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General Introduction 

 

 Container terminals considered as the main part in the sea transportation, they offer 

facilities to move containers from to vessels and to vessels. 

 Containers are the critical logistics nodes and have a big Importance in national and 

international economies, in a container terminal they stacked on the storage yard  temporary 

before they retrieved ,  the limited space of the storage yard and the big number of containers 

arrived that leads to a typical problem called “Container Relocation Problem”, it’s a result of 

stacking containers above each other, when the target container needs to be retrieved is 

blocked by containers above it, for that it is necessary to relocate them to achieve the target 

container, the relocations of the blocking containers are unproductive , for that should 

minimized. 

the complexity of the problem gives an indication on the hardness of the problem, but 

it is important to consider the size, Small instances may be solved by an exact approach, and 

vise versa easy problems with high size can be solved with Metaheuristics because there is no 

exact approaches  can  solve CRP and find optimal solutions in a proper time, for that Caserta 

et al. [23] propose two  formulations of the problem and show that the CRP is NP-hard  ,  

 

for that we propose nature inspired approach, the Corona Virus Optimization (CVO) 

Algorithm to solve the Container relocation problem because of the Corona virus spreading 

behavior it has aim to cover the search solutions space.  

 

Our work organized on 3 chapters: 

 

Chapter 1: this chapter related to the Combinatorial Optimization in general (we will take  

different aspects of Optimization , types of optimization Problems and different solving 

approaches ). 

Chapter 2: this chapter related to the Container relocation Problem(we will describe the 

Container relocation  problem with different classifications and also the related works on it) 

Chapter 3 : in this chapter we will set our contributions to solve the CRP , and the results get 

by testing instances , comparing to other heuristics proposed in that field). 
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CHAPTER 1 

 

 

COMBINATORIAL OPTIMIZATION 
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1-1 INTRODUCTION 

Combinatorial optimization is an area of research at the intersection of applied 

mathematics, computer science, and operational research. it overlaps with many other areas 

such as computation complexity, computational biology, VLSI design, communication 

networks, and management science. It includes complexity analysis and algorithm design for 

combinatorial optimization problems, numerical experiments and problem discovery with 

applications in science and engineering [7]. 

the authors in [5] describe combinatorial optimization problems as “problems where the 

decision space is finite but possibly too big to be enumerated. 

1-2 BASICS 

1-2-1 Diversification  

Diversification means to generate diverse solutions so as to explore the search space on the 

global scale [1], 

1-2-2 Intensification 

Intensification strategies are based on modifying choice rules to encourage move 

combinations and solution features historically found good. They may also initiate a return to 

attractive regions to search them more thoroughly. Since elite solutions must be recorded in 

order to examine their immediate neighborhoods [2]. 

 

 

 

    Fig. 1.1 Intensification and Diversification [22] 
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1-2-3 Neighborhood. 

 A neighborhood function N is a mapping 𝑁 ∶  𝑆 →  2𝑆 that assigns to each solution 𝑠 of 𝑆 a 

set of solutions 𝑁(𝑠) ⊂ 𝑆.  

A solution 𝑠′ in the neighborhood of 𝑠 (𝑠′ ∈  𝑁(𝑆)) is called a neighbor of 𝑠. A neighbor is 

generated by the application of a move operator m that performs a small perturbation to the 

solution 𝑠.  

The structure of the neighborhood depends on the target optimization problem. It has been 

first defined in continuous optimization. The neighborhood 𝑁(𝑠) of a solution 𝑠 in a 

continuous space is the ball with center s and radius equal to 𝜖 with 𝜖 >  0 [3] 

 

Fig 1.2. Neighborhoods for a continuous problem [3] 
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1.2.4   Local  Optimum and Global Optimum  

1.2.4.1   Local optimum 

Relatively to a given neighboring function N, a solution 𝑠 ∈  𝑆 is a local optimum if it has a 

better quality than all its neighbors; that is, 𝑓 (𝑠)  ≤  𝑓 (𝑠′)2  for all 𝑠 ′ ∈  𝑁(𝑠) (Fig. 1.3). 

 For the same optimization problem, a local optimum for a neighborhood N1 may not be a 

local optimum for a different neighborhood N2. 

1.2.4.1   Global  optimum 

A solution s* ∈ S is a global optimum if it has a better objective function than all solutions of 

the search space, that is, ∀s ∈ S, f (s * ) ≤ f (s).  

Hence, the main goal in solving an optimization problem is to find a global optimal solution 

s*. Many global optimal solutions may exist for a given problem. Hence, to get more 

alternatives, the problem may also be defined as finding all global optimal solutions.  [3] 

 

Fig 1.3.  Local optimum and global optimum in a search space. A problem may have    

many global optimal solutions. 
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1.3  Complexity  

The complexity of an optimization problem divides on two parts, the complexity of the 

problem that we want to solve, and the complexity of the Algorithm we use to solve that 

problem. 

1.3.1 Complexity of Algorithms 

 An algorithm needs two important resources to solve a problem: time and space. The time 

complexity of an algorithm is the number of steps required to solve a problem of size n. 

 The complexity is generally defined in terms of the worst-case analysis. The goal in the 

determination of the computational complexity of an algorithm is not to obtain an exact step 

count but an asymptotic bound on the step count. 

Table 1.1 Search Time of an Algorithm as a Function of the Problem Size Using Different 

Complexities (from [4]) 

 

1.3.2 Complexity of Problems 

 The complexity of a problem is equivalent to the complexity of the best algorithm solving 

that problem. A problem is tractable (or easy) if there exists a polynomial-time algorithm to 

solve it.  

A problem is intractable (or difficult) if no polynomial-time algorithm exists to solve the 

problem. The complexity theory of problems deals with decision problems. A decision 

problem always has a yes or no answer [3]. 
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1.4 Methods of solving optimization problems 

Following the complexity of the problem, it may be solved by an exact method or an 

approximate method (Fig. 1.4) [3]. Exact methods obtain optimal solutions and guarantee 

their optimality.  

For NP-complete problems, exact algorithms are non-polynomial time algorithms (unless P = 

NP). Approximate (or heuristic) methods generate high quality solutions in a reasonable time 

for practical use, but there is no guarantee of finding a global optimal solution. [3] 

 

 

Fig 1.4 Classical optimization methods 

 

1.4.1 Exact Methods 

 In the class of exact methods one can find the following classical algorithms: dynamic 

programming, branch and X family of algorithms (branch and bound, branch and cut, branch 

and price) developed in the operations research community, constraint programming, and A∗ 

family of search algorithms (A* , IDA*—iterative deepening algorithms)  developed in the 

artificial intelligence community . Those enumerative methods may be viewed as tree search 

algorithms. The search is carried out over the whole interesting search space, and the problem 

is solved by subdividing it into simpler problems.[3] 
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1.4.2 Heuristics 

The term heuristic derives from the Greek verb heuriskein ðtqirjimÞ that means ‘‘to find’’. In 

fact, heuristics are basic approximate algorithms that search the solution space to find a good 

solution. There are mainly two types of heuristics: constructive algorithms and local search 

algorithms. Constructive algorithms build a solution by joining together ‘‘pieces’’, or 

components, of a solution, that are added one after the other until a solution is complete. 

Local search algorithms start from a pre-existent solution (called a current solution) and try to 

improve it by modifying some of its components (such a modification is called a move)[5]. 

1.4.3 Metaheurstics 

The Greek suffix ‘‘meta’’ used in the word metaheurstic means ‘‘beyond, in an upper level’’. 

Thus, metaheuristics are algorithms that combine heuristics (that are usually very problem-

specific) in a more general framework.  

According to Blum and Roli (2003) [5] Metaheuristics are applied to “I know it when I see it 

problems”. They’re algorithms used to find answers to problems when you have very little to 

help you: you don’t know beforehand what the optimal solution looks like, you don’t know 

how to go about finding it in a principled way, you have very little heuristic information to go 

on, and brute-force search is out of the question because the space is too large. But if you’re 

given a candidate solution to your problem, you can test it and assess how good it is. That is, 

you know a good one when you see it. For example: imagine if you’re trying to find an 

optimal set of robot behaviors for a soccer goalie robot. You have a simulator for the robot 

and can test any given robot behavior set and assign it a quality (you know a good one when 

you see it). And you’ve come up with a definition for what robot behavior sets look like in 

general. But you have no idea what the optimal behavior set is, nor even how to go about 

finding it.[6] 

Many classification criteria may be used for metaheuristics:  

• Nature inspired versus non-nature inspired: Many metaheuristics are inspired by natural 

processes: evolutionary algorithms and artificial immune systems from biology; ants, bees 

colonies, and particle swarm optimization from swarm intelligence into different species 

(social sciences); and simulated annealing from physics. 
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 • Memory usage versus memoryless methods: Some metaheuristic algorithms are 

memoryless; that is, no information extracted dynamically is used during the search. Some 

representatives of this class are local search, GRASP, and simulated annealing. While other 

metaheuristics use a memory that contains some information extracted online during the 

search. For instance, short-term and long-term memories in tabu search. 

 • Deterministic versus stochastic: A deterministic metaheuristic solves an optimization 

problem by making deterministic decisions (e.g., local search, tabu search). In stochastic 

metaheuristics, some random rules are applied during the search (e.g., simulated annealing, 

evolutionary algorithms). In deterministic algorithms, using the same initial solution will lead 

to the same final solution, whereas in stochastic metaheuristics, different final solutions may 

be obtained from the same initial solution. This characteristic must be taken into account in 

the performance evaluation of metaheuristic algorithms.  

• Population-based search versus single-solution based search: Single-solution based 

algorithms (e.g., local search, simulated annealing) manipulate and transform a single solution 

during the search while in population-based algorithms (e.g., particle swarm, evolutionary 

algorithms) a whole population of solutions is evolved. These two families have 

complementary characteristics: single-solution based metaheuristics are exploitation oriented; 

they have the power to intensify the search in local regions. Population-based metaheuristics 

are exploration oriented; they allow a better diversification in the whole search space. In the 

next chapters of this book, we have mainly used this classification. In fact, the algorithms 

belonging to each family of metaheuristics share many search mechanisms.  

 

• Iterative versus greedy: In iterative algorithms, we start with a complete solution (or 

population of solutions) and transform it at each iteration using some search operators. 

Greedy algorithms start from an empty solution, and at each step a decision variable of the 

problem is assigned until a complete solution is obtained. Most of the metaheuristics are 

iterative algorithms [3] 
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1-5 Coronavirus Optimization Algorithm (CVO): 

1-5-1  Corona virus biology and ecology: 

Since COVID-19 was first reported on December 31, 2019 in Wuhan, China, it has rapidly 

spread. The virus has infected people around the world and can, therefore, be considered as a 

pandemic.  

As COVID-19 continues its global proliferation, governments have implemented regulations 

and instructed their citizens to adopt certain measures to combat the virus. Curfews, city 

quarantines, fines, and business closures have been deemed necessary by governments, while 

individuals are advised of preventive practices, such as regular hand washing, wearing masks, 

staying at home, and observing social distancing. Health organizations, including the WHO, 

have also taken steps to curb and reduce the prevalence of COVID-19. [8]  

One of the most effective measures for controlling any contagious disease is its mathematical 

modeling. A well-designed model of an infectious disease can help predict the disease’s 

behavior and so facilitate the planning of defensive strategies.  

One of the most important parameters in infectious disease modeling is the basic reproductive 

number (denoted as R0), which is a function of the contact rate between individuals, symptom 

transition probability, and the duration of infectiousness.  

This number denotes the average number of persons infected by a single individual: 

-  If R0 < 1, then each infected person can only infect less than one other person; 

therefore, the growth of the disease is expected to stop. 

- If R0 = 1, then each infected person can infect one other person on average, thus 

resulting in stable disease growth[8]. This condition is called endemic, when the 

number of infected people does not increase or decrease.  

- However, if R0 > 1, then each person can infect more than one other person on 

average and, as a result, the disease, if left untreated, is expected to grow 

exponentially and consequently lead to an epidemic or pandemic.  

Since COVID-19 is pandemic, the R0 rate is certainly greater than 1. According to 

research, the R0 rate for COVID-19 depends on a number of factors that include climate, 

race, population density, age, percentage of public transportation use, and even average 

income [8].  
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Accordingly, this number varies among different countries and even in different regions of a 

country. The average range for the COVID-19 R0 rate is estimated between 2 and 12 for 

different parts of the world.  

Based on R0, Fig. 1.5 shows how the COVID-19 virus has been transmitted and spread since 

its discovery. As seen in Fig. 1.5 [8], the degree of attention paid to COVID19 protocols by 

the public has so far prevented the entire world population from contracting the virus. As a 

result, only a part of the world’s population has become infected, which is perhaps due to a 

lack of care in following protocols or a weakened immune system.  

 

 

 

Fig 1.5 How the COVID-19 virus has been transmitted and spread since its discovery, 

based on the value of R0 

 

Mathematical models of the disease can simulate the transmission process at different levels. 

Some types of models show cell interactions in a single patient, while others present the 

prevalence of the virus among different communities that are geographically dispersed.  

All the mathematical models proposed for COVID-19 have been of the latter type. Since the 

beginning of the COVID-19 outbreak, a number of mathematical models have been 

introduced. The basis of most of these models is SIR, which is a standard compartmental 

disease model that consists of three compartments: susceptible, infectious, and 
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recovered/removed. One of these compartments is assigned to each member of the 

community. 

 

Fig. 1.6. The interactions in the simplest SIR model among the three COVID19         

compartments: susceptible, infectious, and recovered/removed 

 

1-5-2  Corona virus optimization algorithm  

The Corona virus optimization CVO algorithm is a new optimization algorithm. It was 

proposed by Alireza Salehan and Arash Deldari [8]. 

 Table 1 presents the most important parameters and variables used in the CVO 

algorithm. The table lists the concepts inspired by COVID-19 and describes the parameters 

and variables considered in the optimization problem space.  

For example, the difference between the LocalBest and the GlobalBest is that the 

LocalBest variable stores the best solution in each iteration of the algorithm, while the 

GlobalBest variable stores the best solution in all iterations. 

 In general, the CVO approach considers that the disease transmission process begins 

in a limited population and continues based on pandemic iterations. In each iteration and after 

the transmission of symptoms from infected to susceptible individuals, the susceptible 

individuals with weaker immune systems become ill and are added to the infectious 

population. It is assumed that individuals with stronger immune systems are transferred to the 

recovered/removed population. At the end of each iteration, if the value of the weakest 

immune system, which is stored in the LocalBest variable, is less than the GlobalBest, then 

the GlobalBest variable is updated. 
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Table 1   Some of the most important parameters and variables for CVO algorithm 

implementation 

Name Concept based on COVID-19 Description in Problem Space 

Iters The number of recurrences of the COVID-19 

pandemic 

The number of iterations 

basePop The number of initial infectious populations Initial solutions 

nPop The maximum number of populations becoming 

infected 

The maximum number of 

solutions in all iterations 

nVar The number of symptoms The variables of optimization 

problem 

LB Lower bound of symptoms The minimum value of each 

variable 

UB Upper bound of symptoms The maximum value of each 

variable 

GlobalBest Patient with the weakest immune system during the 

pandemic 

The best solution in all iterations 

LocalBest Patient with the weakest immune system during each 

recurrence 

The best solution in each 

iteration 

CVO Severity of COVID-19 infection Fitness function 

R0 Basic reproductive number The number of new solutions 

created for each current solution 

pop All patients in all recurrences The set of the solutions with less 

fitness function values in all 

iterations 

newPop New patients in each recurrence New solutions in each iteration 

 

Algorithm 1 [8] represents the mechanism of the proposed CVO method. The input 

parameters of this algorithm are Iters, basePop, nPop, nVar, LB, UB, and R0. The output of 

the algorithm is the best solution which is returned by the GlobalBest variable.  
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This variable consists of the symptoms (the optimization problem variables) and the value of 

the weakest immune system (the optimization problem solution) throughout the whole 

algorithm’s iterations. Lines 1 to 16 initialize the GlobalBest variable and the initial 

population. In line 3 of the algorithm, according to the force of transmission of COVID-19 

and the possibility of its transmission even from the first contact, the value of the contact rate 

is equal to 1. [8] 

If the optimization problem is continuous, in lines 5 to 7 for each basePop member of the 

population, a set of random numbers in the interval [LB,UB] are generated and stored in pop 

as the initial symptoms of the current patient. However, if the optimization problem is 

discrete, in lines 8 to 10 for each member of the initial population, a random permutation of 

the problem variables is assigned as the initial symptoms. In line 11, the value of the fitness 

function is calculated for each member of the pop population and, if it is less than the 

GlobalBest value, it is replaced in lines 12 and 13. [8] 

The iterations of the CVO algorithm are performed in lines 17 to 53. In each iteration: 

-  first a population of new patients is created for the current iteration (line 18) and then 

the value of the LocalBest variable is initialized (lines 19 and 20). 

- Lines 21 to 40 check the possibility of transmitting the disease from infected to 

susceptible individuals during a single iteration. 

- Line 22 shows that any infected person can infect R0 susceptible individuals. If the 

type of problem is continuous, the new potential symptoms are determined based on 

Eqs. 1, 2, 3 in lines 23 to 27, the value of which must be in the interval [LB, UB].  

- In line 25 of the algorithm, |newPop| denotes the number of new patient populations in 

the current iteration. However, if the problem is discrete, lines 28 to 30 produce new 

susceptible symptoms by randomly replacing a permutation of symptoms of the 

previous patient.  

- In line 31 of the algorithm, the immunity level of the new susceptible person is 

determined based on the symptoms and using the optimization fitness function.  

- If the level of immunity for the susceptible person is less than the immunity level of  

the infected person transmitting the disease, the susceptible person will be added to the 

new patient population in lines 32–34.  

- Moreover, if the immunity level of the susceptible person is less than the immunity 

level of the entire patient population during one iteration, the symptoms and immunity 
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level of the susceptible person will replace LocalBest in lines 35 to 38 of the 

algorithm.[8] 

-  It can be assumed that susceptible individuals with a higher immunity level are those 

who have followed health protocols and are, therefore, not added to the new patient 

population.  

- After the new patient population is determined during one iteration, the GlobalBest 

values and the members of the entire patient population are updated for this iteration 

in lines 41–52.  

- In lines 41–46, if the value obtained for the LocalBest is less than the GlobalBest, the 

GlobalBest value is replaced by the LocalBest and all members of the new patient 

population in this iteration will replace the total population of pop patients. 

-  Otherwise, in line 45, new patients will be added to the pop patient set.  

- In line 47 of the algorithm, the number of the initial population’s members is updated 

for the next iteration which is equal to the number of pop members. [8] 

- If this initial population exceeds the total population (which is one of the algorithm’s 

input parameters), the pop population is sorted in ascending order by the value of the 

immune system in lines 48–52. Therefore, the smaller nPop number is selected as the 

pop population and the value of the initial population variable is updated. 

 The proposed approach reduces the population of infected people as a result of their 

recovery or death, a policy inspired by COVID-19 behavior.[8] 
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CHAPTER 2 

 

CONTAINER RELOCATION PROBLEM (CRP) 
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2-1 Containerization 

Containerization is the use of containers as a tools of transferring goods and merchandise. 

This concept appeared only in the 20th century, but since then it has become an indispensable 

element in the field of transport. Many elements have contributed to its success, among which 

we can cite its multi-modal character which makes it possible to transition between different 

modes of transport. This advantage, combined with the possibility of geo-localization of 

cargo, With the computer systems, quickly won over exporters and at the same time 

contributed to the globalization of trade. Thus becoming an international tool, the container is 

then standardized with the agreements between transport companies. Improvements and 

specifications have been subsequently carried out in order to make the containers more 

compatible with certain types of cargo. However, the container is not necessarily an infallible 

element, because even while it has many advantages, it has made manual checks nearly 

impossible. By Therefore, additional e orts have been required to create tools of technical 

control [14] 

 

 Fig 2.1. Global container growth forecast to rebound 
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2.2 Terminal structure and handling equipment: 

In general terms, container terminals can be described as open systems of material 

flow with two external interfaces. These interfaces are the quayside with loading 

and unloading of ships, and the landside where containers are loaded and unloaded  

on/off trucks and trains.  

Containers are stored in stacks thus facilitating the decoupling of quayside and landside 

operation. After arrival at the port, a container vessel is assigned to a berth equipped with 

cranes to load and unload containers. Unloaded import containers are transported to yard 

positions near to the place where they will be transshipped next. Containers 

arriving by road or railway at the terminal are handled within the truck and train 

operation areas. They are picked up by the internal equipment and distributed to 

the respective stocks in the yard. Additional moves are performed if sheds and/or 

empty depots exist within a terminal; these moves encompass the transports between empty 

stock, packing center, and import and export container stocks [15] (Fig. 2.2) 

 

Fig. 2.2. Operation areas of a seaport container terminal and flow of transports 
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2.3. Problem description  

To decouple seaside and landside operations, incoming containers are not immediately loaded 

on an outgoing vehicle, but stored in the yard for up to several days. Due to limited space, 

terminals stack containers. Consequently, only the topmost container of each stack can be 

accessed directly. If another container has to be retrieved, containers above have to be 

relocated. These unproductive relocations (also called reshuffles or rehandles) should be 

avoided since they increase the retrieval time and hence the overall performance of the 

terminal. However, relocations cannot be avoided completely as little information about 

future retrievals is known when a container has to be stored.  

The number of relocations increases with the stacking height of containers and is therefore a 

bigger issue at terminals using stacking cranes for storage operations. The yard of such a 

terminal is illustrated in Figure 2.3. The yard is divided into different blocks. Each block 

consists of several bays, each bay of several stacks and each stack of several tiers. Thanks to 

new technologies, the terminal knows exactly at which position (block, bay, stack, tier) each 

container is stored and which positions are empty. [9] 

 

 

    Fig 2.3. Blocks, bays, stacks and tiers 

 

Decisions where to place containers are taken, when containers enter the terminal or when 

they have to be relocated. Different academic problems have been extracted for yard 

optimization: the storage space allocation problem to determine storage locations (a block or a 

single position) for incoming containers; the remarshalling / premarshalling problem to 

reorganize a block / a bay in less busy periods as new information becomes available in order 

to reduce the number of relocations during the retrieval process;  
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the container relocation problem to retrieve all containers from a bay in a given sequence with 

a minimum number of relocations. We deal with the container relocation problem. In this 

case, the stowage plan of vessels and the service order of trucks are known and impose the 

retrieval order of containers. Generally, the storage layout does not match the retrieval order 

and containers have to be relocated. Figure 2.4 illustrates the problem. The objective is to 

retrieve all containers in the given sequence with a minimum number of relocations.  

Two variants of the problem exist: all containers may be relocated or only containers above 

the current target container may be relocated 

 

 

Fig 2.4. Container relocation problem 

 

 

 

 

 

 

 

 

 

 



22 
 

2.4. CRP Classifications  

Static / Dynamic CRP:  

If there are no new containers during the retrieval process to be stacked on the bay, the 

problem is called static CRP, otherwise it’s called dynamic CRP. Since the crane needs to 

serve the whole block, the dynamic CRP within one bay is usually not under consideration 

[16]. 

Restricted / Unrestricted CRP: CRP is restricted, if relocations are only allowed for 

the blocking containers above the container with highest priority. Otherwise, it’s unrestricted, 

which means the unrestricted CRP is the super-set of restricted CRP. Generally, it has lower 

relocation rate and its corresponding algorithm is more complex than restricted CRP. [16] 

Stochastic CRP: If the retrieval sequence is not fully known, for instance, several 

containers shall be stacked on a train, then the retrieval sequence is not important as long as 

the corresponding containers are stacked on the correct position. [16] 

CRP in block: In reality, relocations could happen in whole or part of container yard, 

which is defined as a block (Figure 1). In this scenario, the relocation rate could not be the 

single judgment of the problem; instead, several new judgments were introduced, like average 

operation time of container and average waiting time of truck Furthermore, the above-

described types could be combined in this scenario. [16] 

2.5.Variables 

To represent the container relocation problem [10]: 

- A bay consists of W stacks and H tiers. Each slot within the bay is addressed with 

coordinates (i, j) where i ∈ {1, . . . , W} and j ∈ {1, . . . , H}.  

- The initial configuration contains N containers, labeled 1, . . . , N.  

- Containers have to be retrieved in ascending order, e.g. container 1 is the first one to 

be retrieved and container N the last one. 

-  At each time period t (t = 1, . . . , T), container n = t is retrieved and any blocking 

containers are relocated  
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2.6. Constraints 

The problem definition relies on assumptions A1 to A7[9]: 

1- A1: The initial bay layout and precedence constraints among single containers or 

groups of containers are known in advance. 

2- A2: No new containers arrive during the retrieval process. 

3- A3: Only the topmost container of a stack can be picked up. A relocated container can 

only be put on the top of another stack or on the ground. 

4- A4: Containers are only relocated within the bay since relocations between bays are 

very time consuming. 

5- A5: The bay size is limited by the maximum numbers of stacks and tiers. 

6- A6: Containers in the same bay have the same size and can be piled up in any order. 

7- A7: The distance traveled within one bay (horizontally and vertically) has little impact 

on the time to relocate or to retrieve containers. 

8- A8: Only blocking containers located above the current target container may be 

relocated. 

2.7. Related work 

in this section we mention the different works done by researchers to solve the problems 

related to the Container Relocation Problem in ascending schedule in the last years as table 

2.1 shows below: 

  

Year Related work 

2016 Ndèye Fatma Ndiaye in her these entitled with “Algorithmes d’optimisation 

pour la résolution du problème de stockage de conteneurs dans un terminal 

portuaire” [14] she propose meta-heuristic algorithms, namely: a bee colony 

algorithm, a genetic algorithm, an ant colony algorithm, and a simulated 

annealing algorithm. These algorithms are approximate solution methods, i.e. 

the optimality of the solutions they provide is not of the solutions they provide 

is not guaranteed,. In order to combine their performances and to avoid the fast 

convergence towards a local optimum, hybridizations between these hybrids 

between these different meta-heuristic algorithms have been proposed. These 

hybrid algorithms have proved their efficiency by the good quality of their 

solutions. The first hybridization is The first hybridization is a reinforcement 

of the ant colony algorithm by a genetic algorithm, while the other two 

represent local searches at each iteration performed by the simulated annealing 

algorithm. The first hybridization is a reinforcement of the ant colony 
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algorithm by a genetic algorithm, while the other two represent local searches 

at each iteration performed by the simulated annealing algorithm in the ant 

colony algorithm on the one hand, and the genetic algorithm on the other. 

These hybridizations have allowed to accelerate the convergence of the of the 

algorithms and sometimes to improve the quality of the best solutions 

obtained. 

2018 a paper titled with “The Stochastic Container Relocation Problem”  [16] , the 

authors worked on a specific type of CRP which is Stochastic Container 

Relocation Problem (SCRP) which relaxes the CRP assumption of knowing 

the full retrieval order of containers and consider it particularly unrealistic in 

real operations. 

2018 Consuelo Parre~no-Torres*, Ramon Alvarez-Valdes they worked with “the 

pre-marshalling problem” [17] which consists in rearranging the containers 

placed in a bay in the order in which they will be required later, looking for a 

sequence with the  

minimum number of moves. With sorted bays,  loading/unloading operations 

are significantly faster, as there is no longer a need to make unproductive  

moves in the bays once ships are berthed. we address the pre-marshalling 

problem by developing and testing integer linear programming models. 

2019 MAGLIC, Marko GULIC, Lovro MAGLIC [18].they worked with the CRP 

problem by finding out if Genetic Algorithm (GA) can give new insights in the 

problem of solving the CRP. In this paper we focus on the two-dimensional, 

static, offline and restricted CRP of real-world yard container bays. Four rules 

are proposed for determining the position of relocated containers. they applied 

GA to find the best sequence of container retrievals according to these four 

rules in order to minimize the number of relocations within the bay  . 

2021  Tiecheng Jiang solved the Container Relocation Problem via Reinforcement 

Learning based on a concept proposed called “blocking degree”, then choose 

the stack with the lowest count to relocate a container above. [19] 
 

2021 Lei Wei and Fuyin Wie in [13] solved the Container Relocation Problem via 

Reinforcement Learning based on a new concept proposed called “blocking 

count”, itself is an adjust of the blocking degree proposed by Tiecheng Jiang 

.[19] 

 

2021 Omayma EL Majdoubi used the Corona Virus Algorithm to solve the 

Travelling salesman problem. The main properties of CVOA are as follows: 

The probabilities and parameters are defined also updated by scientific 

community, the exploration of search space is handled as long as the infected 

population is not null and the high rate of expansion ensures better use of 

search space leading to the intensification of the resolution.[20] 
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CHAPTER 3 

 

 

CONCEPTION 
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3.1. Contributions 

3.1.1. Related to the Corona Virus Algorithm  

Adapting the original Algorithm to the Container Relocation Problem: 

To adapt heuristics and metaheuristics to a particular optimization problem, a good 

representation of the considered problem is needed [10] 

firstly the solution of a CRP is just a sequence of a relocations with a given order of retrievals, 

in the CVOA a single solution is Popi from a set of solutions pop , popi consist of a set of 

symptoms , in our case with CRP the set of symptoms is the sequence of retrievals , the 

intensity of each symptom is the number of Relocations to retrieve a Container. 

in the original Algorithm of CVOA to during the infection and the transmission of the virus 

from individual to a new infected one there is a permutation of the symptoms order, but in our 

case that permutation is impossible because we have a given order of retrievals, for that we 

change the Algorithm to adapt it to CRP.  

Because the order of retrievals of the Container is a mandatory, and it’s unchangeable, for that 

we cannot use the exact Algorithm for the reason that in the CVOA the generation of a new 

infected individuals is based on the permutation of the symptoms, and in CRP case we can’t 

do that permutation because the order is respectable, for that we propose an adjustment for the 

CVOA in Algorithm 2.1: 

 

Inputs : The values of Iters, basePop, nPop, nVar, LB, UB, and R0 

 // Initialization of GlobalBest and Initial Infection Population 

GlobalBest.Symptoms = NULL; 

GlobalBest.ImmuneSystem = +∞; 

for(i = 1 ; i ≤ basePop ; i++ ) 

// determine set of symptoms or find a solution by using Heuristic HC  

//popi.Symptoms = Random_Permutation(nVar) ; 

popi.Symptoms =nVar measure_symptom(); 

popi.ImmuneSystem = CVO (popi.Symptoms); 

if(popi.ImmuneSystem≤  GlobalBest.ImmuneSystem) 

GlobalBest.Symptoms = popi.Symptoms; 

GlobalBest.ImmuneSystem = popi.ImmuneSystem; 

      endif 

endfor_i 

Algorithm 2.1 : CVOA adapted to CRP 



27 
 

  //Iteration of COVID-19 Pandemic 

for(iter = 1 ; iter ≤ Iters ; iter++ ) 

newPop = Ø; 

LocalBest.Symptoms = NULL; 

     LocalBest.ImmuneSystem = +∞; 

for(i = 1 ; i ≤ basePop ; i++ ) 

 for(j = 1 ; j ≤ R0 ; j++ ) 

 //newSusceptible.Symptoms =Random_Permutation (popi. Symptoms) 

  M = Random(min,max)  // M :  Corona Virus Mutation Probability 

  newSusceptible.(nVar-M) Symptoms = popi. .(nVar-M)Symptoms   

  newSusceptible.M Symptoms = popi.M measure_symptom(); 

  newSusceptible.ImmuneSystem = CVO (newSusceptible. Symptoms);   

  if(newSusceptible.ImmuneSystem≤  popi.ImmuneSystem) 

  LocalBest.Symptoms= newSusceptible. Symptoms; 

  LocalBest.ImmuneSystem = newSusceptible.ImmuneSystem; 

  endif 

 endfor_ j 

     endfor_ i 

if(LocalBest.ImmuneSystem≤  GlobalBest.ImmuneSystem) 

 ReplaceGlobalBest withLocalBest 

 Replaceall pop memberswith newPop members; 

    else 

insert all newPop members to pop 

endif 

basePop = |pop|; 

if (basePop > nPop) 

Sort pop membes ASCENDING based on ImmuneSystem 

    select the first nPop members from pop 

basepop = nPop 

         endfor_ iter  

3.1.2. Related to the heuristic used to choose the best stack for the relocated 

container   

It is based on the score of the stack, the container relocated to the stack of the best score (we 

consider the best score is the minimum ) determined in the Equations below: 

Equation 2.1 s(i) = ∑j * tier(j)      //j ∈ W, tier(j) = number of tiers for the j container j 

Equation 2.2i∗  ← min∑j * tier(j)      //j ∈ W 

 

 

Algorithm 2.2 Heuristic HC for the container relocation problem[9] 

Input: a bay layout 

Output: a solution for the container relocation problem 
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nb_relocations ← 0 

for i = 1 to W do 

determine s(i) using Equation (1) 

end for 

for t = 1 to T do 

determine W 

while ∃container above target container do 

n ← topmost relocation container 

determine i∗for n using Equation (2.1) 

relocate container n to stack i∗ 

nb_relocations ← nb_relocations +1 

//s(i∗) ← min {s(i∗), n} 

s(i∗) ←s(i∗)+n * ind(n) 

update W 

end while 

retrieve target container from s′ 

determine s(i′) using Equation (2.2) 

end for 

return nb_relocations and executed retrievals and relocations 

 

 

 

To better understand the HC adjusted how it works,  we take an example , consider a small 

bay with three stacks  and four  tiers and the given initial configuration illustrated in Table 

3.1. Each container number determines its scheduled retrieve time.  

During the retrieval process, the relocations number is the total of the relocations number to 

retrieve all containers . 

Initial bay  configuration 

0 0 0 

6 7 3 

9 1 2 

 8 5 4 

                                                                                                            

 

0 0 0 

6 7 3 

9 1 2 

 8 5 4 

    

                                                                          

 

0 0 7  0 0 7  0 0 0 

6 0 3  6 0 3  6 0 3 

9 1 2  9 0 2  9 7 2 

 8 5 4   8 5 4   8 5 4 

score(S0) = 44 

score(S2) = 17 

selected stack with 

minimum score : S2 

 

       t = 1                                                                                               t = 2                                           t = 3                                   t = 4                                   

    relocated 7                                                                          retrieved 1                              relocated 7                              relocated 3 
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0 0 0  0 0 0  0 0 0  0 0 0 

6 3 0  6 3 0   6 0 0   6 0 0 

9 7 2  9 7 0  9 7 0  9 7 0 

 8 5 4   8 5 4   8 5 4   8 5 0 

 

 

  

 

0 0 0  0 0 0  0 0 0 

 0 0 0   0 0 0   0 0 0 

0 0 0  0 0 0  0 0 0 

 8 9 0  0 9 0  0 0 0 

 

 

 

3.2.   Results 

The proposed Algorithm is coded in Python. Experiments are carried out on the instances 

introduced by W Zhu [21].  

Each instance H-W-N describes the initial configuration of the H tiers and W  

stacks and N containers, 50 instances taken for each one, in total 150. The maximum bay 

height is limited to H +1.. Results of this comparison are shown in Table 1. Column 1 

identifies the instances. Column 2 shows Number of containers , columns 3 to 6 shows the 

results of different Heuristics applied in CRP problem,  columns 3 shows the results of ‘’ 

Corona Virus Optimization Algorithm “  Proposed . 

 

 

 

 

 

0 0 0  0 0 0  0 0 0  0 0 0 

 6 0 0   6 0 0   0 0 0   0 0 0 

9 0 0  9 0 0  9 0 0  9 0 0 

 8 5 7   8 0 7   8 0 7   8 0 0 

       t = 5                                                  t = 6                                                            t = 7                                                   t = 8 

    retrieved 2                                               retrieved 3                                     retrieved 4                                           relocated 7                                     

  

       t = 9                                                    t = 10                                               t =11                                                          t = 12 

       t = 13                                                  t = 14                                                            t = 15                                           t = 6 

    retrieved 5                                         retrieved 6                                        retrieved 7                                       relocated 9 

    retrieved 8                                      retrieved 9 

Relocations 

number = 5 
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Average relocations 
T

ie
r
s 

*
 S

ta
c
k

s 

 

N
o

 o
f 

C
o

n
ta

in
e
r
s 

 

Z
h

a
n

g
 

(2
0

0
0

) 
–

 T
L

P
 

   
C

a
se

r
ta

 e
t 

 

(2
0

0
9

)–
 m

in
-m

a
x
 

 

o
v

a
n

o
v

ic
, 
 

(2
0

1
4

) 
–

c
h

a
in

 

 

L
iv

ia
 M

A
G

L
IĆ

*
, 

M
a

r
k

o
 G

U
L

IĆ
, 

L
o

v
r
o

 M
A

G
L

IĆ
 

(2
0

1
9

) 

C
o

r
o

n
a

v
ir

u
s 

o
p

ti
m

iz
a

ti
o

n
 

A
lg

o
r
it

h
m

s 
 

P
r
o

p
o

se
d

 

3 * 6 
 

16 8.95 7.72 7.72 7.88 
 

8.0 

3 * 7 19 11.50 9.02 9.05 9.15 9.48 

6 * 4 
 

19 23.20 17.15 17.05 16.93 18.60 

 

The results illustrate that when the number of containers increased , the gap of the proposed 

optimization Algorithm compared to the Optimal result (Livia MAGLIĆ*, Marko GULIĆ, 

Lovro MAGLIĆ (2019)) increased also, but in reality the performance of the Algorithm 

doesn’t decrease because the rate of the gap compared to the number of containers almost still 

the same even with the change of container’s number. 

3.3. Conclusion 

in this chapter we worked with the static case of the Container relocation problem in a 

terminal, we proposed an adjustment for the Corona Virus Optimization Algorithm and 

proposed a Heuristic used in the Algorithm to minimize the total number of relocations to 

retrieve a given sequence of containers .and comparing the testing results with other Heuristic 

results applied on the CRP. 
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General Conclusion 

 

 In this work we proposed to solve Container Relocation Problem with Corona virus 

Optimization Algorithm, it divided on three chapters: 

First chapter: it covered different aspects of Combinatorial optimization like 

Diversification and intensification, and complexity of optimization problems and optimization 

Algorithms. different methods of Solving optimization problems (exact methods, approximate 

methods), under approximate methods, Coronavirus Algorithm was taken. 

Second chapter: we took the Container relocation problem CRP(Terminal structure 

and handling equipment, Problem description , CRP classifications, and finally Related work 

in ascending schedule ) 

Third chapter : we proposed  contributions aim to adapting Coronavirus optimization 

Algorithm for solving the static version of container relocation problem( adjusting the 

Coronavirus algorithm, proposed an Heuristic used for selected the stack to relocate a 

container) 

Because the big number of publications in the last years proves the importance of the 

solving methods performance, the main reason is that if the performance increases causes 

improving of economy of companies , and even countries and the decreasing of that 

performance leads the whole world to  big problems  , for that an extra work is needed , in our 

case we can work more on the ‘Select Stack ’ Heuristic proposed combined with updated 

studies  of Coronavirus optimization Algorithm, we can also visit real Container terminals to 

get more clear conception of  the problem. 
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