markovian property, meaning that the prob-

ability of an event defined by this process in the future is independent of its past, and depends

only on its current state, and the jumps between states are countable.4

Definition 1.6.1 (Memoryless property) We say that a random variable X is memoryless if it

verifies the following property

P
[
X > t+ s

∣∣X > t
]
= P [X > s] , ∀(s, t) ∈ R+ × R+.

Definition 1.6.2 (Continuous-time Markov chain) Let X = (X(t))t≥0 be a continuous-time

stochastic process with state space S = {1, 2, ...}.
4See [5].
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We say that X is a continuous-time Markov chain if

P
[
X(t+ s) = j

∣∣X(s) = i,X(r) = xr, 0 ≤ r < s
]
= P

[
X(t+ s) = j

∣∣X(s) = i
]

= Pi,j(t),

∀(s, t) ∈ R+ × R+, and ∀(i, j, xr) ∈ S3.

Remark 1.6.3

� Continuous-time Markov chains are also known as Markov jump processes.

� The function Pi,j is called the transition function (or Markovian kernel) of the continuous-

time Markov chain.

� If there exists t ≥ 0 for which Pi,j(t) > 0, and t∗ ≥ 0 for which Pj,i(t
∗) > 0, then we say

that states i and j communicate.

� A continuous-time Markov chain is said to be irreductible if all states communicate.

� We can write that
∑+∞

j=1 Pi,j(t) = 1, ∀i ∈ S.

Example 1.6.4 An irreductible Markov chain with three states S = {A,B,C}

BA Cp1
p2

p5

p3

p4

Figure 1.1: Irreductible Markov chain.

Proposition 1.6.5 (Chapman-Kolmogorov Equation) For all (s, t) ∈ R+ × R+, we have

Pi,j(t+ s) =

+∞∑
j=0

Pi,j(t)Pj,k(s) =

+∞∑
j=0

Pi,j(s)Pj,k(t).

Definition 1.6.6 (Markov chain generator) Let X = (Xt)t≥0 be a continuous-time Markov

chain defined on a finite discrete state space S = {1, 2, ..., N}. The Markov chain generator

15
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Q = (qij)N×N is defined by

Pi,j(h) = P [X(t+ h) = j|X(t) = i] =


qijh+ o(h), if i ̸= j,

1 + qijh+ o(h), if i = j.

The entries qij define the rate with which the chain leaves the state i for the state j.

Property 1.6.7 The entries qij verify ∀i ∈ S

qii = −
∑
j ̸=i

qij .
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Chapter 2

Stochastic Maximum Principle

In an attempt to understand and to control stochastic systems, many articles and works

were published, proposing new methods to approach these problems. We mention among them

Bellman’s Dynamical programming principle [1950’s] and Pontryagin’s stochastic maximum prin-

ciple, which will be our topic in this chapter.

2.1 Optimization Problem Formulation

We consider a d-dimensional brownian motion B over a filtered probability space (Ω,F ,F,P),

where F = (Ft)t≥0, is the natural filtration of the brownian motion B.

We define a control function u : [0, T ]×Ω → Γ. The control function u is usually referred to

as a ”decision” function. The space Γ represents the control constraint, which is usually a set to

determine the image of the control based on the optimization problem (The amount of money

spent in a month should not overpass the monthly income).

Consider now the following problem


dX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t),

X(0) = x0,

(2.1)

where b : [0, T ]× Ω× Rn × Γ → Rn, σ : [0, T ]× Ω× Rn × Γ → Rn×d.

17
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We define the cost functional J

J(0, X(0), u(t)) = E

[∫ T

0

f(t,X(t), u(t))dt+ h(X(T ))

]
. (2.2)

Definition 2.1.1 (Feasible control) The set of all feasible controls is defined by

U [0, T ] = {u : [0, T ]× Ω → Γ/u(.)is measurable}.

Remark 2.1.2 The term ”feasible” literally means ”that can be done” which means that a feasi-

ble control u is a decision that can be taken at the time t regardless of its consequences. A feasible

control u can be also interpreted this way : At any given time t, we have enough information to

take a decision u(t) (F-adaptability), but that doesn’t mean it’s the best decision to be taken.

Definition 2.1.3 (Admissible control) A control u is called an admissible control, and (X(.), u(.))

an admissible pair if

� u(.) ∈ U [0, T ].

� X(.) is the unique solution to the equation 2.1.

� L(., X(.), u(.)) ∈ L1
F([0, T ],R), h(X(T )) ∈ L1(Ω,FT ;R).

Remark 2.1.4 We denote Uad[0, T ] the set of all admissible controls u over the time horizon

[0, T ].

2.2 Stochastic Maximum Principle

We suppose a finite-horizon stochastic control problem

dX(t) = b(t,X(t), u(t))dt+ σ(s,X(t), u(t))dB(t), (2.3)

with cost functional

J(0, X(0), u(t)) = E

[∫ T

0

L(s,X(s), u(s))ds+ g(X(T ))

]
, (2.4)

18
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where L : [0, T ] × Ω × Rn × Γ → R is a continuous function in (t, x) for every u ∈ Uad,

g : Rn → R is a C1-convex function, and both f, g are of quadratic growth with respect to x.

Definition 2.2.1 (Generalized Hamiltonian) The Generalized Hamiltonian is given by

H :[0, T ]× Rn × Γ× Rn × Rn×d → R,

H(t, x, u, p, q) = b(t, x, u).p+ trace(σ′(t, x, u).q) + L(t, x, u).

Definition 2.2.2 (Adjoint equation) We call Adjoint Equation the following BSDE

−dp(t) = DxH(t,X(t), u(t), p(t), q(t))dt− q(t)dB(t), YT = Dxg(XT ). (2.5)

Theorem 2.2.3 (Verification theorem) Let ũ ∈ Uad and let X̃ be the controlled diffusion. Sup-

pose that there exists a solution (p̃, q̃) to the corresponding adjoint equation 2.5 such that a.s

H(t, X̃(t), ũ(t), p̃(t), q̃(t)) = min
u∈Uad

H(t, X̃(t), u(t), p̃(t), q̃(t)), 0 ≤ t ≤ T, (2.6)

and suppose that

(x, u) −→ H(t, x, u, p̃(t), q̃(t)),

is a convex function ∀t ∈ [0, T ]. Then ũ is an optimal control

J(0, X(0), ũ(t)) = min
u∈Uad

J(0, X(0), u(t)).

Proof. We have ∀u ∈ Uad :

J(0, X(0), ũ(t))− J(0, X(0), u(t))

= E

[∫ T

0

(
L(t, X̃(t), ũ(t)− L(t,X(t), u(t)

)
dt+ g(X̃(T ))− g(X(T ))

]
,

(2.7)
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by the convexity of g

E

[
g(X̃(T ))− g(X(T ))

]
≤ E

[(
X̃T −X(T )

)
Dxg(X̃(T ))

]
= E

[
(X̃(T )−X(T ))p̃(T )

]

= E

[∫ T

0

[(
X̃(t)−X(t)

)
dp̃(t) + p̃(t)

(
dX̃(t)− dX(t)

)]]

+ E

[∫ T

0

trace

[(
σ(t, X̃(t), ũ(t)− σ(t,X(t), u(t))

)⊤
q̃(t)

]
dt

]

= E

[∫ T

0

(
X̃(t)−X(t)

)(
−DxH(t, X̃(t), ũ(t), p̃(t), q̃(t))

)
dt

]

+ E

[∫ T

0

p̃(t)
(
b(t, X̃(t), ũ(t))− b(t,X(t), u(t))

)
dt

+ E

[∫ T

0

trace

[(
σ(t, X̃(t), ũ(t))− σ(t,X(t), u(t))

)⊤
q̃(t)

]
dt

]
.

(2.8)

On the other hand we have

E

[∫ T

0

(
L(t, X̃(t), ũ(t))− L(t,X(t), u(t))

)
dt

]

= E

[∫ T

0

(
H(t, X̃(t), ũ(t), p̃(t), q̃(t))−H(t,X(t), u(t), p(t), q(t))

)
dt

]

− E

[∫ T

0

p̃(t)
(
b(t, X̃(t), ũ(t))− b(t,X(t), u(t))

)
dt

]

− E

[∫ T

0

trace

[(
σ(t, X̃(t), ũ(t))− σ(t,X(t), u(t))

)⊤
q̃(t)

]
dt

]
.

(2.9)

Using 2.8 and 2.9 in 2.7 yields

J(0, X(0),ũ(t))− J(0, X(0), u(t))

≤ E

[∫ T

0

(
H(t, X̃(t), ũ(t), p̃(t), q̃(t))−H(t,X(t), u(t), p(t), q(t))

)
dt

]

+ E

[∫ T

0

(
X̃(t)−X(t)

)(
DxH(t, X̃(t), ũ(t), p̃(t), q̃(t))

)
dt

]
≤ 0,

which implies that J(0, X(0), ũ(t)) ≤ J(0, X(0), u(t)), ∀u ∈ Uad.
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Using the definition of the minimum, we get

J(0, X(0), ũ(t)) = min
u∈Uad

J(0, X(0), u(t)).

2.3 Near-optimal Controls

In some optimization problems, finding the optimal control is not usually easy. This is why

we tend to find a family of controls that optimizes the problem.

This approach is called finding the near-optimal control for the optimization problem. The

optimal control can be found, and sometimes can not be found,a and it all depends on the

optimization problem’s from.

One of the main methods used for near-optimal controls theory is the Ekeland’s principle,

which we will examine in this section.

Definition 2.3.1 (Near-optimal control) We suppose the same optimization problem 2.1 and

cost functional J as in 2.4. A family of admissible controls (uε)ε ⊂ Uad is called near-optimal if

the inequality

|J(0, X(0), uε(t)− min
u∈Uad

J(0, X(0), u(t)| ≤ δ(ε) (2.10)

is verified for a sufficiently small ϵ > 0, where δ is a function of ε such that δ(ε) → 0 as ε → 0.

Remark 2.3.2 If δ(ε) = Cεk for some C > 0, k > 0, uε(.) is called near-optimal with order εk,

Theorem 2.3.3 (Ekeland’s variational principle) Let (E, d) be a complete metric space and

define a proper, semicontinuous function f : E −→ R ∪ {+∞} that is bounded from below. Let

x0 ∈ Dom(f) and fix λ > 0. Then there exists x̃ ∈ E such that

f(x̃) + λd(x̃, x0) ≤ f(x0),

f(x̃) < f(x) + λd(x̃, x), ∀x ̸= x̃

(2.11)
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Corollary 2.3.4 Suppose the assumptions in 2.3.3 hold. Let ε > 0, and x0 ∈ E such that

f(x0) ≤ inf
x∈E

f(x) + ε. (2.12)

Then there exists xε ∈ E such that

f(xε) ≤ f(x0), d(xε, x0) ≤
√
ε, (2.13)

and for all x ∈ E

f(xε) ≤ f(x) +
√
εd(xε, x). (2.14)

Proof. We take λ =
√
ε. By applying Ekeland’s principle, there exists xε ∈ E such that

f(xε) ≤ f(xε) +
√
εd(xε, x0) ≤ f(x0) ≤ inf

x∈E
f(x) + ε ≤ f(xε) + ε,

then

f(xε) +
√
εd(xε, x0) ≤ f(xε) + ε,

we find that d(xε, x0) ≤
√
ε.

Finally, 2.14 is a direct result of 2.11

f(xε) < f(x) +
√
εd(xε, x), ∀x ̸= xε.

Theorem 2.3.5 The function

d : Uad × Uad −→ R+,

d(u, u′) = E
[
λ
{
t ∈ [0, T ]

/
u(t) ̸= u′(t)

} ]
,

defines a metric on Uad, where λ represents the Lebesgue measure.

Proof. The axioms of the metric d can be deduced from the properties of the Lebesgue measure.
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Theorem 2.3.6 Under the metric d, Uad is a complete meric space.

Proof. Let (un)n∈N be a Cauchy sequence in (Uad, d). Then there exists a converging subse-

quence (unk
)k∈N such that

d(unk
, unk+1

) ≤ 2−k, ∀k ≥ 2.

We define the following sets


Enm = {(t, ω) ∈ [0, T ]× Ω

/
un(t, ω) ̸= um(t, ω)}, , n ≥ 1,m ≥ 1,

Ak =
⋃

p≥k Enp,np+1 , k ≥ 2,

the sequence (Ak)k≥2 is decreasing (Ak+1 ⊂ Ak),∀k ≥ 1, plus

|Ak| ≤
+∞∑
p=k

2−p = 21−k, k ≥ 2,

which leads to
∣∣∣⋃k≥1 A

c
k

∣∣∣ = T . Now we define

ũ(t, ω) = unk
(t, ω), t ∈ Ac

k, k ≥ 2.

The control ũ is well defined and is an admissible control. As a result

d(unk
, ũ) ≤ |Ak| ≤ 21−k −→ 0,

therefore

d(un, ũ) −→ 0,

concluding the proof.

2.4 Regime Switching Stochastic System

A stochastic system is said to be regime switching if at any given time t, it changes its
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behaviour in an ”abrupt” way. In other words, the system tends to totally change its state in a

given time horizon [0, T ].

The stock market is a good example where regime switching takes place : It often exhibits

dramatic breaks in their behaviour, associated with events such as financial crises, or abrupt

changes in government policy.1

Justifying the use of regime switching property in the medical field is subject to the following

explanation : During an epidemic, the virus can behave differently depending on the weather

condition. Any suddent change in the weather can lead to a critical change in many other

variables such as the number of deaths (caused by other diseases such as flu in winter) or the

transmission rate that becomes either high or low.

Notice that these changes, once they happen, the system no longer depends on its past state,

it only depends on the present, which leads us to having a ”Memoryless” system, from which we

deduce the Markov property.

We can say that the stochastic system, in this case, depends also on a Markov chain that is

responsible for its regime switchings.

Definition 2.4.1 Let ξ = (ξ(t))t≥0 be a Continuous-time Markov chain with a finite state space

S.

We define a regime switching stochastic system as follows


dX(t) = b(t,X(t), ξ(t))dt+ σ(t,X(t), ξ(t))dB(t),

X(0) = x0 ∈ Rn, ξ0 = w ∈ S,
(2.15)

where B is a d-dimensional brownian motion, and

b : [0, T ]× Ω× Rn × S −→ Rn, σ : [0, T ]× Ω× Rn × S −→ Rn×d.

1See [2].
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For any function f ∈ C2(Rn×S), the associated infinitesimal operator is given by the following

formula

Lf(x, k) =
n∑

j=1

bj(x, i)
∂f(x, i)

∂xj
+

1

2

n∑
j=1

n∑
k=1

ajk(x, i)
∂2f(x, i)

∂xi∂xj
+

n∑
(j,k)∈S2

j ̸=k

qkj(f(x, j)− f(x, k)),

where a(x, i) = σ(x, i)σ⊤(x, i).

2.4.1 Existence and Uniqueness theorem

In what follows, we will state some basic results on regime switching SDEs.

Let t ∈ [0, T ] , denote by B the Ft-predictable σ-field on [0, T ]×F . For any given s ∈ [0, T ].

We denote S2
F ([t, T ];Rn) the set of all (Fs)s∈[t,T ]-adapted, càdlag processes X such that

E

[
sup

s∈[t,T ]

|X(s)|2
]
< +∞.

Consider now the following SDE

X(t) = α+

∫ t

s

b(r,X(r), ξ (r))dr +

∫ t

s

σ(r,X(r), ξ (r))dB(r), (2.16)

where s ≤ t ≤ T . Here the coefficients (α, b, σ) are given mappings α : Ω −→ Rn, b : [0, T ]×Ω×

Rn × S −→ Rn, σ : [0, T ]× Ω× Rn × S −→ Rn×d, satisfying the assumptions below

(H1) α ∈ L2 (Ω,Ft;Rn) and the coefficients b, σ are B⊗B (Rn)⊗B (S) measurable with: for

all wi ∈ S

E

[∫ T

0

(b(t, 0, wi) + σ(t, 0, wi)) dt

]
< ∞.

(H2) b, σ are uniformly Lipschitz continuous with respect to x, that is, there exists a constant

C > 0 such that for all (t, x, x̄, wi) ∈ [0, T ]× Rn × Rn × S and a.s. ω ∈ Ω

|b(t, x, wi)− b(t, x̄, wi)|2 + ∥σ(t, x, wi)− σ(t, x̄, wi)∥2 ⩽ C|x− x̄|2.

Theorem 2.4.2 If the coefficients (α, b, σ) satisfy the assumptions (H1)-(H2), then the SDE
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2.16 has a unique solution X(·) ∈ S2
F (s, T ;Rn). Moreover, ∃K > 0 such that

E
[

sup
s≤t≤T

|X (s)|2
]
≤ K

(
1 + E

[
|α|2

])

Proof.

Let 0 = τ0 < τ1 < τ2 < . . . , < τn < . . . be the jump times of the Markov chain ξ(·), and let

w1 ∈ S be the starting state. Thus ξ(t) = w1 on [τ0, τ1), and the system 2.16 for t ∈ [τ0, τ1[ has

the following form:

dX(t) = b(t,X(t), w1)dt+ σ(t,X(t), w1)dB(t),

By theorem 1.4.3, the above SDE has the unique solution X(·) on the space S2
F ([τ0, τ1[ ;Rn),

and by continuity for t = τ1, as well.

Now, by considering ξ (τ1) = w2 , the system for t ∈ [τ1, τ2[ becomes

dX(t) = b(t,X(t), w2)dt+ σ(t,X(t), w2)dB(t), (2.17)

By the same theorem 1.4.3, the SDE 2.17 has a unique solution X(·) ∈ S2
F ([τ1, τ2[ ;Rn), and

by continuity for t = τ2, as well. Repeating this process continuously, we get the same result :

The solution X(·) of system 2.16 remains in S2
F (0, T ;Rn) with probability one.
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Chapter 3

Regime Switching Stochastic

Systems : Application in Viral

Models

In order to show the important role of the optimal control theory in epidemic models, we

propose an approach to a SIRS model.

3.1 Stochastic SIRS Model

A SIRS (Suspected-Infected-Recovered-Suspected) model can be explained as follows : We

divide a population N(t) into three groups : Suspected S, Infected I, and Recovered R. Every

suspected person who catches the virus becomes infected and thus, gets vaccinated and goes into

treatment. When treated successfully, the infected person recovers from the virus, but not for a

long time before they come back to being suspected (Healthy carrier).
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The stochastic SIRS model is given by the following equation



dS(t) =

(
(1− p)b− µ1S(t)−

βS(t)I(t)

φ(I(t))
+ γR(t)

)
dt− σ1S(t)dB1(t)− σ4

S(t)I(t)

φ(I(t))
dB4(t)

dI(t) =

(
− (µ2 + c+ α)I(t) +

βS(t)I(t)

φ(I(t))

)
dt− σ2I(t)dB2(t) + σ4

S(t)I(t)

φ(I(t))
dB4(t)

dR(t) = (pb− (µ3 + γ)R(t) + αI(t))dt− σ3R(t)dB3(t),

(3.1)

where B = (B1, B2, B3, B4) is a 4-dimensional standard brownian motion, and the rest of the

parameters are explained in Table 3.1

Notations Signification
p Propotion of vaccinated population
b Birth rate of the population
β Per capita transmission rate

µi(i = 1, 2, 3) Natural death rate of every class
γ Per capita immunity loss rate
c Per capita disease-induced death rate
α Per capita recovery rate

σ2
i (i = 1, 2, 3, 4) Intensities of the white noises

S(t) The suspectible class
I(t) The infected class
R(t) The recovered class

Table 3.1: Notations used in the model

In order to control this system, we need to introduce a control function to the system. Let

u(t) = (u1(t), u2(t)) be the control function of vaccination and treatment respectively. We define

the treatment function T as follows

T (u2(t), I(t)) =
mu2(t)I(t)

1 + ηI(t)
,

where m ≥ 0 is the cure rate, η ≥ 0 is the delay in treatment.

We obtain a new controlled system, that is
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

dS(t) =

(
(1− p)b− µ1S(t)−

βS(t)I(t)

φ(I(t))
+ γR(t)

)
dt− σ1S(t)dB1(t)− σ4

S(t)I(t)

φ(I(t))
dB4(t)

dI(t) =

(
− (µ2 + c+ α)I(t) +

βS(t)I(t)

φ(I(t))
− mu2(t)I(t)

1 + ηI(t)

)
dt− σ2I(t)dB2(t)

+σ4
S(t)I(t)

φ(I(t))
dB4(t)

dR(t) =

(
pb− (µ3 + γ)R(t) + αI(t) + u1(t)S(t) +

mu2(t)I(t)

1 + ηI(t)

)
dt− σ3R(t)dB3(t),

where
βS(t)I(t)

φ(I(t))
is the incident rate, defined as the ratio of a population, yet unaffected by

a disease, that develops it, becomes infected, or dies during a limited time horizon.

The positive function φ verifies φ(0) = 1 and φ′(I) > 0.

The goal now is to minimize the suspected and the infected classes using minimal control

efforts.

Some logical restrictions can be added to the control function such as having u1(t) ∈ [0, 1[

∀t ∈ [0, T ], since we can’t get everyone vaccinated at once, plus having u2(t) ∈ [0, 1], ∀t ∈ [0, T ]

where u2(t) = 0 refers to a total absence of treatment, and u2(t) = 1 refers to a fully effective

treatment.

We can then easily consider our control function to be u : [0, T ] −→ Γ = [0, 1[×[0, 1].

The objective function associated to the system is

J(0, S(0), I(0), R(0), u(t)) = E

[∫ T

0

L(t, S(t), I(t), R(t), u(t))dt+ h(x(T ))

]
, (3.2)

where

L(t, S(t), I(t), R(t), u(t) = A1S(t) +A2I(t) +
1

2
(τ1u

2
1(t) + τ2u

2
2(t)),

h(x(T )) = (0, I(T ), 0),

with τ1 ≥ 0,τ2 ≥ 0, and A1, A2 are two positive constants to keep balance between the suspected

and the infected classes.

We then introduce the continuous-time Markov chain ξ = (ξ(t))t≥0 on a finite state space S.
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To simplify the writing, let

x(t) = (x1(t), x2(t), x3(t))
∆
= (S(t), I(t), R(t)),

and let

φ(x) = 1 + x2.

It’s clear that φ is positive, with positive derivative, and φ(0) = 1.

We obtain the system



dx1(t) =

(
(1− p(ξ(t)))b(ξ(t))− µ1(ξ(t))x1(t)−

β(ξ(t))x1(t)x2(t)

1 + (x2
2(t))

+ γ(ξ(t))x3(t)

)
dt

−σ1(ξ(t))x1(t)dB1(t)− σ4(ξ(t))
x1(t)x2(t)

1 + (x2
2(t))

dB4(t)

= f1(t, x(t), u(t))dt+ σ1,4(x(t))dB(t)

dx2(t) =

(
−
(
µ2(ξ(t)) + c(ξ(t)) + α(ξ(t))

)
x2(t) +

β(ξ(t))x1(t)x2(t)

1 + (x2
2(t))

− m(ξ(t))u2(t)x2(t)

1 + η(ξ(t))x2(t)

)
dt

−σ2(ξ(t))x2(t)dB2(t) + σ4(ξ(t))
x1(t)x2(t)

1 + (x2
2(t))

dB4(t)

= f2(t, x(t), u(t))dt+ σ2,4(x(t))dB(t)

dx3(t) =

(
p(ξ(t))b(ξ(t))−

(
µ3(ξ(t)) + γ(ξ(t))

)
x3(t) + α(ξ(t))x2(t) + u1(t)x1(t)

+
m(ξ(t))u2(t)x2(t)

1 + η(ξ(t))x2(t)

)
dt− σ3(ξ(t))x3(t)dB3(t)

= f3(t, x(t), u(t))dt+ σ3,4(x(t))dB(t).

(3.3)

3.2 Hypothesis

We define the functions

f(t, x(t), u(t)) =


f1(t, x(t), u(t))

f2(t, x(t), u(t))

f3(t, x(t), u(t))

 , σ∗(x(t)) =


σ1,4(x(t))

σ2,4(x(t))

σ3,4(x(t))

 .
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� (H1) The functions

f : [0, T ]×Ω×R3×Γ → R3, σ∗ : [0, T ]×Ω×R3×Γ → R3×R4, L : [0, T ]×Ω×R3×Γ → R,

are measurable in (t, x, u), twice continuously differentiable in x for every (t, u).

� (H2) The function h : R3 → R is twice continuously differentiable, and there exists C > 0

such that ∀(x, x′) ∈ R3 × R3

|h(x)| ≤ C(1 + |x|),

|h(x)− h(x′)|+|Dxh(x)−Dxh(x
′)| ≤ C|x− x′|.

� (H3) The set of admissible controls Uad is convex.

� (H4) We suppose that ∀t ∈ [0, T ],∀k ∈ S

K =
(1− p(k))b(k)

x1(t)
− β(k)x2(t)

1 + x2
2(t)

+
γ(k)x3(k)

x1(t)
− u1(t)−

1

2
σ2
4(t)

x2
2(t)

(1 + x2
2(t))

2

+
β(k)x1(t)

1 + x2
2(t)

− 1

2
σ2
4(t)

x2
1(t)

(1 + x2
2(t))

2
+

p(k)b(k)

x3(t)
− m(k)u2(t)

1 + η(k)x2(t)

+
u1(t)x1(t)

x3(t)
+

m(k)u2(t)x2(t)

(1 + η(k)x2(t)x3(t)
+

α(k)x2(t)

x3(t)
< 0.

� (H5) We suppose

Π =
∑
k∈S

πk

(
µ1(k) +

1

2
σ2
1(k) + µ2(k) + α(k) +

1

2
σ2
2(k) + µ3(k) + γ(k) +

1

2
σ2
3(k)

)
> 0.

3.3 Sufficient Conditions for Near-optimal Controls

3.3.1 Estimates On The Parameters

Theorem 3.3.1 Suppose θ > 0, then ∀t ∈ [0, T ], ∃C > 0, such that:

E
[

sup
0≤t≤T

|xi(t)|θ
]
≤ C, i = 1, 2, 3. (3.4)
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Proof. See [6]

We introduce now the following adjoint equation



dp1(t) = −b1(x(t), u(t), p(t), q(t))dt+ q1(t)dB(t)

dp2(t) = −b2(x(t), u(t), p(t), q(t))dt+ q2(t)dB(t)

dp3(t) = −b3(x(t), u(t), p(t), q(t))dt+ q3(t)dB(t)

pi(T ) = Dxi
h(x(T )), i = 1, 2, 3,

(3.5)

where

b1(x(t), u(t), p(t), q(t))

= −

(
µ1(ξ(t)) +

β(ξ(t))x2(t)

1 + x2
2(t)

+ u1(t)

)
p1(t) +

β(ξ(t))x2(t)

1 + x2
2(t)

p2(t) + u1(t)p3(t)

−

(
σ4(ξ(t))x2(t)

1 + x2
2(t)

)
q1(t) +

σ4(ξ(t))x2(t)

1 + x2
2(t)

q2(t) +A1

b2(x(t), u(t), p(t), q(t))

= −

(
β(ξ(t))x1(t)(1− x2

2(t))

(1 + x2
2(t))

2

)
p1(t) +

(
β(ξ(t))x1(t)(1− x2

2(t))

(1 + x2
2(t))

2
− (µ2(ξ(t)) + c(ξ(t)) + α(ξ(t)))

− m(ξ(t))u2(t)

(1 + η(ξ(t))x2(t))2

)
p2(t) +

(
α(ξ(t)) +

m(ξ(t))u2(t)

(1 + η(ξ(t))x2(t))2

)
p3(t)

− σ4(ξ(t))x1(t)(1− x2
2(t))

(1 + x2
2(t))

2
q1(t)−

(
σ2(ξ(t))−

σ4(ξ(t))x1(t)(1− x2
2(t))

(1 + x2
2(t))

2

)
q2(t) +A2

b3(x(t), u(t), p(t), q(t))

= γ(ξ(t))p1(t)− (µ3(ξ(t)) + γ(ξ(t))p3(t)− σ3(ξ(t))q3(t).

The adjoint function represents a special case of BSDEs with nonlinear coefficients. Thus we

need some estimates on the pair (p, q).

Theorem 3.3.2 Under (H1)

3∑
i=1

E
[

sup
0≤t≤T

|pi(t)|2
]
+

3∑
i=1

E

[∫ T

0

|qi(t)|2dt

]
≤ C. (3.6)
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Proof. See [6]

3.3.2 Sufficient Conditions for Near-optimal Controls

We define the Hamiltonian function H as follows

H(t, x(t), u(t), p(t), q(t))
∆
= f⊤(t, x(t), u(t))p(t) + σ∗(x(t))q(t)) + L(t, x(t), u(t)),

Theorem 3.3.3 Let (xε, uε) be an admissible pair, (pε, qε) be a solution to the adjoint equation.

Assume the hamiltonian H is convex. If for some ε > 0

E

[∫ T

0

H(t, xε(t), u(t), pε(t), qε(t))dt

]
≥ sup

uε∈Uad[0,T ]

E

[∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt

]
− ε,

(3.7)

E

[∫ T

0

(
u1(t)x

ε
1(t)(p

ε
3(t)− pε1(t)) +

m(ξ(t))u2(t)x
ε
2(t)

1 + η(ξ(t))xε
2(t)

(pε3(t)− pε2(t)) +
1

2
(τ1u

2
1(t) + τ2u

2
2(t))

)
dt

]

≥ sup
uε∈Uad[0,T ]

E

[∫ T

0

(
uε
1(t)x

ε
1(t)(p

ε
3(t)− pε1(t)) +

m(ξ(t))uε
2(t)x

ε
2(t)

1 + η(ξ(t))xε
2(t)

(pε3(t)− pε2(t))

+
1

2
(τ1(u

ε
1)

2(t) + τ2(u
ε
2)

2(t))

)
dt

]
− ε,

then

J(0, x(0), uε(t)) ≤ inf
u∈Uad[0,T ]

J(0, x(0), u(t)) + Cε
1
2 . (3.8)

Proof. We define the metric d̃ on Uad : For any ε > 0 and for any (u, v) ∈ Uad × Uad

d̃(u, v) = E

[∫ T

0

yε(t)|u(t)− v(t)|dt

]
, (3.9)

where

yε(t) = 1 +

3∑
i=1

|pεi (t)|+
3∑

i=1

|qεi (t)|.

Using the definitions of both the Hamiltonian function and the cost function, we can find the
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following decomposition:

J(0, xε(0), uε(t))− J(0, x(0), u(t)) = I1 + I2 − I3,

where

I1 = E
[ ∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))−H(t, x(t), u(t), pε(t), qε(t))

]
dt,

I2 = E
[
h(xε(T ))− h(x(T ))

]
,

I3 = E
[ ∫ T

0

[(
f⊤(t, xε(t), uε(t))− f⊤(t, x(t), u(t))

)
pε(t) +

(
σ⊤
∗ (x

ε(t))− σ⊤
∗ (x(t))

)
qε(t)

]
dt.

Using the convexity of the hamiltonian function and h we get:

I2 ≤
3∑

i=1

E
[
Dxh(x

ε(T ))(xε
i (T )− xi(T )

]
,

I1 ≤
3∑

i=1

E

[∫ T

0

Dxi
H(t, xε(t), uε(t), pε(t), qε(t))(xε

i (t)− xi(t))dt

]

+

2∑
i=1

E

[∫ T

0

Dui
H(t, xε(t), uε(t), pε(t), qε(t))(uε

i (t)− ui(t))dt

]
.

We define the following function ∀t ∈ [0, T ],∀k ∈ S

V (x(t), p(t), q(t), k) =

3∑
i=1

pεi (t)(x
ε
i (t)− xi(t)) +

3∑
i=1

lnxi(t) + (w̄k + |w̄|)

= V1(x(t), p(t), q(t) + V2(x(t)) + V3(k).

Applying the linear operator L on V , we get

LV1(x(t), p(t), q(t)) =

3∑
i=1

Dxi
H(t, xε(t), uε(t), pε(t), qε(t))(xε

i (t)− xi(t))

+

3∑
i=1

pεi (t) |fi(t, xε(t), uε(t))− fi(t, x(t), u(t))|

+

3∑
i=1

qεi (t) |σi4(x
ε(t))− σi4(x(t))| .

(3.10)
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LV2(x(t)) =
(1− p(k))b(k)

x1(t)
− β(k)x2(t)

1 + x2
2(t)

+
γ(k)x3(k)

x1(t)
− u1(t)−

1

2
σ2
4(t)

x2
2(t)

(1 + x2
2(t))

2
+

β(k)x1(t)

1 + x2
2(t)

− 1

2
σ2
4(t)

x2
1(t)

(1 + x2
2(t))

2
+

p(k)b(k)

x3(t)
− m(k)u2(t)

1 + η(k)x2(t)
+

u1(t)x1(t)

x3(t)
+

m(k)u2(t)x2(t)

(1 + η(k)x2(t)x3(t)

+
α(k)x2(t)

x3(t)
−
(
µ1(k) +

1

2
σ2
1(k) + µ2(k) + α(k) +

1

2
σ2
2(k) + µ3(k) + γ(k) +

1

2
σ2
3(k)

)
= K −

(
µ1(k) +

1

2
σ2
1(k) + µ2(k) + α(k) +

1

2
σ2
2(k) + µ3(k) + γ(k) +

1

2
σ2
3(k)

)
.

(3.11)

LV3(k) =
∑
l∈S

qklw̄l (3.12)

We then have

∑
l∈S

qklw̄l −
(
µ1(k) +

1

2
σ2
1(k) + µ2(k) + α(k) +

1

2
σ2
2(k) + µ3(k) + γ(k) +

1

2
σ2
3(k)

)
= −Π < 0

We finally obtain

LV (x(t), p(t), q(t), k) = LV1(x(t), p(t), q(t), k) + LV2(x(t)) + LV3(k)

= −Π+K −
3∑

i=1

Dxi
H(t, xε(t), uε(t), pε(t), qε(t))(xε

i (t)− xi(t))

+

3∑
i=1

pεi (t) |fi(t, xε(t), uε(t))− fi(t, x(t), u(t))| .

+

3∑
i=1

qεi (t) |σi4(x
ε(t))− σi4(x(t))|

Integrating both sides on [0, T ] and using the expectation, we get

3∑
i=1

E
[
Dxh(x

ε(T ))(xε
i (T )− xi(T ))

]

≤ −
3∑

i=1

E
[ ∫ T

0

Dxi
H(t, xε(t), uε(t), pε(t), qε(t))(xε

i (t)− xi(t))dt

]

+

3∑
i=1

E
[ ∫ T

0

pεi (t)|fi(t, xε(t), uε(t))− fi(t, x(t), u(t))|dt
]

+

3∑
i=1

E
[ ∫ T

0

qεi (t)|σi4(x
ε(t))− σi4(x(t))|dt

]
.
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We finally get that

J(0, xε(0), uε(t))− J(0, x(0), u(t)) ≤
∑2

i=1
E

[∫ T

0

τuε
i (t)(u

ε
i (t)− ui(t))dt

]
.

We define now a function F : Uad → R

F (u(t)) = E

[∫ T

0

H(t, xε(t), u(t), pε(t), qε(t))dt

]
. (3.13)

Since F is continuous on Uad, and using Ekeland’s principle 2.3.3, we find that if there exists

ũ ∈ Uad, then ∀u ∈ Uad

d̃(uε, ũε) ≤ ε
1
2 and F (ũε(t)) ≤ F (u(t)) + ε

1
2 d̃(u(t), ũε(t)), (3.14)

which yields

H(t, xε(t), ũε(t), pε(t), qε(t)) = min
u∈Uad

[
H(t, xε(t)u(t), pε(t), qε(t)) + ε

1
2 yε(t)|u(t)− ũε(t)|

]
.

Finally, from 3.3.2, and by using Clarke’s generalized gradient A.7, we get

0 ∈ ∂uH(t, xε(t), ũε(t), pε(t), qε(t)) ⊂ ∂uH(t, xε(t), ũε(t), pε(t), qε(t)) + [−ε
1
2 yε(t), ε

1
2 yε(t)],

which means that if there exists λε
1(t) ∈ [−ε

1
2 yε(t), ε

1
2 yε(t)], then

2∑
i=1

τuε
i (t) + λε

1(t) = 0.

As a consequence, we obtain

∣∣DuH(t, xε(t), uε(t),pε(t), qε(t))
∣∣ ≤ ∣∣DuH(t, xε(t), ũε(t), pε(t), qε(t))

∣∣
+
∣∣DuH(t, xε(t), uε(t), pε(t), qε(t))−DuH(t, xε(t), ũε(t), pε(t), qε(t))

∣∣
≤ Cyε(t)|uε(t)− ũε(t)|+ λε

1(t)

≤ Cyε(t)|uε(t)− ũε(t)|+ 2ε
1
2 yε(t).
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3.4 Necessary Conditions For Near-optimal Controls

3.4.1 Estimates On The Parameters

Lemma 3.4.1 For all θ ≥ 0 and 0 < κ < 1 such that κθ < 1, and for all (u, u′) ∈ Uad, there

exists C = C(θ, κ) such that

3∑
i=1

E
[

sup
0≤t≤T

|xi(t)− x′
i(t)|2θ

]
≤ C

2∑
i=1

d(ui, u
′
i)

κθ. (3.15)

Proof. We distinguish two cases

� θ ≥ 1

For every r > 0, and by using Hölder’s inequality, we get

E
[
sup

0≤t≤r
|x1(t)− x′

1(t)|2θ
]
≤ CE

[∫ r

0

3∑
i=1

|xi(t)− x′
i(t)|2θdt

]
+ CE

[∫ r

0

1{u1 ̸=u′
1}dt

]κθ

≤ CE

[∫ r

0

3∑
i=1

|xi(t)− x′
i(t)|2θdt

]
+ CE

[
d(u1, u

′
1)

κθ

]
.

We can get the same estimates aswell for i = 2, 3

E
[
sup

0≤t≤r
|x2(t)− x′

2(t)|2θ
]
≤ CE

[∫ r

0

2∑
i=1

|xi(t)− x′
i(t)|2θdt+ d(u2, u

′
2)

κθ

]
,

E
[
sup

0≤t≤r
|x3(t)− x′

3(t)|2θ
]
≤ CE

[∫ r

0

3∑
i=1

|xi(t)− x′
i(t)|2θdt+

2∑
i=1

d(ui, u
′
i)

κθ

]
.

Adding the equations yields

3∑
i=1

E
[
sup

0≤t≤r
|xi(t)− x′

i(t)|2θ
]
≤ CE

[∫ r

0

3∑
i=1

sup |xi(t)− x′
i(t)|2θ

0≤t≤s

ds+

2∑
i=1

d(ui, u
′
i)

κθ

]
.
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Using the Gronwall inequality, we get the result

3∑
i=1

E
[
sup

0≤t≤r
|xi(t)− x′

i(t)|2θ
]
≤ C

[
2∑

i=1

d(ui, u
′
i)

κθ

]
.

� 0 ≤ θ < 1

Using Hölder inequality, the previous result for θ ≥ 1, and Gronwall’s inequality, we get

3∑
i=1

E
[
sup

0≤t≤r
|xi(t)− x′

i(t)|2θ
]
≤

3∑
i=1

[
E
[
sup

0≤t≤r
|xi(t)− x′

i(t)|2
]]θ

≤ C

[∫ r

0

3∑
i=1

E
[
sup

0≤t≤s
|xi(t)− x′

i(t)|2ds
]
+

2∑
i=1

d(ui, u
′
i)

κ

]θ

≤ C

[
2∑

i=1

d(ui, u
′
i)

κθ

]
,

which completes the proof.

3.4.2 Necessary Conditions for Near-optimal Controls

Lemma 3.4.2 Under (H3) and (H4), ∀κ ∈]0, 1[,∀θ ∈]0, 2[ satisfying (1+κ)θ < 2, and for every

(u, u′) ∈ Uad × Uad, (p, q), (p′, q′) solutions of the corresponding adjoint equation, there exists

C = C(κ, θ) such that

3∑
i=1

E
[ ∫ T

0

|pi(t)− p′i(t)|θdt
]
+

3∑
i=1

E
[ ∫ T

0

|qi(t)− q′i(t)|θdt
]
≤ C

3∑
i=1

d(ui, u
′
i)

κθ
2 . (3.16)

Proof. See [6]

Theorem 3.4.3 Let (pε, qε) be the solution to the adjoint equation under the control uε. Then,

under hypothesis (H1),(H2), there exists C such that ∀θ ∈ [0, 1[,∀ε > 0 and for any ε-optimal
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pair (xε, uε), we have

min
u∈Uad[0,T ]

E

[∫ T

0

H(t, xε(t), u(t), pε(t), qε(t))dt

]
+Cε

θ
3 ≥ E

[∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt

]
,

(3.17)

that is

min
u∈Uad[0,T ]

E

[∫ T

0

(
u1(t)x

ε
1(t)(p

ε
3(t)− pε1(t)) +

m(ξ(t))u2(t)x
ε
2(t)

1 + η(ξ(t))xε
2(t)

(pε3(t)− pε2(t))

+
1

2
(τ1u

2
1(t) + τ2u

2
2(t))

)
dt

]
+ Cε

θ
3

≥ E

[∫ T

0

(
uε
1(t)x

ε
1(t)(p

ε
3(t)− pε1(t)) +

m(ξ(t))uε
2(t)x

ε
2(t)

1 + η(ξ(t))xε
2(t)

(pε3(t)− pε2(t))

+
1

2
(τ1(u

ε
1)

2(t) + τ2(u
ε
2)

2(t))

)
dt

]
.

Proof. We first define a new metric d

d : Uad × Uad −→ R+,

d(uε, ũε) ≤ ε
3
2 ,

and a new cost function

J̃(0, x(0), u(t)) = J(0, x(0), u(t)) + ε
1
3 d(u(t), ũε(t)).

We directly have

J̃(0, x(0), ũε(t)) ≤ J̃(0, x(0), u(t)). (3.18)

If we take a look at 3.18, we can see that the pair (x̃ε(t), ũε(t)) is optimal for the system 3.3

with the cost function 3.2. If we consider the couple (p̃ε(t), q̃ε(t)) to be the solution to the adjoint

equation 3.5 under ũε(t), then using the stochastic maximum principle ∀t ∈ [0, T ],∀θ ∈ [0, 1[

yields

H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t)) = min
uε∈Uad[0,T ]

H(t, x̃ε(t), uε(t), p̃ε(t), q̃ε(t)) + ε
θ
3 |u(t)− ũε(t)|.
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By denoting

H1(t) = H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t))−H(t, xε(t), uε(t), pε(t), qε(t))

H2(t) = H(t, x̃ε(t), u(t), p̃ε(t), q̃ε(t))−H(t, xε(t), uε(t), pε(t), qε(t))

we get

E

[∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt

]

≤ E

[∫ T

0

H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t))dt

]
+ E

[ ∫ T

0

|H1(t)|dt
]

≤ E

[∫ T

0

min
u∈Uad

(
H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t)) + ε

θ
3 |u(t)− ũε(t)|

)
dt

]
+ E

[ ∫ T

0

|H1(t)|dt
]

≤ E

[∫ T

0

min
u∈Uad

H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t))dt+ E
[ ∫ T

0

|H1(t)|dt
]
+ Cε

θ
3

≤ min
u∈Uad

E

[∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt

]
+ min

u∈Uad

E
[ ∫ T

0

|H2(t)|dt
]

+ E
[ ∫ T

0

|H1(t)|dt
]
+ Cε

θ
3 .

Based on (H1), 3.2, 3.4.1, and 3.16, and the definition of the metric d, we get

min
u∈Uad

E
[ ∫ T

0

|H2(t)|dt
]
+ E

[ ∫ T

0

|H1(t)|dt
]
≤ Cε

θ
3 ,

from which we get directly

E

[∫ T

0

H(t, xε(t), u(t), pε(t), qε(t))dt

]
≤ min

uε∈Uad[0,T ]
E

[∫ T

0

H(t, xε(t), uε(t), pε(t), qε(t))dt

]
+Cε

θ
3 .
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Conclusion

In this thesis, we studied the necessary and sufficient conditions of near-optimal controls in

a regime switching stochastic system using the stochastic maximum principle.

As a start, basic concepts and preliminaries concerning stochastic calculus were provided.

Then, after recalling the basics of optimal control theory, we defined the stochastic maximum

principle, as well as Ekeland’s principle. We later gave the detailed explanation of a regime

switching stochastic system. After that, we introduced a stochastic medical SIRS model trans-

formed later into a regime switching system.

Finally, we studied the necessary and sufficient conditions on near-optimal controls using the

stochastic maximum principle.
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Appendix A : Theorems

Theorem A.1 (Hölder’s inequality) Let (E, E , µ) be a measured space under the measure µ.

Then for every two measurable functions f, g, and for every conjugate pair (p, q) ∈ ([1,+∞[)2

(i.e 1
p + 1

q = 1) we have

∥fg∥1 ≤ ∥f∥p∥g∥q, (3.19)

where

∥f∥p =

(∫
E

|f |pdµ
) 1

p

. (3.20)

Remark A.2 The special case where p = q = 1
2 is called the Cauchy-Schwarz inequality

(∫
E

|fg|dµ
)

≤
(∫

E

|f |2dµ
) 1

2
(∫

E

|g|2dµ
) 1

2

. (3.21)

Definition A.3 (Convex function) Let A be a convex set. We say that f : A −→ R is convex

iff ∀(x, y) ∈ A×A and ∀α ∈ [0, 1]

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (3.22)

Example A.4 For x ∈ R, the functions x → |x|, x → x2, x → ex are convex functions.

Property A.5 Let f : A −→ R be a differentiable, convex function. Then ∀(x, y) ∈ A × A we

have

f(x)− f(y) ≤ Dxf(x)(x− y), (3.23)

where Dxf denotes the derivative of f with respect to x.
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Theorem A.6 (Gronwall’s inequality) Let f ∈ L1([0, T ]) be a C1 function, and a ≥ 0, b ≥ 0.

If ∀t ≥ 0

f(t) ≤ a+ b

∫ t

0

f(s)ds,

then

f(t) ≤ aebt.

Definition A.7 Let Ω ⊂ Rn and f : Ω −→ Rn be a locally Lipschitz continuous function. For

any x ∈ Ω, we define

∂f(x)
∆
=

{
ξ ∈ Rn

∣∣⟨ξ, y⟩ ≤ lim
z→x,z∈Ω

t↓0

f(z + ty)− f(z)

t

}
. (3.24)

The set ∂f(x) is called Clarke’s generalized gradient, and it verifies

� ∂f(x) is a nonempty, convex, and compact set in Rn.

� 0 ∈ ∂f(x) if f attains a local minimum (resp. maximum) in x.

Theorem A.8 (Burkholder-Davis-Gundy Inequality) Let σ = (σ(t))t≥0 be a local martingale.

For any p > 0, then there exist universal constants Cp > cp > 0 depending only on p and d such

that

cpE

[(∫ T

0

|σ(t)|2dt
) p

2

]
≤ E

[
| sup
0≤t≤T

σ(t)|p
]
≤ CpE

[(∫ T

0

|σ(t)|2dt
) p

2

]
. (3.25)
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Appendix B : Abbreviations and

Notations

All used abbreviations are explained here :

Rn : The space of n-dimensional, real-valued vectors.

P : Probability measure.

∥f∥p : p-norm defined by ∥f∥p =
(∫

E
|f |pdµ

) 1
p .

Γ : The space of the control constraint.

B : Brownian motion.

F : Filtration of some σ-algebra F .

λ : Lebesgue measure.

B : The Ft-predictable σ-field on [0, T ]×F

(FX
t )t≥0 : Natural filtration of the stochastic process X defined by

FX
t = σ(X(s), 0 ≤ s ≤ t)

Dxf : First derivative of f in x.

Dxxf : Second derivative of f in x.

N (µ, σ2) : Normal distribution with expected value µ and variance σ2.

B(A) : Borel σ-algebra over the subset A ⊂ R.

Lp([0, T ],Rn) : The set of all Rn-valued functions f such that
(∫ T

0
|f |pdt

) 1
p

< +∞.

Lp(Ω,F ;Rn) : The set of all F-measurable, Rn-valued random variables such that

E[|X|2] < +∞.
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Mp([0, T ],Rn) : The set of all adapted, Rn-valued random processes

(X(t))t≥0such that E
[∫ T

0
|X(t)|pdt

]
< +∞.

∂f(x) : Clarke’s generalized gradient of f.

∂xif(x) : Clarke’s generalized gradient of f with respect to the variable xi.

E[X] : The expectation of X.

E[X|G] : The conditional expectation of X with respect to the σ-algebra G.

V ar(X) : Variance of the random variable X.

Cov(X,Y ) : Covariance of the two random variables X and Y.

⟨X⟩t : The quadratic variation of the process X defined by the limit

lim
n→+∞

∑n
k=1 (X(tk+1)−X(tk))

2
.

Ck(E) : The set of all continuous, k times differentiable functions f : E → R

with continuous derivatives.

Hp([0, T ],Rn) : The set of all Rn-valued, progressively-measurable processes X

such that ∀t ≥ 0 : E
[∫ T

0
|X(t)|pdt

]
< +∞.

Sp
F ([s, t];Rn) : The set of all(Fu)u∈[s,t]-adapted, càdlag processes X such that

E

[
sup

s∈[t,T ]

|X(s)|2
]
< +∞.

U [0, T ] : The set of all feasible controls defined by

{u : [0, T ]× Ω ∈ Γ|u(.) is measurable}.

Uad[0, T ] : The set of all admissible controls u over the time horizon [0, T ].

a ∧ b : inf{a, b}.

Dom(f) : Domaine of f given by

f : E → F, Dom(f) = {x ∈ E/∃y ∈ F : y = f(x)}.

càdlàg/càglàd : Right-continuous, with left limits. / Left-continuous with right limits.
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 الملخص :

يتعلق هذا البحث بمبدأ بونترياغين العشوائي وتطبيقاته في الأنظمة العشوائية 

متغيرة النظام. نبدأ الفصل الأول بأهم التذكيرات والتعاريف المتعلقة بالتحليل 

إلى  العشوائي, المعادلات التفاضلية العشوائية وسلاسل ماركوف. نتطرق بعدها

الحديث عن التحكم المثالي في الأنظمة العشوائية وبعض التفاصيل الأخرى. 

أخيرا يتعلق الفصل الثالث بتطبيق لمبدأ بونترياغين في الأنظمة العشوائية الطبية 

 )إنتشار الفيروسات( ودراسة تطور هذا النظام وكذا التحكم المثالي به.

: Résumé 

Dans ce travail, nous étudions le principe du maximum 

stochastique et ses applications dans les systèmes avec 

changement de régime. Dans le premier chapitre on 

commence par des généralités mathématiques du calcul 

stochastique. Dans le deuxième chapitre, on fournit des 

rappels sur la théorie du contrôle optimal et le principe du 

maximum stochastique. Finalement, on applique ce principe 

sur des systèmes viraux (SIRS) avec un changement de 

régime. 

: Summary 

In this thesis, we studied the stochastic maximum principle 

and its application in regime switching stochastic systems. As 

a start, we recall some mathematical preliminaries 

(Stochastic calculus). Then we provide some basic definitions 

regardin optimal control theory. Finally, we study a regime 

switching viral system (SIRS) using stochastic maximum 

principle. 
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