REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministere de ’Enseignement Supérieur et de la Recherche Scientifique
Université Mohamed Khider — BISKRA

Faculté des Sciences Exactes, des Sciences de la Nature et de la Vie
Département d’informatique

N° d’ordre :SIOD25/M2/2021

Mémoire
Présenté pour obtenir le diplome de master académique en

Informatique

Parcours : Systémes d’information, Optimisation et Décision (SIOD)

A Machine Learning Approach to QoS
Prediction in Microservice Architecture

Par :
HACHI FERIAL

Soutenu le 27/06/2022 devant le jury composé de :

BERIMA SALIMA \ Président
TAREK ZERNADJI MCB Rapporteur
HOUHOU OKBA \ Examinateur

Année universitaire 2021-2022

Acknowledgements

| would like to express my profound and sincere gratitude to my research director, Dr.
Zernadji Tarek, for his guidance helped me in all the time of research. My thanks go to all
the teachers in the computer department who helped me with my education.

| am very grateful for the love, care, encouragement and prayers of my parents.

My thanks also go to my precious friends especially Oumaima and Mariem, having such
great people around me had a huge impact on my life and pushed me forward to always give

my best to everyone | love and care about.

Dedication

Praise be to God (Alhamdaulillah), who has enabled me to accomplish this humble work.
I'd like to dedicate my work to :

My parents the joy of my life,

Aymen, Mostapha, Morad and Mohcen, my brothers,

Aridj, Imen and Anfel, my sisters.

Oumaima and Meriam, my friends.

To The Batch Of 2021/2022.

Abstract

Microservices have become enormously popular since traditional monolithic architectures
no longer meet the needs of scalability and rapid development cycle. But the dynamically
change in this architecture make service discovery mechanisms are required.

The mechanism of service discovery have continuously evolved during the last years to
support the effective service composition in microservice applications. Still, the dynamic nature
of services are being rarely taken into account for maximizing the desired quality of service.
This work proposes using machine learning technique (Attention mechanism), as part of the
service discovery process, to maximize Quality of services(QoS).

keywords: Service Discovery, Attention mechanism, QoS, Microservices Architecture.

rpadla

ol 2 ol Ailaciall dpaglail)) (Y 150 5aS IS daild 5 jraaall Cleadl) Ciaal
a4l oda 4 (Saalinall il 81 a puall o shaill B) 50 5 s i) 4,18 Cilalial
4 sl deaald) bl e,

Jladl) darall (5 o5 acal dpalall il giad) A) iy deaad) Calin€) 401 ¢y gl aal
o lanall LSulipal) Aegadall 227 % La 1500 ¢ @l aa s 3 jraaall cileaad) ciliplas b
alail) 40585 aladin) Jeadl 138 7 iy a4 58 yall 335l (e 58 ol Gadai] (o)
cleaall 3 s 3L 3 ¢ daadd) CiliS) Alas (e e a8 ¢ (sl A) V)

Résumeé :

Les microservices sont devenus extrémement populaires depuis que les
architectures monolithiques traditionnelles ne répondent plus aux besoins
d'évolutivité et de cycle de développement rapide. Mais I'évolution dynamique de
cette architecture rend nécessaires des mécanismes de découverte de service.

Le mécanisme de découverte de services a continuellement évolué au cours des
dernieres années pour prendre en charge la composition efficace des services dans
les applications de microservices. Pourtant, la nature dynamique des services est
rarement prise en compte pour maximiser la qualité de service souhaitée. Ce travail
propose d'utiliser la technique d'apprentissage automatique (mécanisme
d'attention), dans le cadre du processus de découverte de service, pour maximiser la
gualité des services.

Contents

General Introduction

1 Microservices Architecture

1.1 Introduction
1.2 Definition
1.3 Microservices Characteristics
1.4 Microservices architecture VS Service-oriented architecture
1.5 Microservices Goals
1.6 Microservices advantages
1.7 Microservices disadvantages
1.8 Service discovery in microservices

1.8.1 Definition

1.8.2 The Client-Side Discovery Pattern

1.8.3 The Server-Side Discovery Pattern
1.9 Service Discovery work
1.10 Conclusion

Machine Learning

2.1 Inroduction
2.2 Machine Learning
2.2.1 Supervised Learningo
2.2.2 Unsupervised Learningo
2.2.3 Semi-supervised Learning L
2.2.4 Reinforcement Learning L.
2.3 Deep Learning
2.3.1 Artificial Neural Networks
2.3.2 Convolutional Neural Networks
2.3.3 Recurrent Neural Network
2.3.4 Long-Short Term Memory,
2.3.5 Attention Mechanismo
2.3.6 Attention Types
2.4 Time Series Forecasting with Deep Learning

11

13
13
13
14
15
17
18
18
19
19
19
21
22
23

CONTENTS

2.5

3.1
3.2
3.3

3.4
3.5

4.1
4.2

4.3

4.4

241 TimeSeries
242 Time Series Components,
2.4.3 Time Series Forecasting L.
2.4.4 Time Series Forecasting with Traditional Machine Learning
2.45 Time Series Forecasting with Deep Learning
Conclusion

System design

Introduction
Related Work
System Architecture
3.3.1 Machine Learning Process Flow
Deep learning model architecture L.

Conclusion L,

Implementation and Results

Intoduction
Work Environment and Development Tools
4.2.1 Programming language
4.2.2 Deep learning and Attention mechanism kit
423 Frameworksandtools
Implementation phases
431 Creatingthe DLmodel

Conclusion L,

33
34
35
35
35
38

39
39
39
40
40
40
41

List of Figures

1.1 Monolotic and Microservices Architecture[42]. 14
1.2 Microservices vs SOA[7T7]. 17
1.3 Client-Side Discovery Pattern[4]. 20
1.4 Server-Side Discovery Pattern[4]. L. 21
1.5 Service discovery parts[4]. 22
2.1 Random Forest Classifier architecture[5b1]. 26
2.2 Supervised Learning and Unsupervised Learning[68]. 26
2.3 Deep Learning[30]. 28
2.4 Artificial neural networks and biological neural networks[76]. 28
2.5 Recurrent Neural Network[40]. 29
26 LSTMcell[69]. 30
2.7 Attention types[11]. 32
2.8 A graph showing the Standard Poor (SP) 500 index for the U.S. stock market

for 90 trading days starting on March 16 1999[17]. 34
3.1 The ML process 40
3.2 Deep learning model architecture 41
4.1 Pythonlogo[58]. 42
4.2 Python version used in jupyter notebook. 43
4.3 TensorFlow logo[65]. 43
44 Keraslogo[65]. 43
45 Pandaslogo[l].. 44
46 NumPylogo[31]. 44
4.7 SKlearn logo. 44
4.8 Matplotliblogo. 45
4.9 Seabornlogo. 45
4.10 Anaconda logo. L 46
4.11 Anaconda Environment. 46
4.12 Jupyter logo. 47
4.13 Importing Panda and loading dataset. 47
414 L 47

LIST OF FIGURES 10

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

Instance Visualization. 47
Seaborn pairplot. 48
Response time and instance visualisation. 48
Seaborn Boxplot. 49
data informations. 49
Label Encoding for object to numeric conversion. 50
New data informations. 51
Attention Layer. L 52
Attention model with LSTM. 52
The model summary. 53
Model training. 53
Evaluate model. 54

General Introduction

[1-5]

Monolithic software is built to be self-contained, with strongly connected rather than loosely
related components or functionalities. For code to be executed or compiled and for software
to operate under a monolithic architecture, each component and its associated components
must all be present. Single-tiered monolithic apps merge numerous components into a single
huge application. As a result, they frequently have enormous codebases that might be difficult
to manage over time, and if one software component has to be modified, other parts may
need to be rewritten as well, and the entire application must be recompiled and tested. The
procedure can be time-consuming, and it can hinder software development teams’ agility and
speed.

That's why traditional monolithic designs no longer match the needs of scalability and a
quick development cycle, hence micro services have exploded in popularity because it offers
multiple advantages.

Micro service architecture is a rapidly evolving architectural pattern for developing real-time
industrial automation applications. The loosely coupled property of microservices allow the
independence between each service , allowing huge, sophisticated applications to be delivered
quickly, often, and reliably and making it more resilient, flexible, adaptable, and cost-effective
technique for developing various applications that aid in improving the performance and reli-
ability of the clients’ business requirements[23].

The success of large organizations (such as Netflix and Amazon) in developing and de-
ploying services serves as a powerful motivator for other businesses to consider making the
switch[15].

Despite these benefits, there are certain obstacles and challenges, such as providing services
across the network, security and safety concerns, data sharing, data communication, data
optimization, and production. Furthermore, due to autoscaling, failures, and upgrades, the
set of service instances changes dynamically. As a result, how services discover, connect, and
interact with one another is one of the issues in micro service architecture[56].

Consequently, there is a need for complex service discovery procedures whose mechanisms
have constantly evolved over the past years (Like Eureka, Synapse, Zookeeper, etc.)[15]Monolithic
applications are designed to handle multiple related tasks. They're typically complex applica-

tions that encompass several tightly coupled functions.

11

General Introduction 12

Still, these mechanisms do not explicitly account for the context and quality of services,
which are transient and change over time for a variety of reasons: a service consumer /provider
can change its context due to mobility/elasticity, a service provider's QoS profile can change
according to day time, and so on. In these circumstances, our approach envisions a novel service
discovery process capable of dealing with uncertainty and potential negative consequences
caused by frequent variations in service context and QoS profile.

This work proposes the use of Attention mechanism as part of the service discovery process
to predict the QoS of services in micro services architectures.

In the first chapter, we will study the basics of the microservice architecture.

In the second chapter, we will illustrate deep learning methods.

In the Third chapter, we will present the conception and Design of our approach.

The fourth chapter about the implementation and results.

Chapter 1

Microservices Architecture

1.1 Introduction

Microservices Architecture is becoming the mainstream services-based integration model and
the de-facto standard for services development for enterprise applications. As enterprise ap-
plications tend to become complex, demanding on-the-fly scalability and high responsiveness,
microservices play a crucial role in fulfilling these criteria.

Enterprises can realize a strategic vision of an APl-based, loosely-coupled, scalable and
flexible platform architecture with containerized microservices.

In this chapter, we discuss the salient points of the microservice architecture with a focus

on some elements to clarify this term.

1.2 Definition

The term " Microservice Architecture” was first used by Dr. Peter Rogers during a conference
on cloud computing in 2005,it has sprung up to describe a particular way of designing software
applications as suites of deployable ,scaled and tested independently services[66].

Microservices is an architectural and organizational approach to software development in
which software is made up of small, self-contained services that communicate over well defined
APIs[72].

An application is constructed utilizing independent components that operate each process
of the application as a service using a microservices architecture. These services communicate
via lightweight APIs and a well-defined interface. Services are created to support business
capabilities, and each one serves a single purpose.

Because each service is self-contained, it may be modified, launched, or scaled to fit the
needs of certain application functions[42].

The popularity of microservices has recently been on the rise because they can solve
many current IT challenges such as increasing speed, scalability of applications and rapid test

processes[47].

13

CHAPTER 1. MICROSERVICES ARCHITECTURE 14

Monolithic Architecture Microservices Architecture

Microservice Ul Microservice

Figure 1.1: Monolotic and Microservices Architecture[42].

User Interface

Business Layer

1.3 Microservices Characteristics

e Multiple Components:

Software built as microservices canbe broken down into multiple component services. So
that each of these services can be deployed, tweaked, and then redeployed independently
without compromising the integrity of an application. As a result, you might only need to
change one or more distinct services instead of having to redeploy entire applications[12].

e Built For Business:

The microservices style is usually organized around business capabilities and priorities.
Unlike a traditional monolithic development approach—where different teams each have a
specific focus on, say, Uls, databases, technology layers, or server-side logic—microservice
architecture utilizes cross-functional teams[12)].

The responsibilities of each team are to make specific products based on one or more
individual services communicating via message bus. In microservices, a team owns the product
for its lifetime, as in Amazon's oft-quoted maxim “You build it, you run it.

e Simple Routing:

Microservices act somewhat like the classical UNIX system: they receive requests, process
them, and generate a response accordingly. This is opposite to how many other products
such as ESBs (Enterprise Service Buses) work, where high-tech systems for message routing,
choreography, and applying business rules are utilized. You could say that microservices have
smart endpoints that process info and apply logic, and dumb pipes through which the info
flows.

e Decentralized:

Since microservices involve a variety of technologies and platforms, old-school methods
of centralized governance are not optimal. Decentralized governance is favored by the mi-

croservices community because its developers strive to produce useful tools that can then be

CHAPTER 1. MICROSERVICES ARCHITECTURE 15

used by others to solve the same problems. Just like decentralized governance, microservice
architecture also favors decentralized data management. Monolithic systems use a single log-
ical database across different applications. In a microservice application, each service usually
manages its unique database[12].

e Failure Resistant:

Like a well-rounded child, microservices are designed to cope with failure. Since several
unique and diverse services are communicating together, it's quite possible that a service could
fail, for one reason or another (e.g., when the supplier is not available). In these instances,
the client should allow its neighboring services to function while it bows out in as graceful a
manner as possible. However, monitoring microservices can help prevent the risk of a failure.
For obvious reasons, this requirement adds more complexity to microservices as compared to
monolithic systems architecture[12].

e Evolutionary:

Microservices architecture is an evolutionary design and, again, is ideal for evolutionary
systems where you can't fully anticipate the types of devices that may one day be accessing
your application.. Many applications start based on monolithic architecture, but as several
unforeseen requirements surfaced, can be slowly revamped to microservices that interact over

an older monolithic architecture through APlIs.

1.4 Microservices architecture VS Service-oriented archi-

tecture

Both SOA and microservices architecture are kinds of service architectures and divide the
system onto services,because both deal with distributed systems of services communicating
over the network and divide the system onto services however in different ways [22][77].

This table below present the difference between Microservices and Service-Oriented architecture[55].

CHAPTER 1. MICROSERVICES ARCHITECTURE

Microservices architecture

Service-oriented architecture

Microservices apps mostly dedicate a
database or other type of storage to ser-

vices that need it.

SOA model has a single data storage layer
which shared by all of the services in that

application.

Microservices use complex APls.

Communication between different ser-
vices in an SOA app uses simple and

straight forward approaches.

More focused on decoupling.

Focused on maximizes application service

reusability.

Full-stack in nature.

Monolithic in nature

Uses lightweight protocols like HTTP,
REST, or Thrift APIs.

Supports multiple message protocols.

It is designed to host services that can

function independently.

It is designed to share resources across

services.

Quick and easy deployment.

Less flexibility in deployment.

Microservice technology stack could be

very large.

The technology stack of SOA is lower

compared to Microservice.

A Microservices app could have dozens of

services.

An SOA app comprised of two or three

services.

They are built to perform a single busi-

ness task.

SOA applications are built to perform nu-

merous business tasks.

Deployment is straightforward and less

time-consuming.

Deployment is a time- consuming pro-

cess.

In Microservices, systematic change is to

create a new service.

A systematic change needed for modify-

ing the monolith.

Emphasis on decoupling.

Focus on maximizing application service

reusability.

Deployment is easy and less time-

consuming.

The deployment process is time- consum-

ing.

16

CHAPTER 1. MICROSERVICES ARCHITECTURE 17

Microservices VS SOA

: — — : Ut intarface
T Tl 7N

User Interface
Platform as a Service Mashups
Dakabase MEnerine P r——
:
e 00

Database

Software as a
Service Maintained in
Clusd

Database

Figure 1.2: Microservices vs SOA[77].

1.5 Microservices Goals

There are a few reasons that contribute to why we need the microservice architecture:

e Continuous delivery:

Microservices offer the ideal architecture for continuous supply. Each program, as well as
the environment in which it must execute, is housed in a distinct container with microservices.
As a result, each application can be changed in its own container without risk of interfering
with other apps. Users will experience minimal downtime, simplified troubleshooting, and no
disturbance even if an issue is discovered|[32].

e Increase deployment velocity:

Microservice design helps you move at the speed of the market, allowing you to increase
deployment velocity and application reliability. Because each application runs in its own con-
tainerized environment, it may be moved around without affecting the environment. This
reduces the time it takes to get a product to market and improves product reliability[32].

e Empower Developers:

Microservices give developers the tools they need to create higher-quality software. Each
component of an application can exist in its own container, controlled and updated indepen-
dently, with a microservice architecture. This means that instead of having to choose a single
less-than-ideal language to use for everything, developers can build applications from numerous
components and program each component in the language most suited to its role.

e Reduce cost:

Many industries are seeing rising infrastructure costs as a result of their popular architecture
operations. Adding any kind of variation to an application under a monolithic design can be

costly because each piece of code in the monolith connects with other components, so a

CHAPTER 1. MICROSERVICES ARCHITECTURE 18

change in one area affects other features.

e Faster innovation:

Microservices can also help you adapt more quickly to the changing market conditions.
Because microservices allow applications to be updated and tested quickly, you can follow

market trends and adapt your products faster.

1.6 Microservices advantages

e Agile delivery: Breaking down services into logically modular, self-contained microservices
aids Agile delivery, allows for easy integration with the DevOps approach, and reduces time to
market [5].

e Ability to use a different technology:developers have the possibility of using many different
technologies . This technology diversity is a very common characteristic in applications using
microservices and it allows the use of the right tool for the right job[71].

e Easy to understand: Each service is responsible for only one task; therefore, it requires
less code. This means that it is easy to understand and has less risk of changes[59][50].

e Scalability: each microservice that contains a given functionality can be independently
deployed along with all the dependencies, they can also be independently scaled based on the
load [71].

e Fault isolation reduces : if a specific microservices fails, you can isolate that failure to

that single service and prevent cascading failures that would cause the app to crash [5][50].

1.7 Microservices disadvantages

e Due to distributed deployment, testing can become complicated and tedious.

e Increasing number of services can result in information barriers.

e The architecture brings additional complexity as the developers have to mitigate fault tol-
erance, network latency, and deal with a variety of message formats as well as load balancing[50].

e Being a distributed system, it can result in duplication of effort.

e When number of services increases, integration and managing whole products can become
complicated.

¢ In addition to several complexities of monolithic architecture, the developers have to deal
with the additional complexity of a distributed system[50].

e Developers have to put additional effort into implementing the mechanism of communi-
cation between the services.

e Handling use cases that span more than one service without using distributed transactions
is not only tough but also requires communication and cooperation between different teams.

In a microservices application, the set of running service instances changes dynamically. The
network locations of instances are assigned dynamically. As a result, a client must employ a

service discovery mechanism in order to send a request to a service.

CHAPTER 1. MICROSERVICES ARCHITECTURE 19

1.8 Service discovery in microservices

1.8.1 Definition

Service discovery is the process by which applications and (micro)services automatically locate
each other on a network, eliminating the need for a lengthy configuration setup process.
Devices communicate across the network using a standard language, letting devices or services
to connect without the need for manual intervention[50].

When migrating to microservices, service discovery is likely the most important piece of
infrastructure to implement.

Today, three basic approaches exist to service discovery for microservices[48]:

-The first is to use existing DNS infrastructure. The advantage of this strategy is that
DNS(Domain Name System protocol) is already installed in every company. It's also a well-
known, highly available distributed system with APl implementations in every language imag-
inable.

-The second is to leverage an existing highly consistent key-value datastore like Apache
Zookeeper, Consul, or etcd. These are extremely complex distributed systems. While the initial
objective of these systems was not to be used for service discovery, their overall resilience and
user-friendly interfaces make them ideal for a variety of service discovery scenarios. Many of
the early users of these systems for service discovery did so because it was more convenient
- there was a business requirement for a Zookeeper, and then a need for service discovery —
therefore the cost of using Zookeeper for service discovery rather than another method was
cheap[36].

-Finally, a dedicated service discovery solution like Netflix Eureka is available. This method
allows for design choices that are optimal for service discovery. Eureka, for example, places
a premium on availability above consistency. However, in order for developers to fully utilize
these features, we will need to write some more advanced client libraries, which will increase
the technical cost of developing these solutions[36].

There are two main service discovery patterns: client-side discovery and server-side discov-

ery:

1.8.2 The Client-Side Discovery Pattern

In this type of service discovery, the service client or consumer has to search the service registry
in order to locate a service provider. Then, the client selects a suitable and free service instance
through a load balancing algorithm to make a request[4].

In this pattern, the service instance's location gets registered with the service registry as
soon as the service starts. The location information is deleted after the service instance is

terminated. This refresh occurs periodically using a heartbeat mechanism.

CHAPTER 1. MICROSERVICES ARCHITECTURE 20

10.4.3.1:8756
REST
API
SERVICE SERV‘IC‘E)
INSTANCE A Registry_ NSTANC
aware Registry
HTTP Client
Client
10.4.3.99:4545
REST
API
SERVICE
INSTANCE B
Registry
Client
10.4.3.20:333
SERVICE —
REGISTRY AP

SERVICE
NSTANCE C

Registry
Client

Figure 1.3: Client-Side Discovery Pattern[4].

This type lets you make intelligent decisions regarding load balancing as the consumer
remains aware of which service instances are available and capable of taking up the load. It
is easy to understand and lets the client determine the network locations of available service
instances.

The client's first query is directed at a Discovery Server, which is a central server that
acts as a phone book for all service instances that are available. It also provides a layer of
abstraction to the service instances[4].

In client-side service discovery, the service might be placed behind an API gateway. If not
so, it is the client’s responsibility to implement aspects such as authentication, balancing, and
cross-cutting.

A popular example of client-side discovery is Netflix OSS, where the service registry is
Netflix Eureka. It provides a REST API that manages the integration of service instances and
querying available instances. Netflix Ribbon works with Eureka as an inter-process communi-
cation (IPC) client to deal with load balancing functions while requests are made to available

service instances[4].

CHAPTER 1. MICROSERVICES ARCHITECTURE 21

1.8.3 The Server-Side Discovery Pattern

In this type of service discovery, the client or consumer does not have to be aware of the
service registry. The requests are made through a router, which then searches the service
registry itself. When the router finds a valid service instance that is available, it forwards the
request and gets the job done[4].

In this pattern, the client does not have to worry about load balancing or finding a suitable
service instance. Instead, this job is done by the API gateway, which selects the suitable
endpoint for a request coming from the client'’s side.

Basically, it is the server side’s that is responsible for receiving the client server's request
and passing it along successfully. This is done by maintaining a registry of service locations
and locating the client’s desired service without requiring any manual intervention from the

consumer side[4].

10.4.3.1:8756

o]
>
ﬂ
-

SERVICE
CE A

REQUEST g
LOAD Registry
 SERVICE BALANCER Client
INSTANCE A LOAD
BALANCE
104.3.89:4545
REST
QUERY API
SERVICE
NSTANCE B
Registry
Client
SERVICE REGISTER 10.4.3.20:333
REGISTRY

SERVICE
INSTANCE (

Registry
Client

Figure 1.4: Server-Side Discovery Pattern[4].

Each client request is dealt with similarly by the load balancer. Similar to client-side
discovery, the service instances are registered with the service registry when the service starts.
As soon as the service is terminated, the service instance is deregistered.

A popular example of server-side service discovery is Amazon Web Services (AWS) Elastic
Load Balancer (ELB). The ELB is used to balance the load of external traffic from the internet,
as well as internal traffic directed to a virtual private cloud (VPC).

The client makes a request through the ELB using its DNS name. The request can be
HTTP or TCP. The ELB then performs load balancing of the traffic among Elastic Compute
Cloud (EC2) instances or EC2 container service (ECS) containers. The EC2 instances and
ECS containers are registered directly with the ELB, without the existence of any separate

service registry.

CHAPTER 1. MICROSERVICES ARCHITECTURE 22

In some deployment environments, like Kubernetes and Marathon, a proxy is run on each
host in the cluster. The proxy acts as a server-side load balancer and routes the request using
the host’s IP address and the port assigned to the service. Then, the request is forwarded to

an available service instance running in the cluster[4].

1.9 Service Discovery work

There are three components to Service Discovery:

Service Provider

r—
.~
*
. N R
7 N N
/.Lv." TN N
s G
’ .g{_@ﬁ; S NN
Service Registry P o, \\ .. Service Consumer
¥ 'q,x \\4\.

2. Lookup
-
>

3. Response

Figure 1.5: Service discovery parts[4].

e The Service Registry: is a key part of service discovery,is a database that contains the
network locations of service instances. The service registry needs to be highly available and
up to date so clients can go through network locations obtained from the service registry.
A service registry consists of a cluster of servers that use a replication protocol to maintain
consistency[45].

e The Service Provider: registers itself with the service registry when it enters the system
and de-registers itself when it leaves the system.

e The Service Consumer: gets the location of a provider from the service registry, and then

connects it to the service provider.

CHAPTER 1. MICROSERVICES ARCHITECTURE 23

1.10 Conclusion

A microservices architecture is commonly fit for large-scale distributed systems.

Microservices architecture is more comfortable to create and manage autonomous mi-
croservices, but it is a difficult task to control on demands of additional network management.
Several studies addressed platforms, approaches, and tools which are related to cloud com-
puting applications, internet things, DevOps, real-time applications, and artificial intelligence
to adapt to this architectural pattern. And a Service discovery is also the first piece of in-
frastructure that you should adopt when moving to microservices. In this chapter, we have
presented the microservices architecture and the importance of discovery mechanism which
rarely takes into account for maximizing the desired quality of service, which is the goal of
our project. The next chapter is devoted to an overview of the methods and the prediction

algorithms used.

Chapter 2

Machine Learning

2.1 Inroduction

Numerous deep learning architectures have been developed to accommodate the diversity of
time series datasets across different domains. The main objective of this chapter is to illustrate
deep learning and time series forecasting by learning the most common steps and methods of

building a system based on both.

2.2 Machine Learning

Machine learning is an area of artificial intelligence (Al) and computer science that focuses on
using data and algorithms to mimic the way people learn, with the goal of steadily improving
accuracy.Unlike artificial intelligence applications, machine learning involves learning of hidden
patterns within the data (data mining) and subsequently using the patterns to classify or
predict an event related to the problem([7].

Simply said, intelligent machines need on information to function, and machine learning
provides that knowledge.

It is sufficient to state that all machine learning algorithms are artificial intelligence ap-
proaches, yet not all Al methods qualify as machine learning algorithms[6].

There are four basic approaches for machine learning:

2.2.1 Supervised Learning

Many supervised learning approaches have found use in the processing of multimedia material,
and supervised learning accounts for a lot of research effort in machine learning.
Supervised learning entails learning a mapping between a set of input variables X and an
output variable Y and applying this mapping to predict the outputs for unseen data[20].
Supervised learning is the most important methodology in machine learning which is espe-
cially crucial in the processing of time series data.

The most famous approaches in supervised learning :

24

CHAPTER 2. MACHINE LEARNING 25

2.2.1.1 Support Vector Machine(SVMs)

Support vector machine (SVM) is classification method that samples hyperplanes which sep-
arate between two or multiple classes. Eventually, the hyperplane with the highest margin
is retained (“margin” = the minimum distance from sample points to the hyperplane). The
sample point(s) that form margin are called support vectors and establish the final SVM
model.[20]

2.2.1.2 Bayes classifiers

based on a statistical model (Bayes theorem: calculating posterior probabilities based on
the prior probability and the so-called likelihood). A Naive Bayes classifier assumes that all
attributes are conditionally independent, thereby, computing the likelihood is simplified to the
product of the conditional probabilities of observing individual attributes given a particular
class label.[20]

2.2.1.3 Decision Tree

tree like graphs, where nodes in the graph test certain conditions on a particular set of features,
and branches split the decision towards the leaf nodes. Leaves represent lowest level in the
graph and determine the class labels. Optimal tree are trained by minimizing impurity (gini)
— or maximizing information gain.[64]. A population is divided into branch-like segments that
form an inverted tree with a root node, internal nodes, and leaf nodes. The method is non-
parametric, which means it can handle huge, complex datasets without imposing a complex

parametric framework. There are many algorithms used for developing decision trees(CART,
ID3 C4.5, CHAID, QUEST..etc).

2.2.1.4 Linear Regression

Linear Regression is a machine learning algorithm based on supervised learning. It performs a
regression task. Regression models a target prediction value based on independent variables.
It is mostly used for finding out the relationship between variables and forecasting. Different
regression models differ based on — the kind of relationship between dependent and independent

variables they are considering, and the number of independent variables getting used. [73].

2.2.1.5 Random Forest Classifier

Random Forest Classifier is one of the more elaborate variations of the decision trees [51].

It creates a sequence of decision trees based on a randomly organized selection from the
training dataset. Then it gathers the information from the other decision trees so that it could
decide on the final class of the test object [51].

CHAPTER 2. MACHINE LEARNING 26

Single Decision Tree § Random Forest
Class 2
® css1 @

O © 0000 Class 1

Class 1
@ Q@

© ® 60 0|/

Figure 2.1: Random Forest Classifier architecture[51].

2.2.2 Unsupervised Learning

Unsupervised learning analyzes and clusters unlabeled datasets using machine learning meth-
ods. Without the need for human interaction "supervisor”, these algorithms uncover hidden
patterns or data groupings. It is the best option for exploratory data analysis, cross-selling
techniques, consumer segmentation, and picture identification because of its capacity to detect
similarities and contrasts in information[26].

The most famous approaches in supervised learning :FP-Growth, K-Means, Fuzzy..etc

supervised learning

Input data

5 Prediction
n B . ltsan |

apple!

Annotations

Model

These are

apples ﬁ ?

unsupervised learning

ot . eeee
e i e

-? ﬁi g i
i 5 i Model o S

Figure 2.2: Supervised Learning and Unsupervised Learning[68].

2.2.3 Semi-supervised Learning

Semi-supervised learning is a learning paradigm concerned with the study of how computers
and natural systems such as humans learn in the presence of both labeled and unlabeled
data[75][68]. The purpose of semi-supervised learning is to figure out how mixing labeled and

unlabeled input affects learning behavior and to create algorithms that take advantage of it.

CHAPTER 2. MACHINE LEARNING 27

Semi-supervised learning is of great interest in machine learning and data mining because it
can use readily available unlabeled data to improve supervised learning tasks when the labeled

data are scarce or expensive[75].

2.2.4 Reinforcement Learning

Reinforcement learning is the training of machine learning models to make a sequence of
decisions.In an uncertain, possibly complicated environment, the agent learns to attain a goal.
An artificial intelligence meets a game-like circumstance in reinforcement learning. To find a
solution to the problem, the computer uses trial and error(Learn from mistakes)[33]. To get
the machine to do what the programmer wants, the artificial intelligence gets either rewards

or penalties for the actions it performs. Its goal is to maximize the total reward.

2.2.4.1 Common reinforcement learning algorithms

The field of reinforcement learning is made up of several algorithms that take somewhat
different approaches. The differences are mainly due to their strategies for exploring their
environments.

State-action-reward-state-action (SARSA): This reinforcement learning algorithm starts
by giving the agent what's known as a policy. The policy is essentially a probability that tells
it the odds of certain actions resulting in rewards, or beneficial states.

Q-learning: This approach to reinforcement learning takes the opposite approach. The
agent receives no policy, meaning its exploration of its environment is more self-directed.

Deep Q-Networks: These algorithms utilize neural networks in addition to reinforcement
learning techniques. They utilize the self-directed environment exploration of reinforcement
learning. Future actions are based on a random sample of past beneficial actions learned by

the neural network.

2.3 Deep Learning

Deep learning (DL) is a subset of machine learning (ML) techniques that employ artificial
neural networks (ANN) that are inspired by the structure of neurons in the human brain. The
term "deep” is a colloquial term that refers to the existence of several layers in an artificial
neural network.

DL is a machine learning tsunami in the sense that a small number of innovative approaches
have been effectively applied to a wide range of domains (image, text, video, audio, and
vision), vastly enhancing prior state-of-the-art results attained over decades. The success
of deep learning is also attributable to the increased availability of training material (such as
ImageNet for pictures) and the comparatively low cost of GPUs for extremely efficient numerical
computation. Google, Microsoft, Amazon, Apple, Facebook, and a slew of other companies

use deep learning techniques to analyze massive amounts of data on a daily basis[30].

CHAPTER 2. MACHINE LEARNING 28

Deep Learning

Input Feature extraction + Classification Output

Figure 2.3: Deep Learning[30].

2.3.1 Artificial Neural Networks

The artificial neural network (ANN) is a machine learning method evolved from the idea of
simulating the neural networks of human brain[76].

Between the input and output layers, deep neural networks (DNNs) have numerous hidden
layers. As a consequence, they may learn features (hidden layers) and provide a classification
result from a given input (output layer). They've had a lot of success with part-of-speech

tagging, chunking, named entity identification, and semantic role labeling in natural language

processing.
Hidden
Dendrite Axon
terminal |npu1_ i L
Node of
- Ranvier \ Oul?ul
\ '
Axon .
DTN
1 1] . ']
/, Schwann cell
Myelin sheath ¥
Nucleus \
ALY

Figure 2.4: Atrtificial neural networks and biological neural networks[76].

CHAPTER 2. MACHINE LEARNING 29

2.3.2 Convolutional Neural Networks

Convolutional networks are a type of neural network that is used to analyze input with a
predefined, grid-like architecture.

CNNs have a large range of applications in image and video recognition, recommender
systems, image classification, medical image analysis,natural language processing (NLP) and
time series forecasting[49].

The name " convolutional neural network” refers to the network’s use of the convolutional
mathematical procedure. Convolution is a type of linear operation that is specialized. Con-
volutional networks are simple neural networks with at least one layer that uses convolution

instead of ordinary matrix multiplication[29].

2.3.3 Recurrent Neural Network

RNNs are a type of artificial neural network which use sequential data or time series data
(sequence model). These deep learning techniques are often employed for ordinal or temporal
issues like language translation, natural language processing (nlp), speech recognition and
picture captioning, and are used in popular apps like voice search, and Google Translate.
Recurrent neural networks, like convolutional neural networks (CNNs), learn from training
data. At its core, RNN cells contain an internal memory state which acts as a compact

summary of past information[40].

Recurrent network

—— output layer

input layer Y (class/target)
hidden layers: “deep” if > 1

Figure 2.5: Recurrent Neural Network[40].

2.3.3.1 Vanishing Gradient Problem

When propagating the mistake backwards, if the neural network is very deep (has many layers),
the gradients (derivatives) measured at the beginning of the prop (last several layers) have a
significantly smaller influence on the first few layers. So, in a sense, the gradient diminishes
as the network gets farther into the process.

As a result, a basic RNN is unable to detect particularly long-term dependencies between

words, and hence fails to detect this subject-verb link when the subject and verb are separated

CHAPTER 2. MACHINE LEARNING 30

by a significant distance.This was a major problem in the 1990s and much harder to solve
than the exploding gradients. Fortunately, it was solved through the concept of LSTM(Long
Short-Term Memory) by Sepp Hochreiter and Juergen Schmidhuber|[28].

2.3.4 Long-Short Term Memory

The LSTM model is a recurrent neural system specially designed to overcome the vanishing
gradient problems by the multiplicative gates allow LSTM memory cells to store and access in-
formation over long periods of time, thereby mitigating the vanishing gradient problem[69][28].
The LSTM architecture consists of a group of recurrently connected subnets, known as mem-
ory blocks. These blocks are a differentiable version of a digital computer’'s memory chips.Each
block contains one or more self-connected memory cells and three multiplicative units the
input,output and forget gates that provide continuous analogues of write, read and reset

operations for the cells.

Forget Input Output y(t)
Gaie Gate Gate A
aa v
C(t-1) X + (- C(t)
A A [fan]
fi(t)| i(t)

i(t) i(t)] o(t)

[c] || [s] [tanh]|| [=]

h(t-1) _U <P h(t)

Figure 2.6: LSTM cell[69].
Forget gate : This gate determines whether information should be discarded or saved.
The sigmoid function passes information from the previous hidden state as well as information

from the current input. The results are between 0 and 1. The closer you go to 0, the more

you forget, and the closer you get to 1, the more you keep.

F(t) = o (x(t)Ur + h(t — 1) W)

Input gate : The input gate is used to update the cell state. First, we use a sigmoid

CHAPTER 2. MACHINE LEARNING 31

function to combine the prior concealed state and the current input. By changing the values to
be between 0 and 1, this determines which values will be updated. A value of 0 indicates that
it is not significant, whereas a value of 1 indicates that it is important. To assist control the
network, you also send the hidden state and current input into the tanh function to compress
values between -1 and 1. The sigmoid result is then multiplied by the tanh output. The

sigmoid output will determine which information from the tanh output should be kept.

i1(t) = o (x(t)U; + h(t — 1)W;)
ir(t) = tanh (x(t)Ug + h(t — 1) Wy)
i(t) = i(t) * ia(t)

Cell gate : The cell state gets point-wise multiplied by the forget vector.If multiplied by
values close to 0, this has the potential to drop values in the cell state. Then we conduct
a point-wise addition on the output of the input gate, which changes the cell state to new

values that the neural network considers important. As a result, we now have a new cell state.
C(t) = o (F(£) * C(t — 1) + i(t))

Output gate : The next hidden state is determined by the output gate. It's important to
remember that the concealed state contains data from prior inputs. Predictions are also made
using the concealed state. First, we use a sigmoid function to combine the prior concealed
state and the current input. The newly adjusted cell state is then sent to the tanh function.
To determine what information the hidden state should contain, we multiply the tanh output
with the sigmoid output. The concealed state is the output. After that, the new cell state

and concealed are carried over to the next time step.

o(t) = o (x(t)Uoy + h(t — 1)W,)
h(t) = tanh (Ct) * o(t)

2.3.5 Attention Mechanism

The Attention mechanism is one of the main frontiers in the Deep Learning and is an evolution
of the Encoder-Decoder Model, developed in order to improve the performance on long input
sequences. Where it have become an integral part of compelling sequence modeling and
transduction models in various tasks, allowing modeling of dependencies without regard to their
distance in the input or output sequences [11][35][70].In most cases, attention mechanisms

are utilized in combination with a recurrent network[52].

CHAPTER 2. MACHINE LEARNING 32

The development of attention mechanisms[11][19] has also lead to improvements in long-
term dependency learning — with Transformer architectures achieving state-of-the-art perfor-
mance in multiple natural language processing application[70][21].

The fundamental concept is to allow the decoder to access encoder information selectively
during decoding. This is accomplished by creating a unique context vector for each time step
of the decoder, calculating it in terms of the previous hidden state as well as all of the encoder'’s
hidden states, and assigning trainable weights to them.

In " encoder-decoder attention” layers, the queries come from the previous decoder layer,and
the memory keys and values come from the output of the encoder. This allows every position
in the decoder to attend over all positions in the input sequence. This mimics the typical
encoder-decoder attention mechanisms in sequence-to sequence models such as[11][70].

As a result, the Attention mechanism allocates varying degrees of relevance to the various
pieces of the input sequence, with the more significant inputs receiving greater attention. This
explains the model's name.

The attention mechanism can be re-formulated into a general form that can be applied
to any sequence-to-sequence task, where the information may not necessarily be related in a
sequential fashion.

In NLP models, the attention mechanism produces excellent results since it allows the
model to remember all of the words in the input and recognize the most important terms

when creating a response.

2.3.6 Attention Types

Attention Mechanisms

Local Attention

Figure 2.7: Attention types[11].

CHAPTER 2. MACHINE LEARNING 33

2.3.6.1 Self Attention

First introduced in Long Short-Term Memory-Networks for Machine ReaOver the past decade,
artificial intelligence (Al) technologies have gained increasing importance in a variety of fields.
ding by Jianpeng Cheng[70]. The idea is to relate different positions of the same hidden state
space derived from the input sequence, based on the argument that multiple components
together form the overall semantics of a sequence. This approach brings together these differ-
ently positioned information through multiple hops attention. This particular implementation
follows A Structured Self-Attentive Sentence Embedding by Zhouhan Lin[62]. where authors
propose an additional loss metric for regularization to prevent the redundancy problems of the

embedding matrix if the attention mechanism always provides similar annotation weights.

2.3.6.2 Global(Soft) Attention

First introduced in Neural Machine Translation by Jointly Learning to Align and Translate by
Dzmitry Bahdanau et al. The idea is to derive a context vector based on all hidden states of
the encoder RNN. Hence, it is said that this type of attention attends to the entire input state

space.

2.3.6.3 Local(Hard) Attention

First introduced in Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention by Kelvin Xu . and adapted to NLP in Effective Approaches to Attention-based
Neural Machine Translation by Minh-Thang Luong[67]. The idea is to eliminate the attentive
cost of global attention by instead focusing on a small subset of tokens in hidden states set

derived from the input sequence.

2.4 Time Series Forecasting with Deep Learning

2.4.1 Time Series

Time series arise as recordings of processes which vary over time. A recording can either be a
continuous trace or a set of discrete observations observed over a period of time[53].A Time
series is a set of observations taken at specified time; usually at equal intervals. Mathematically
a time series is defined by the values Y1,Y2.....Yn of the variable Y at times t1,t2....tn.

CHAPTER 2. MACHINE LEARNING 34

1350 1400

Value of SP500

1300

0 20 40 60 80
Mo. of Trading Days

Figure 2.8: A graph showing the Standard Poor (SP) 500 index for the U.S. stock market for
90 trading days starting on March 16 1999[17].

2.4.2 Time Series Components

2.4.2.1 Long term trend

The long-term trend is the data's overall general direction, excluding any short-term impacts
such as seasonal changes or noise.

2.4.2.2 Seasonality

Seasonality refers to periodic oscillations that occur repeatedly throughout the course of a
time series.

2.4.2.3 Stationarity

The property of stationarity is crucial in time series analysis. If the mean, variance, and covari-
ance of a time series do not fluctuate significantly over time, it is said to be stationary. Many

transformations may be used to extract the stationary portion of a non-stationary process.

2.4.2.4 Noise

Every collection of data has noise, which refers to uncontrollable fluctuations or variances.

CHAPTER 2. MACHINE LEARNING 35

2.4.2.5 Autocorrelation

The autocorrelation of a time series with a lagged version of itself is used to determine sea-

sonality and trend in time series data.

2.4.3 Time Series Forecasting

Because many various forms of data are kept as time series, time series forecasting has long
been a very significant topic of research in many disciplines.For example we can find a lot
of time series data in medicine[18][61][74], weather forecasting[14],finance[9], biology[8][63],
supply chain management[10] and stock prices forecasting[57][44], etc.

2.4.4 Time Series Forecasting with Traditional Machine Learning

The most classical Machine Learning models used to solve this problem are ARIMA models
and exponential smoothing.

ARIMA stands for combination of Autoregressive (AR) and Moving Average (MA) ap-
proaches within building a composite model of the time series[13]. This model is really simple,
yet it has the potential to provide good outcomes. In order to manage the autocorrelation
encoded in the data, it includes parameters to account for seasonality, long-term trend, au-
toregressive, and moving average terms. Exponential smoothing predictions are based on
weighted averages, similar to ARIMA models, but distinct diminishing weights are allocated
to each observation, and as we go further away from the present, less significance is given to
observations.

Traditional Machine Learning models are generally recognized to have a number of draw-
backs:

-Missing values can have a significant impact on model performance.

-They are unable to discern complicated patterns in data.

-They often operate best in short-term predictions rather than long-term forecasts.

2.4.5 Time Series Forecasting with Deep Learning

Given the increasing availability of data and computer power in recent years, Deep Learning
has become a critical component of the current generation of Time Series Forecasting models,
which has shown great results.

Deep learning methods, such as CNNs, RNNs and Long Short-Term Memory Networks,
Attention mechanism can be used to automatically learn the temporal dependence structures
for challenging time series forecasting problems.

Attention mechanism has the benefit of being more efficient and more interpretable than
other Deep Learning models, which are typically regarded as black boxes since they lack the

capacity to explain their outputs, thanks to the attention weights.

CHAPTER 2. MACHINE LEARNING 36

2.4.5.1 Time Series Forecasting with Attention Mechanism

Recent works has also demonstrated the benefits of using attention mechanisms in time se-
ries forecasting applications, with improved performance over comparable recurrent networks
[25][38][39]54]. For instance, [25] use attention to aggregate features extracted by RNN

encoders, with attention weights produced.

g(1) 7o) 9(3)
.-.‘\\\. [y ...-"\\‘\ &
v oo v oo v Decoder
-~ -“\II. St1] .'\\‘__ Ir»’-" ‘_.. 5121 \.\‘.-__ .,"' --._‘ 5[3]
L})f-' w \ w '_\\‘ .'/.
c(1) c(2) c(3)
L A 4
any| ’/r ﬁ‘”l - .-.?“3\‘3'23 a(3.3)
“» alf1,3) w2 A) '::z::'u12.33 R -,L
I N h(1) v hi2) yh(3)
] U Encoder

u U
On Om O

Encoder: The encoder is made up of a stack of recurrent units, which can be RNNs,
LSTM cells, or GRU cells. The representation of each input sequence is calculated at each
time step as a function of the previous time step’s hidden state and the current input. All of
the encoded information from the preceding hidden representations and inputs is contained in
the final hidden state.

h(t) = F(Wh(t — 1) + Ux(t))

Context vector: The fundamental distinction between the Attention mechanism and the
Encoder-Decoder model is that at each time step t of the decoder, a different context vector
c(t) is computed.

To calculate the context vector c(t) for time step t, follow these steps. To begin, the
so-called alignment scores e(j,t) are generated using the following weighted sum for each

combination of encoder time step j and decoder time step t:

CHAPTER 2. MACHINE LEARNING 37

e(j,t) = Vatanh (Uass(t — 1) + Wash()))

Wa, Ua, and Va are trainable weights known as attention weights in this equation. The
weights Wa correspond to the encoder’s hidden states, the weights Ua to the decoder’s hidden
states, and the weights Va to the function that calculates the alignment score.

Over the encoder time steps j, the scores e(j,t) are normalized using the softmax function,

giving the attention weights (j,t):

exp (e(j. t))
> exp (e, 1))

alj, t) =

The relevance of the input of time step j for decoding the output of time step t is captured
by the attention weight (j,t). According to the attention weights, the context vector c(t) is

constructed as the weighted sum of all the encoder’s hidden values:

-

c(t) =) alj. t)h()

j=1

This context vector enables the input sentence’s more relevant inputs to be given greater
attention.

Decoder: The decoder now receives the context vector c(t), which computes the probability
distribution of the next probable output. This decoding procedure applies to all of the time
steps in the input.

The current hidden state s(t) is then computed using the recurrent unit function, using
the context vector c(t), the hidden state s(t-1) and the previous time step’s output y(t-1) as

s(t) = £ (s(t — 1), 9(t — 1), (t))

The model may thus detect correlations between distinct sections of the input sequence

and similar elements of the output sequence using this approach.

CHAPTER 2. MACHINE LEARNING 38

The output of the decoder is calculated for each time step by applying the softmax function

to the weighted hidden state:

y(t) = softmax(Vs(t))

2.5 Conclusion

This chapter covered definitions of machine and deep learning and attention mechanism was
the main focus of the class due to their importance and also because they are the main topic of
this research and some related work. The work design will be introduced in the next chapter,

as well as the proposed architectures.

Chapter 3

System design

3.1 Introduction

Service discovery mechanisms have continuously evolved to support the effective service com-
position in microservice applications. But it could not succeed in taking the dynamic nature
into account .Therefore, we propose machine learning technique to take into account this
nature and maximize the QoS . In this chapter, we will present the conceptual side of our

work, which includes the general architecture as well as the detailed design.

3.2 Related Work

We now review related work on service discovery and the use of machine learning in QoS.

Service Discovery mechanisms have been reviewed extensively in the work of [60]. In
general, these mechanisms do not usually take into account QoS concerns such as the response
time. However, in a real world invocation environment, aspects such as response time are
paramount [43].Ran [54] proposes a model for web service discovery with QoS by extending
the UDDI model with the QoS information. Gouscos et al. [27] proposed a simple approach
to dynamic Web services discovery that models Web service management attributes such as
QoS and price.

ML have been already employed for developing recommendation systems for Web Services,
and demonstrated to be effective and efficient. In [46], the authors propose a number of
data mining methods to improve service discovery and facilitate the use of Web services.
More recently, various ML techniques have been exploited for addressing important aspects
related to microservice architectures. In [3], unsupervised learning is used to automatically
decompose a monolithic application into a set of microservices. In [24] reinforcement learning
has been used for considering QoS factors while assembly services. In [16], bayesian learning
and LSTM are used to fingerprint and classify microservices. In [34], reinforcement learning
is used to autoscale microservices applications, whereas in [41] random forest regression is
used to implement intelligent container scheduling strategy. Finally, in [15] authors used deep

neural networks and reinforcement learning to select microservice instances in a given context

39

CHAPTER 3. SYSTEM DESIGN 40

and to maximize QoS. We used in our work their exemplar application to generate our dataset

and evaluate our approach.

3.3 System Architecture

Our work will be in the service discovery exactly in the service registry that we saw earlier
in 1.4. When the service consumer make requests via the Router(Load Balancer), the router
queries a service registry to select the proper service instance without taking account for the
context and quality of services. In this phase, we apply machine learning technique to maximize
the QoS; We extract the QoS data of all the service instances from the service registry to
predict the best instance from the QoS parameter (Response Time) of each instance, These
parameters represent continuous time series; So it's a time-series forecasting problem. We try

to solve using Attention Mechanism.

3.3.1 Machine Learning Process Flow

This figure shows the ML process flow using activity diagram, that make our work more visible.

0y

I Train Training data
. . QOS data [~ A Raw dat P L)

RegistryService > Extract data aw data repmcessmg —£—

data
\ J Test - -
- Generate
Model

. e

f
‘ Prediction

‘ Evaluation
N

Figure 3.1: The ML process

3.4 Deep learning model architecture

The figure 3.2 represente the DL architecture of our work; we will add a custom Attention

layer to LSTM layers.

CHAPTER 3. SYSTEM DESIGN 41

.1‘-"}1 Predict value

O Dense

|' \ Attention layer

] Iy

. LSTM hidden layer

@ @ @ L I @ Input vector

Figure 3.2: Deep learning model architecture

3.5 Conclusion

This chapter described the architecture of our system.The implementation and the results of

the experiment,We will present in the next chapter.

Chapter 4

Implementation and Results

4.1 Intoduction

After seeing the design of our work, we come to the implementation.
In this chapter we will present the development environment and the language programming

used. Then, we'll go over all of the proposed strategies as well as the outcomes.

4.2 Work Environment and Development Tools

4.2.1 Programming language
4.2.1.1 Python

Python is an easy to understand, versatile programming language. It has efficient high level
data structures and a clear but effective approach to object-oriented programming.

Python's elegant syntax and dynamic typing, as well as its interpreted nature, make it
an excellent language for scripting and rapid application creation across a wide range of
platforms[58].

Figure 4.1: Python logo[58].

42

CHAPTER 4. IMPLEMENTATION AND RESULTS 43

import sys
sys.version

'3.9.12 | packaged by conda-forge | (main, Mar 24 2822, 23:17:83) [MSC v.1929 64 bit (AMD&E4)]"

Figure 4.2: Python version used in jupyter notebook.

4.2.2 Deep learning and Attention mechanism kit

The following is the kit of deep learning and Attention mechanism used in our system.

4.2.2.1 TensorFlow

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen-
sive, flexible ecosystem of tools, libraries and community resources that lets researchers push
the state-of-the-art in ML and developers easily build and deploy ML powered applications.

.

Figure 4.3: TensorFlow logo[65].

4.2.2.2 keras

Keras is a high-level neural networks library, written in Python and capable of running on top
of either TensorFlow or Theano. It was developed with a focus on enabling fast experimenta-
tion. Being able to go from idea to result with the least possible delay is key to doing good
research[65].

Keras

Figure 4.4: Keras logo[65].

4.2.2.3 Pandas

Pandas is an open source, BSD-licensed library providing high-performance, easy-to use data

structures and data analysis tools for the Python programming language[1].

CHAPTER 4. IMPLEMENTATION AND RESULTS 44

H
pandas

Figure 4.5: Pandas logo[1].

4.2.2.4 NumPy

NumPy is the fundamental package for scientific computing in Python. It is a Python library
that provides a multidimensional array object, various derived objects (such as masked arrays
and matrices), and an assortment of routines for fast operations on arrays, including mathe-
matical, logical, shape manipulation, sorting, selecting, /O, discrete Fourier transforms, basic

linear algebra, basic statistical operations, random simulation and much more[31].

Oz’O’
’i
NumPy

Figure 4.6: NumPy logo[31].

4.2.2.5 Scikit-learn

Scikit-learn (Sklearn) is the most useful and robust library for machine learning in Python. It
provides a selection of efficient tools for machine learning and statistical modeling including
classification, regression, clustering and dimensionality reduction via a consistence interface
in Python. This library, which is largely written in Python, is built upon NumPy, SciPy and
Matplotlib.

‘Keafm

Figure 4.7: SKlearn logo.

CHAPTER 4. IMPLEMENTATION AND RESULTS 45

4.2.2.6 Matplotlib

Matplotlib is a plotting library for the Python programming language and its numerical math-
ematics extension NumPy. It provides an object-oriented API for embedding plots into appli-
cations using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. There is also
a procedural "pylab” interface based on a state machine (like OpenGL), designed to closely
resemble that of MATLAB, though its use is discouraged. SciPy makes use of Matplotlib.

matpl: tlib
Figure 4.8: Matplotlib logo.

4.2.2.7 Seaborn

Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib
and integrates closely with pandas data structures. Seaborn helps you explore and understand
your data. Its plotting functions operate on data frames and arrays containing whole datasets
and internally perform the necessary semantic mapping and statistical aggregation to produce

informative plots.

seaborn

Figure 4.9: Seaborn logo.

4.2.3 Frameworks and tools
4.2.3.1 Anaconda

Anaconda is a distribution of the Python and R programming languages for scientific computing
(data science, machine learning applications, large-scale data processing, predictive analytics,
etc.), that aims to simplify package management and deployment. The distribution includes
data-science packages suitable for Windows, Linux, and macOS. It is developed and maintained
by Anaconda, Inc., which was founded by Peter Wang and Travis Oliphant in 2012 [2].

CHAPTER 4.

4.2.3.2 Anaconda Environment

IMPLEMENTATION AND RESULTS

ANACONDA

Figure 4.10: Anaconda logo.

46

The figure 4.11 represents my environment using in anaconda, | have installed all the libraries

that i used to build my code(like TensorFlow, Keras, Pandas.. etc).

O Anaconda Navigato

File Help

{2 ANACONDA NAVIGATOR

A Home

N Learning

ah Community

ANACONDA.

Secure your software
supply chain from
the

End-to-end package
security, guarantesd

Documentation

Anaconda Blog

Yy a ¢

4.2.3.3 Jupyter Notebook

(search Environments Installed - Channels Update index
base (root) Name ~ T Description
stack-data a
NLP
statsmodels @ statistical computations and medels For use with scipy
QoS
tbb D High level abstract threading library
Qosz °

o ® 5

Create Clone Import Backup Remove

tenserboard

tensarboard-data-
server

tensorboard-plugin-
wit

tensorflow

tensorflow-base

tensorflow-

=
B mator

termeelor

terminado

200 packages available

O Tensorflow's visualization toolkit
D) Data server for tensorboard

O What-if tool tensorbeard plugin

D TensorFlow is a machine learning library.

o Upgrade Now

O Tensorflow is 2 machine learning library, base package contains only tensorflow.

o) “Tensorflow estimator is a high-level tenserflow api that greatly simplifies machine learning

programming.

O Ansii color formatting for output in terminal

@ Terminals served by tornade websockets

-

x

Connect v

(search Packages

Version

a)

Figure 4.11: Anaconda Environment.

The Jupyter Notebook is the original web application for creating and sharing computational

documents. It offers a simple, streamlined, document-centric experience[37].

CHAPTER 4. IMPLEMENTATION AND RESULTS 47

jupyter
-

Figure 4.12: Jupyter logo.

4.3 Implementation phases

4.3.1 Creating the DL model
4.3.1.1 Loading the dataset

To load the data we use panda library.

import pandas as pd
data= pd.read_csv(r'C:\WUsers\PRO\Desktop\Ferial\export_dataframe.csv')

Figure 4.13: Importing Panda and loading dataset.

data.head()

id client_context mean_response_time Response Time service_context Instance Service Type status Timestamp

o0 2 Cc1 0.0 1822 C1 hitp:/f192.168.1.12:9030 auth-service 0 2022-05-20 14:22:56.000000

1 3 c1 1822.0 1499 C1 hitp:i192.168.1.12:9030 auth-service 0 2022-05-20 14:23:06.000000

2 4 c1 0.0 9277 C1 hittp:/f192.168.1.12:9000 numismatic-service 1 2022-05-20 14:22:51.000000

3 5 C1 9277.0 7199 C1 hitp:/1192.168.1.12:9000 numismatic-service 1 2022-05-20 14:23:00.000000

4 6 C1 8238.0 8076 C1 hitp:/1192.168.1.12:9000 numismatic-service 1 2022-05-20 14:23:07.000000
Figure 4.14:

4.3.1.2 \Visualisation

The figures 4.16 and 4.18 represent the dataset visualisation using matplolib and seaborn

libraries for understand well the shape of my dataset and known the content of it.

import seaborn as sns
sns.pairplot(data,hue="Instance");

Figure 4.15: Instance Visualization.

CHAPTER 4.

IMPLEMENTATION AND RESULTS

- . .

.

=

T T T v

.

.

.

i -

.

. L
]

. .
.

. H .

T T

.

.

i i

L L

T T

Figure 4.16: Seaborn pairplot.

plt.figure(figsize = (18,18))
sns.boxplot(x="Response Time',y="Instance',data=data)

Figure 4.17: Response time and instance visualisation.

LR B BRI]

Instance
http:192.168.1.12-9030
http:192.168.1.12-9000
hetpoi'l92.166.1.12:9010
hetp:/fl92.168.1.4:9010
hetp:/ 192 168.1.4-5030
hetp:192.168.1.4-5000
htp:192.168.1.4-5012
hetp:/fl92. 168.1.4:5031
hetp:/fl92.168.1.4:5001
hetp:192.168.1.4-5011
http:192.168.1.4-5002

48

CHAPTER 4. IMPLEMENTATION AND RESULTS

hittp: 192 .168.1.12-9030

hictpef192 168.1.12-9000
hitp:ff192.166.1.12-9010

hitpc/i192.168.1.4:9010 +

hitpc/i192.168.1.4:9030

HIlH
—
-l
HIH

I} i

—l—
HIlH

LR
L] L]
LR
*] L2
L L B
L]
LK]

g hitpo/i1932 1681 4;9000 - * *
htge:/7192 168.1 4:3012 ' '
http/192.168.1.4:3031 |)-I—f
htp-/192.168.1.4:3001 T *
http://192 168.1 4:9011 '
hitp-/192.168.1.4:9002 T I T *
0 5000 10000 15000 20000 35000
Response Time
Figure 4.18: Seaborn Boxplot.
4.3.1.3 Feature Engineering
data.info()
<class 'pandas.core.frame.DataFrame’ >
Rangelndex: 1756 entries, @ to 1755
Data columns (total @ columns):
Column HNon-Mull Count Dtype
8 id 1756 non-null inted
1 client _context 1756 non-null object
2 mean_response_time 1756 non-null floatsd
3 Response Time 1756 non-null inté4d
4 service context 1756 non-null object
5 Instance 1756 non-null object
6 Service Type 1756 non-null object
7 status 1756 non-null inted
& Timestamp 1756 non-null object

dtypes: floaté4(l), inté4d(3)},
memory usage: 123.6+ KB

object(5)

Figure 4.19: data informations.

49

CHAPTER 4. IMPLEMENTATION AND RESULTS 50

The figure 4.19 present the function info() which come up with details informations about the
type of the data is there a null values or not the name of column, as well as the memory and
the memory usage.

It is ovbious that we have different data types (categorical, numerical) in our dataset, which
urge us to change the types to use them in prediction phase When of the most used techniques
is Label Encoding where all the categorical data get converted to a numerical values where
each number represent one label.

However, this part is important to use of the splitting techniques like train test split,
shouffle, cross Validation..etc, because splitting the data set into train and test will be a good
way to avoid the phenomenon of overfitting.

To convert the above objList features into numeric type, we use a forloop as given below,
By using the package of SKLEARN :

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

for feat in objList:
data[feat] = le.fit_transform(data[feat].astype(str))

Figure 4.20: Label Encoding for object to numeric conversion.

The figure 4.21 shows the new data informations after the conversation with label encoding.

CHAPTER 4.

IMPLEMENTATION AND RESULTS

print (data.info())

<class 'pandas.core.frame.DataFrame’>»
Rangelndex: 1756 entries, 8 to 1755
Data columns (total 18 columns):

#

0O =1 O WA fs Ll R =

0

MNone

Column

id
client co

mean_response_time

Response
service ¢
Instance

ntext

Time
ontext

Service Type

status
Timestamp

Service type
dtypes: floatb4(l), int3z2(6),
memory usage:

96.2 KB

Non-Null Count

1756

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
ints4(3)

Figure 4.21: New data informations.

4.3.1.4 The DL Model

To build our model, we need firstly to create the attention layer.

Dtype
intbc4
int3z
floated
inté4
int32
int3z
int3z
intc4
int3z
int3z

51

CHAPTER 4. IMPLEMENTATION AND RESULTS 52

from keras import Model
from keras.layers import Layer
import keras.backend as K

class attention(Layer):
def _init_ (self,* kwargs):
super{attention,self). init_ (**kwargs)

def build(self,input shape}:
self.W=self.add_weight{name="attenticn_weight®, shape=(input_shape[-1],1),
initializer="random_normal’, trainable=True)
self.b=self.add_weight{name="'attenticn_bias', shape=(input_shape[1],1),
initializer="zeros', trainable=True)
super({attention, self).build{input_shape)

def call(self,x):
Alignment scores. Pass them through tanh function
e = K.tanh(K.dot(x,self.W)+self.b)
Remove dimension of size 1
e = K.squeeze(e, axis=-1)
Compute the weights
alpha = K.softmax(e)
Reshape to tensorFlow format
alpha = K.expand_dims{alpha, axis=-1)
Compute the context vector
context = x * alpha
context = K.sum{context, axis=1)
return context

Figure 4.22: Attention Layer.

build():adding weights.

addweight(): builtin function used to add the weights and the biases .

call(): The call() method implements the mapping of inputs to outputs.it compute the
alignment scores, weights, and context.

model att=Sequential()
model att.add(LSTM({52,return sequences=True,input shape=(188,1)))
model att.add(LSTHM(Z2,return_sequences=True))
attention_layer = model_att.add{attention())
model att.add(Dense(1))
model att.compile{loss="mean squared error’,
optimizer="sgd",

)

model att.summary()

Figure 4.23: Attention model with LSTM.

loss :Mean squared error (MSE) is the mean overseen data of the squared differences
between true and predicted values.
optimizer :Stochastic gradient descent(sgd) used to find the model parameters that cor-

respond to the best fit between predicted and actual outputs.

CHAPTER 4. IMPLEMENTATION AND RESULTS

Model: "sequential 1"

Layer (type) Output Shape Param #
lstns (LSTH) (None, 106, 59) 10400
Istm 4 (LSTM) (None, 108, 50) 20200
attention (attention) (Mone, 5@) 158

51

Total params: 32,381
Trainable params: 38,301
Mon-trainable params: @

Figure 4.24: The model summary.

53

The textual summary (Figure 4.24) offers information on the model's layers and their order.

model_att.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=18,batch_sizre=64,verbose=1)

Epoch 1/1@
17/17 [===== =======] -
Epoch 2/1@
17/17 [===== =======] -
Epoch 3/1@
17/17 [===== =======] -
Epoch 4/1@
17/17 [===== =======] -
Epocch 5/1@
17/17 [===== =======] -
Epoch B/1@
17/17 [===== mmmmmm] -
Epoch 7/1@
17/17 [===== =======] -
Epocch 3/1@
17/17 [===== =======] -
Epocch 9/1@
17/17 [===== mmmmmm] -
Epoch 1&/1@
17/17 [===== =======] -

Figure

145 288ms/step - less:

35 176ms/step
35 169ms/step
35 17@ms/step
35 173ms/step
35 171ms/step
35 171ms/step
35 171ms/step
35 174ms/step

2s 191ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

8.80%0 - val_loss: 8.8852

@.9a74

@.8e73

@.9a732

@.8a73

8.9873

@.8a73

@.9a732

8.9873

@.88732

4.25: Model training.

wval_ loss:
val_loss:
val_loss:
val_loss:
val_ loss:
val_loss:
wval_ loss:
val_ loss:

val_loss:

5]

a.

.2a52

2a34

.2a53

.BEs3

234

.BEs3

L2@53

234

.2@53

CHAPTER 4. IMPLEMENTATION AND RESULTS 54

4.3.1.5 Evaluation

train_mse attn = model att.evaluate(X train,y train)
test_mse_attn = model_att.evaluate(X_test, ytest)

print{"Train set MSE with attention = ", train_mse attn)

print{"Test set MSE with attention = ", test_mse_attn)

33/33 [== ===== ======] - 1s 4lms/step - loss: ©.8674
17/17 [== ===== ======] - 1s 48ms/step - loss: @.8054

Train set MSE with attention = @.887388817843389511
Test set MSE with attention = &.8854496557254187

Figure 4.26: Evaluate model.

4.4 Conclusion

We have attempted to create ML prediction utilizing Attention mechanism with LSTM through-
out the sections of this chapter, demonstrating the technologie employed and their implemen-

tation step by step. unfortnuately, we don't satisfied of the resulte because we have a poor
dataset.

General Conclusion

With the wide spread of microservices applications ad the evolve of service discovery mech-
anisms, Even now, these mechanisms do not specifically take service context and quality into
consideration.

In this work, we have tried to develop the traditional service discovery mechanism using
ML technique (Attention mechanism with deep neural networks) as a part of service discovery
process to get the best QoS profile of miroservices instances.

Future study in this area might include, using transfer learning to make the approach more
robust .

55

Bibliography

[1]
2]
3]

[4]

[5]

[6]

[7]

8]

9]

[10]

[11]

[12]

Pandas.
Anaconda software distribution, 2020.

Muhammad Abdullah, Waheed Igbal, and Abdelkarim Erradi. Unsupervised learning
approach for web application auto-decomposition into microservices. Journal of Systems
and Software, 151:243-257, 20109.

Omar Al-Debagy and Peter Martinek. A comparative review of microservices and mono-
lithic architectures. In 2018 IEEE 18th International Symposium on Computational Intel-
ligence and Informatics (CINTI), pages 000149-000154. IEEE, 2018.

Muzaffar Ali, Sabahat Ali, and Atif Jilani. Architecture for microservice based system. a
report, 2020.

Mohamed Alloghani, Dhiya Al-Jumeily Obe, Jamila Mustafina, Abir Hussain, and Ahmed
Aljaaf. A Systematic Review on Supervised and Unsupervised Machine Learning Algo-
rithms for Data Science, pages 3-21. 01 2020.

Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

Aytac Altan, Seckin Karasu, and Stelios Bekiros. Digital currency forecasting with chaotic
meta-heuristic bio-inspired signal processing techniques. Chaos, Solitons & Fractals,
126:325-336, 20109.

Torben G Andersen, Tim Bollerslev, Peter Christoffersen, and Francis X Diebold. Volatility
forecasting, 2005.

Yossi Aviv. A time-series framework for supply-chain inventory management. Operations
Research, 51(2):210-227, 2003.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. Microservices
in industry: insights into technologies, characteristics, and software quality. In 2019 IEEE
international conference on software architecture companion (ICSA-C), pages 187-195.
IEEE, 2019.

56

BIBLIOGRAPHY 57

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

George EP Box and Gwilym M Jenkins. Time series analysis: Forecasting and control
san francisco. Calif: Holden-Day, 1976.

Sean D Campbell and Francis X Diebold. Weather forecasting for weather derivatives.
Journal of the American Statistical Association, 100(469):6-16, 2005.

Mauro Caporuscio, Marco De Toma, Henry Muccini, and Karthik Vaidhyanathan. A
machine learning approach to service discovery for microservice architectures. In European

Conference on Software Architecture, pages 66—82. Springer, 2021.

Hyunseok Chang, Murali Kodialam, TV Lakshman, and Sarit Mukherjee. Microservice
fingerprinting and classification using machine learning. In 2019 IEEE 27th International
Conference on Network Protocols (ICNP), pages 1-11. IEEE, 2019.

Chris Chatfield. Time-series forecasting. Chapman and Hall/CRC, 2000.

Vinay Kumar Reddy Chimmula and Lei Zhang. Time series forecasting of covid-19 trans-
mission in canada using Istm networks. Chaos, Solitons & Fractals, 135:109864, 2020.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Padraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning. In
Machine learning techniques for multimedia, pages 21-49. Springer, 2008.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Shahir Daya, Nguyen Van Duy, Kameswara Eati, Carlos M Ferreira, Dejan Glozic, Vasfi
Gucer, Manav Gupta, Sunil Joshi, Valerie Lampkin, Marcelo Martins, et al. Microservices
from theory to practice: creating applications in IBM Bluemix using the microservices
approach. IBM Redbooks, 2016.

Paolo Di Francesco, lvano Malavolta, and Patricia Lago. Research on architecting mi-
croservices: Trends, focus, and potential for industrial adoption. In 2017 IEEE Interna-
tional Conference on Software Architecture (ICSA), pages 21-30. IEEE, 2017.

Mirko D'Angelo, Mauro Caporuscio, Vincenzo Grassi, and Raffaela Mirandola. Decentral-
ized learning for self-adaptive qos-aware service assembly. Future Generation Computer
Systems, 108:210-227, 2020.

Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong Yuan, Di Wu, Wensheng
Wang, Jian Pei, and Heng Huang. Multi-horizon time series forecasting with temporal

BIBLIOGRAPHY 58

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

attention learning. In Proceedings of the 25th ACM SIGKDD International conference
on knowledge discovery & data mining, pages 2527-2535, 2019.

Zoubin Ghahramani. Unsupervised learning. In Summer school on machine learning,
pages 72-112. Springer, 2003.

Dimitris Gouscos, Manolis Kalikakis, and Panagiotis Georgiadis. An approach to mod-
eling web service qos and provision price. In Fourth International Conference on Web
Information Systems Engineering Workshops, 2003. Proceedings., pages 121-130. IEEE,
2003.

Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent
neural networks, pages 37—-45, 2012.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai,
Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional
neural networks. Pattern recognition, 77:354-377, 2018.

Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357-362,
September 2020.

Pooyan Jamshidi, Claus Pahl, Nabor C Mendonca, James Lewis, and Stefan Tilkov.
Microservices: The journey so far and challenges ahead. IEEE Software, 35(3):24-35,
2018.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:

A survey. Journal of artificial intelligence research, 4:237-285, 1996.

Abeer Abdel Khaleq and Ilkyeun Ra. Intelligent autoscaling of microservices in the cloud
for real-time applications. |EEE Access, 9:35464-35476, 2021.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. Structured attention
networks. arXiv preprint arXiv:1702.00887, 2017.

Matthias Klusch. Service discovery., 2014.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bus-

sonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay,

BIBLIOGRAPHY 59

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Paul Ivanov, Damian Avila, Safia Abdalla, and Carol Willing. Jupyter notebooks — a pub-
lishing format for reproducible computational workflows. In F. Loizides and B. Schmidt,
editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas,
pages 87 — 90. 10S Press, 2016.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and
Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer

on time series forecasting. Advances in Neural Information Processing Systems, 32, 2019.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers
for interpretable multi-horizon time series forecasting. arXiv preprint arXiv:1912.09363,
2019.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey.
Philosophical Transactions of the Royal Society A, 379(2194):20200209, 2021.

Jingze Lv, Mingchang Wei, and Yang Yu. A container scheduling strategy based on
machine learning in microservice architecture. In 2019 IEEE International Conference on
Services Computing (SCC), pages 65-71. IEEE, 20109.

Divyanand Malavalli and Sivakumar Sathappan. Scalable microservice based architecture
for enabling dmtf profiles. In 2015 11th International Conference on Network and Service
Management (CNSM), pages 428-432. |EEE, 2015.

Daniel A Menasce. Qos issues in web services. IEEE internet computing, 6(6):72-75,
2002.

Prapanna Mondal, Labani Shit, and Saptarsi Goswami. Study of effectiveness of time
series modeling (arima) in forecasting stock prices. International Journal of Computer
Science, Engineering and Applications, 4(2):13, 2014.

Fabrizio Montesi and Janine Weber. Circuit breakers, discovery, and api gateways in
microservices. arXiv preprint arXiv:1609.05830, 2016.

Richi Nayak and Cindy Tong. Applications of data mining in web services. In International

Conference on Web Information Systems Engineering, pages 199-205. Springer, 2004.

Rory V O'Connor, Peter Elger, and Paul M Clarke. Continuous software engineering—a
microservices architecture perspective. Journal of Software: Evolution and Process,
29(11):e1866, 2017.

Organization. Service discovery for microservices.

Keiron O'Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458, 2015.

BIBLIOGRAPHY 60

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Vinod Keshaorao Pachghare. Microservices architecture for cloud computing. architec-
ture, 3:4, 2016.

Mahesh Pal. Random forest classifier for remote sensing classification. International
Journal of remote sensing, 26(1):217-222, 2005.

Ankur P Parikh, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkoreit. A decomposable
attention model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.

Daniel Pena, George C Tiao, and Ruey S Tsay. A course in time series analysis, volume
322. John Wiley & Sons, 2011.

Shuping Ran. A model for web services discovery with qos. ACM Sigecom exchanges,
4(1):1-10, 2003.

Mark Richards. Microservices vs. service-oriented architecture. O'Reilly Media, 2015.
C Richardson. Microservices patterns. shelter island, 2018.

Tae Hyup Roh. Forecasting the volatility of stock price index. Expert Systems with
Applications, 33(4):916-922, 2007.

Guido van Rossum. Python tutorial: Release 3.6. 4, 2018.

Barakat Saman. Monitoring and analysis of microservices performance. Journal of Com-
puter Science and Control Systems, 10(1):19, 2017.

Cristina Schmidt and Manish Parashar. A peer-to-peer approach to web service discovery.
World Wide Web, 7(2):211-229, 2004.

Sourabh Shastri, Kuljeet Singh, Sachin Kumar, Paramjit Kour, and Vibhakar Mansotra.

Time series forecasting of covid-19 using deep learning models: India-usa comparative
case study. Chaos, Solitons & Fractals, 140:110227, 2020.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155, 2018.

Pritpal Singh and Gaurav Dhiman. A hybrid fuzzy time series forecasting model based on
granular computing and bio-inspired optimization approaches. Journal of computational
science, 27:370-385, 2018.

Yan-Yan Song and LU Ying. Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27(2):130, 2015.

Keras Team. Simple. flexible. powerful.

Johannes Thones. Microservices. IEEE software, 32(1):116-116, 2015.

BIBLIOGRAPHY 61

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Uzaymacar. Uzaymacar/attention-mechanisms: Implementations for a family of attention
mechanisms, suitable for all kinds of natural language processing tasks and compatible

with tensorflow 2.0 and keras.

Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine
Learning, 109(2):373-440, 2020.

Greg Van Houdt, Carlos Mosquera, and Gonzalo Napoles. A review on the long short-term
memory model. Artificial Intelligence Review, 53(8):5929-5955, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, tukasz Kaiser, and lllia Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, and Eduardo
Figueiredo. Microservices in practice: A survey study. arXiv preprint arXiv:1808.04836,
2018.

Hulya Vural, Murat Koyuncu, and Sinem Guney. A systematic literature review on mi-
croservices. In International Conference on Computational Science and Its Applications,
pages 203-217. Springer, 2017.

Sanford Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

Taiyu Zhu, Kezhi Li, Pau Herrero, Jianwei Chen, and Pantelis Georgiou. A deep learning
algorithm for personalized blood glucose prediction. In KHD®@ IJCAI, pages 64-78, 2018.

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis

lectures on artificial intelligence and machine learning, 3(1):1-130, 2009.

Jinming Zou, Yi Han, and Sung-Sau So. Overview of artificial neural networks. Artificial
Neural Networks, pages 14—22, 2008.

Tom Cerny, Michael Donahoo, and Jiri Pechanec. Disambiguation and comparison of

soa, microservices and self-contained systems. pages 228-235, 09 2017.

	General Introduction
	Microservices Architecture
	Introduction
	Definition
	 Microservices Characteristics
	Microservices architecture VS Service-oriented architecture
	Microservices Goals
	Microservices advantages
	Microservices disadvantages
	Service discovery in microservices
	Definition
	The Client‑Side Discovery Pattern
	The Server‑Side Discovery Pattern

	Service Discovery work
	Conclusion

	Machine Learning
	Inroduction
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Reinforcement Learning

	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Network
	Long-Short Term Memory
	Attention Mechanism
	Attention Types

	Time Series Forecasting with Deep Learning
	Time Series
	Time Series Components
	Time Series Forecasting
	Time Series Forecasting with Traditional Machine Learning
	Time Series Forecasting with Deep Learning

	Conclusion

	System design
	Introduction
	Related Work
	System Architecture
	Machine Learning Process Flow

	Deep learning model architecture
	Conclusion

	Implementation and Results
	Intoduction
	Work Environment and Development Tools
	Programming language
	 Deep learning and Attention mechanism kit
	Frameworks and tools

	Implementation phases
	Creating the DL model

	Conclusion

