

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
Ministry of Higher Education and Scientific Research

Mohamed Khider University – BISKRA
Faculty of Exact Sciences, Natural sciences and Life

Department of Computer Science

Order N°: RTIC10/M2/2022

THESIS
Presented for the Academic Master's degree in

Computer Science

Option: Information and communication networks and technologies

Web application vulnerabilities

detection and reduction

By:

BENZEKRI MOHAMED EL AKHDAR

Presented in 26/06/2022 Board of Examiners:

:

Hamida Ammar MAA President

Boukhlouf Djemaa MCB Supervisor

Naidji Ilyes MCB Examiner

Academic year 2021-2022

 الجمهورية الجزائرية الديمقراطية الشعبية

 وزارة التعليم العالي والبحث العلمي

 جامعة محمد خيضر بسكرة

 تصريح شرفي
 خاص بالالتزام بقواعد النزاهة العلمية لإنجاز بحث()

 أنا الممض ي أسفله،

 تكنولوجيات و ات شبك ماستر ثانية : طالبذكر الصفة: بن زكري محمد الأخضر (: السيد)ة

 لمعلومات والاتصالاتا .

 24/07/2013بتاريخ: والصادرة 664797رقم: الحامل لبطاقة التعريف الوطنية

 الدقيقة و علوم الطبيعة و الحياة بكلية: العلومالمسجل

 الإعـــــــــــــــــــــــــــــــــــــــلام الآلـــــــــي قسم:

 في الماستر مذكرة تخرجوالمكلف بإنجاز

 Web application vulnerabilities detection and reduction: عنوانها

الأخلاقيات ومعايير والمنهجية العلمية المعايير بمراعاة ألتزم أني بشرفي والن أصرح زاهة المهنية

 الأكاديمية المطلوبة في إنجاز البحث المذكور أعلاه.

 20/06/2022التاريخ:

 توقيع المعني:

.

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA
Ministry of Higher Education and Scientific Research

Mohamed Khider University – BISKRA
Faculty of Exact Sciences, Natural sciences and Life

Department of Computer Science

Order N°: RTIC10/M2/2022

THESIS
Presented for the Academic Master's degree in

Computer Science

Option: Information and communication networks and technologies

Web application vulnerabilities

detection and reduction

By:

BENZEKRI MOHAMED EL AKHDAR

Presented in 26/06/2022 Board of Examiners:

:

Hamida Ammar MAA President

Boukhlouf Djemaa MCB Supervisor

Naidji Ilyes MCB Examiner

Academic year 2021-2022

Dedication

First,I give thanks to Allah who helped me and gave
me the strength and patience to endure all the

difficulties to complete the work and who taught us the
purpose of life .

I thank my good father Benzekri Kamel and my great
mother Boucetta Razika , who gave me courage and
financial and psychological support. I would like to
sincerely thank my deep gratitude to Mr. Boukhlouf
Djamaa, as supervisor of the dissertation. She has
always been careful and advised, and for the effort .

I also dedicate this dissertation to all my family my
brother Youcef , my sisters Manel , Nour and Selma ,
my grandmother Turkia , my Aunt Djahida and all
my friends especially Mohamed Messaoud Kisrane ,

Abdelkader,Ikbal ,miloud and ahmed who have
supported me throughout the process. I will always

appreciate all they have done.

Abstract

With the emergence of web applications and the wide spread of their services and their use in business trans-

actions and data exchange, which allowed attackers to exploit weaknesses in web applications and carry out

various attacks such as Cross Site Scripting (XSS injection) and SQL code injection, defacement and session

hijacking and doing damage to users.In this study we will focus on tow types of injection attacks (XSS and

SQL) so that there are ways to detect and prevent vulnerabilities and protect them from attackers such as IDS,

IPS, Firewall, and VPN They only reduce and do not do the job.

In this work we propose protection methods such as machine learning, deep learning, neural network to create

one model and logistic regression to analyze SQL and XSS commands and data that is logged to enter into a

web application, and we specifically suggest a convolutional neural network and logistic regression to analyze

these inputs, where we propose a set of data imported from the Internet with adding data manually with a

suggestion a model for including normal and unusual transactions.

Keywords: SQL injection, XSS injection, machine learning, convolutional neural network, data process-

ing, training, testing, model ...

Résumé

Avec l’émergence des applications web et la grand diffusion de leurs services et leur utilisation dans les trans-

actions commerciales et l’échange de données, ce qui a permis aux attaquants d’exploiter les faiblesses des

applications web et de mener diverses attaques telles que cross site script (injection XSS) et injection de code

SQL, la dégradation et le détournement de session et causant des dommages aux utilisateurs.Dans cette étude,

nous nous concentrerons sur les deux types d’attaques par injection (XSS et SQL) afin qu’il existe des moyens

de détecter et de prévenir les vulnérabilités et de les protéger contre les attaquants tels que IDS, IPS, Pare-feu

et VPN Ils ne font que réduire et ne font pas le travail.

Dans ce travail, nous proposons des méthodes de protection telles que l’apprentissage automatique, l’apprentissage

profond, le réseau neuronal pour créer un modèle et la régression logistique pour analyser les commandes SQL et

XSS et les données qui sont enregistrées pour entrer dans une application Web, et nous suggérons spécifiquement

un réseau neuronal convolutif et une régression logistique pour analyser ces entrées, où nous proposons un en-

semble de données importées d’Internet avec l’ajout de données manuellement avec une suggestion Un modèle

pour y compris les transactions normales et inhabituelles.

Mots-clés : Injection SQL, injection XSS, apprentissage automatique, réseau neuronal convolutif, traite-

ment de données, formation, tests, modèle ...

مع ظهور تطبيقات الويب والانتشار الواسع لخدماتها واستخدامها في المعاملات التجارية وتبادل البيانات ،

مما سمح للمهاجمين باستغلال نقاط الضعف في تطبيقات الويب وتنفيذ هجمات مختلفة مثل البرمجة النصية

 ة وإلحاق الضرر بالمستخدمين . والتشويه واختطاف الجلس SQL(وحقن رمز XSS injectionعبر المواقع)

(بحيث تكون هناك طرق للكشف SQLو XSSفي هذه الدراسة سوف نركز على أنواع هجمات الحقن)

فهي تقلل فقط ولا VPNو Firewallو IPSو IDSعن نقاط الضعف ومنعها وحمايتها من المهاجمين مثل

 تقوم بهذه المهمة.

لتعلم الآلي والتعلم العميق والشبكة العصبية لإنشاء نموذج واحد في هذا العمل نقترح طرق الحماية مثل ا

والبيانات التي يتم تسجيلها للدخول إلى تطبيق ويب، XSSو SQLوالانحدار اللوجستي لتحليل أوامر

ونقترح على وجه التحديد شبكة عصبية الالتفافية وانحدار لوجستي لتحليل هذه المدخلات، حيث نقترح

يانات المستوردة من الإنترنت مع إضافة البيانات يدويا مع اقتراح نموذج ل بما في ذلك مجموعة من الب

 المعاملات العادية وغير العادية.

، ، التعلم الآلي ، الشبكة العصبية الالتفافية ، معالجة البيانات XSS، حقن SQLحقن لكلمات المفتاحية: ا

 التدريب ، الاختبار ، النموذج ...

 ملخص

Summary

General introduction 1

1 Web application security 3

1.1 Introduction . 3

1.2 Web application . 3

1.2.1 definition . 3

1.3 Web application architecture . 3

1.3.1 Web application architecture components . 4

1.4 Web application terminology . 5

1.5 Why is web application not secure . 8

1.5.1 What is a vulnerability ? . 8

1.5.2 Vulnerabilities classification . 8

1.5.3 Types of vulnerabilities . 8

1.6 Web Attacks . 10

1.6.1 Definition . 10

1.6.2 Malware . 11

1.6.3 Phishing . 11

1.6.4 Man-in-the-middle attack . 11

1.6.5 DoS/DDoS . 11

1.6.6 SQL Injection . 11

1.6.7 Zero-day exploit . 11

1.6.8 Cross Site Scripting . 11

1.6.9 Business Email compromise . 11

1.7 Security mechanisms and approaches for securing web applications 12

1.7.1 Security mechanisms . 12

1.7.2 Security approaches . 13

1.8 Conclusion . 14

2 Vulnerabilities detection methods 15

2.1 Introduction . 15

2.2 The Open Web Application Security Project (OWASP) . 15

2.3 Top 10 vulnerabilities . 16

2.3.1 Broken access control . 16

2.3.2 Cryptographic failures . 17

2.3.3 Injection . 18

2.3.4 Insecure design . 18

i

2.3.5 Security misconfiguration . 19

2.3.6 Vulnerable and Outdated components . 20

2.3.7 Identification and authentication failures . 20

2.3.8 Software and data integrity failures(XSS and insecure deserialization) 21

2.3.9 Security Logging and Monitoring Failures . 22

2.3.10 Server-side request forgery (SSRF) . 22

2.4 National vulnerability database (NVD) . 23

2.4.1 A Brief History of the NVD . 24

2.4.2 CVEs and the NVD Process . 24

2.5 Vulnerability detection using machine learning . 26

2.5.1 Machine learning tasks . 26

2.5.2 Machine learning algorithms . 29

2.5.3 types of machine learning algorithms . 29

2.6 Vulnerability detection using Deep Learning . 30

2.6.1 How Deep Learning Works . 30

2.6.2 Difference Between Machine Learning and Deep Learning 31

2.6.3 How to create and train deep learning models . 32

2.6.4 Deep Neural Network . 32

2.7 Vulnerability detection using Natural Language Processing (NLP) technology 33

2.7.1 Natural Language Processing . 33

2.7.2 How does Natural Language Processing Works . 34

2.7.3 Deep Learning in Natural Language Processing . 34

2.8 Related work . 37

2.8.1 Vulnerability prediction based on metrics . 37

2.8.2 Anomaly detection approaches for finding vulnerabilities 38

2.8.3 Vulnerable code pattern analysis and similarity analysis 39

2.9 conclusion . 40

3 Conception 41

3.1 Introduction . 41

3.2 System presentation . 41

3.2.1 System objectives . 41

3.2.2 Flow chart of the global system Architecture . 41

3.3 Detailed System Design . 42

3.3.1 Flow chart of creating CNN model . 42

3.3.2 Data Collection . 43

3.3.3 Data Preparation . 44

3.3.4 Classification and Training . 45

3.4 Model Testing . 46

3.4.1 Using the model . 46

3.5 Designed by UML . 47

3.5.1 Sequence diagram for ” Registration ” . 47

3.5.2 Sequence diagram for ” Authentication” . 48

3.6 Conclusion . 49

4 Implementation 50

4.1 Introduction . 50

4.2 Development Environment . 50

4.2.1 Python . 50

ii

4.2.2 Environment using google colab for creating the model 51

4.2.3 XAMPP . 51

4.2.4 Django . 52

4.3 The used tools . 53

4.3.1 Tensorflow . 53

4.3.2 Keras . 54

4.4 Structures of Data . 54

4.4.1 Part of the used dataset . 54

4.4.2 pre-processing Data . 55

4.4.3 Training . 56

4.4.4 Evaluation . 57

4.4.5 Experiments and Obtained Results . 58

4.4.6 Testing . 60

4.5 Presentation system . 61

4.5.1 Database . 61

4.5.2 Interface Already Registered ”Login” . 61

4.5.3 First Time Registration Interface ”New User” . 62

4.5.4 First Time Registration Interface ”New User” . 63

4.5.5 Application After Prevention . 64

4.6 Conclusion . 66

General conclusion 67

iii

List of Figures

1.1 Dynamic Web Applications.[8] . 4

1.2 Web Application Architecture Diagram.[17] . 5

1.3 Web application terminology[45] . 7

1.4 Types of vulnerabilities[31] . 10

1.5 web Attacks[13] . 10

1.6 the operation of encryption[41] . 12

1.7 The firewall[33] . 13

2.1 top 10 vulnerabilities [11] . 16

2.2 Broken access control [19] . 17

2.3 Grain of salt technique [19] . 17

2.4 Injection [19] . 18

2.5 insecure design [19] . 19

2.6 misconfiguration [19] . 19

2.7 Vulnerable and Outdated components [19] . 20

2.8 Authentication Management Violation and Session Theft [19] . 21

2.9 Cross Site Scripting [19] . 22

2.10 Server-side request forgery [19] . 23

2.11 A Brief History of the NVD [34] . 24

2.12 Machine learning tasks[24] . 27

2.13 Supervised Learning[3] . 27

2.14 unsupervised Learning[10] . 28

2.15 unsupervised Learning[10] . 29

2.16 ML algorithms types[4] . 30

2.17 Neural networks[9] . 31

2.18 difference between Machine Learning and Deep Learning . 31

2.19 DNN types . 33

2.20 biblical sentence that required translation . 34

2.21 Using CNN to classify source code [27] . 35

2.22 CNN RNN for extracting character-level representation for a word [27] 36

2.23 LSTM network [27] . 36

2.24 One way to structure different approaches for vulnerability detection 38

3.1 flow chart of the global system . 42

3.2 The General flow chart of CNN Model . 43

3.3 example documents“A” and “B”). 45

3.4 Training the Model . 46

iv

3.5 Using the Model . 47

3.6 ”Inscription” Sequence Diagram . 48

3.7 ”Authentication” Sequence Diagram . 49

4.1 Python Logo . 50

4.2 google Colab Logo . 51

4.3 XAMPP Icon . 51

4.4 Ridiculously fast . 52

4.5 Reassuringly secure . 52

4.6 Exceedingly scalable . 52

4.7 Django architecture . 53

4.8 tensorflow logo . 53

4.9 keras logo . 54

4.10 positive items . 54

4.11 negative items . 55

4.12 positive items . 55

4.13 negative items . 55

4.14 code source TF-IDF . 56

4.15 training CNN Model . 57

4.16 Equation of The precision . 57

4.17 Equation of The recall . 57

4.18 Equation of The accuracy . 58

4.19 result CNN Model . 58

4.20 result NaiveBayes . 59

4.21 result K-nearest Neighbors (KNN) . 59

4.22 result Support Vector Machine (SVM) . 59

4.23 Model Accuracy and Model Loss . 60

4.24 Matrix Of CNN Model . 60

4.25 model testing . 61

4.26 database myphp with xamp . 61

4.27 Interface ”Login” . 62

4.28 interface ”New User” . 63

4.29 interface of User profile . 64

4.30 SQL injection try ”New User” . 65

4.31 XSS injection in web site . 66

v

List of Tables

3.1 Metadata of the Collected Data Set . 44

4.1 Comparison accuracy result . 59

vi

General introduction

Web application security is the process of protecting websites and online services against different security threats

that exploit vulnerabilities in an application code. Common targets for web application attacks are content

management systems (WordPress), database administration tools (PhpMyAdmin) and SaaS applications. For

years, security experts have warned about vulnerabilities in Web applications. Unfortunately, these warnings are

now coming true. The news these days is dominated by the news of a particular hacker successfully infiltrating

this or that web application.

With the fast evolution of technology, including web application services, where most commercial users resort

to buying and selling, and most large companies rely on web applications to facilitate communication between

company employees and other departments and sharing data, which has allowed attackers to increase hacking,

intrusions and targeting of workers. Credit card theft, taking advantage of weaknesses, can access an information

system and steal data, defraud or damage the reputation of the company.Therefore, the protection of the web

application must be strengthened and attackers prevented. Developers have used methods to detect and prevent

intrusions such as IDS (Intrusion Detection System), IPS (Intrusion Prevention System), WAF (Web Application

Firewall)..., but they irreplaceable all objectives because they do not provide high security level .

In this study we will try to introduce new methods such as machine learning and the different algorithms, deep

learning and neural networks. First we collect the largest number of data sets that attackers use to hack the web

site using injection (SQL or XSS) query then where we create a file that contains a data set that contains tow

data types normal and abnormal and we train the CNN Convolutional Neural Network model via the data set

where at the end we get a CNN model trainer . This model is able to predict the normal commands of the other

commands and categorizes them into injected (SQL or XSS) query or not injected (SQL or XSS) query. The

obtained result were effective and compared with other methods (navibyes ,knn,svm) it gave a best accuracy.

1

General introduction

This work is organized into four main chapters:

1. The first chapter : We will try to introduce the basic concepts and definitions of the Web application

and its most important elements and components, in addition to its structure general, its working method

and field of use, and then move on to web application security to know about vulnerabilities then we go to

talk about attacks and its types and in finally show the security mechanisms and approaches for securing

web applications .

2. The second chapter : we present top 10 important vulnerabilities according to the World Security

Organization (OWASP) and we try to explain each element and how it is exploited by attackers and how

to do the prevention and we talk about National vulnerability database (NVD) then explain vulnerability

detection methods based on machine learning and in the finally we show three related work of different

approaches.

3. The third chapter : A full description of our system design is provided with a detailed design of

the convolutional neural network model as well as some diagrams.

4. The last chapter : we will present the environment and programming languages and tools used

in this work, describing the database used and some images of the application used after vulnerability

prevention, mentioning some other models and comparing them with the convolutional neural network

model

2

Chapter 1
Web application security

1.1 Introduction

Web applications are becoming more popular and widely being used in all aspects of work and social activities.

However, the exponential development of web technologies comes at a price, because the number of Web

application security issues increases rapidly as well and Web applications are becoming more prone to worrisome

vulnerabilities. [28]

In this chapter, we describe at first what Web applications are, which structure they usually have and, then we

give a Web Application Architecture Diagram, we continue by web application terminology, then we talk about

vulnerabilities types and the last thing about security mechanisms and approaches for securing web application.

1.2 Web application

1.2.1 definition

(1) Web application or web app is a client–server software application which the client (or user interface) runs

in a web browser [15].

(2) According to the definition of OWASP, a Web application is a client/server software application that

interacts with users or other systems using the Hypertext Transfer Protocol (HTTP) [16].

1.3 Web application architecture

Web application architecture are generally structured as three-tiered, which consist of:

• The first tier is a Web browser (client) such as Google Chrome, Mozilla Firefox and Opera, etc..

• The middle tier is an engine, which generates pages dynamically using technologies such as PHP, ASP

and JSP.

• The third tier is a database; it enables Web applications to store data and other content elements. By

using SQL.

As illustrated in (figure 1.1) , a client (Web browser) sends requests to the middle tier, which handles these

3

CHAPTER 1. WEB APPLICATION SECURITY

requests, searches information required by making SQL queries against the database and generates response

pages using this information, and shows them to the user in the browser.[7]

Figure 1.1: Dynamic Web Applications.[8]

1.3.1 Web application architecture components

Domain Name System (DNS)

is a fundamental system that helps search a domain name and IP address, and in this manner, a particular server

receives a request sent by a user. We can say that DNS is like a phone book but for the Internet websites.[18]

Load Balancer:

Load Balancer primarily deals with horizontal scaling. With directing incoming requests to one of the multiple

servers, the load balancer sends an answer to a user. Usually, web application servers exist in the form of

multiple copies mirroring each other. Hence, any server processes requests in the same manner, and the load

balancer distributes tasks among them, so they will not be overcharged.[18]

Web App Servers:

This component processes a user’s request and sends documents (JSON, XML, etc.) back to a browser. To

perform this task, it usually refers to back-end infrastructures such as database, cache server, job queue, and

others. Besides, at least two servers, connected to the load balancer, manage to process the user’s requests.[18]

Databases:

The name of this web application component speaks for itself. The database gives instruments for organizing,

adding, searching, updating, deleting, and performing computations. In most cases, web application servers

directly interact with the job servers.[18]

Caching Service:

Caching service provides storage for data, which allows storing and searching data. Whenever a user gets some

information from the server, the results of this operation goes to cache. So, future requests return faster. In one

word, caching allows you to refer to the previous result to make a computation much faster. Therefore, caching

is effective when[18]:

* the computation is slow.

* computation is likely to occur many times.

* when the results are the same for a particular request.

Job Queue (optional):

Job queue consists of two components: the job queue itself and servers. These servers process jobs in the

queue. It happens that most of the web-servers need to operate a vast amount of jobs that are not of primary

importance. Therefore, when a job needs to be fulfilled, it goes to the job queue and is operated due to a

schedule.[18]

Full-Text Search Service (optional):

Many web applications support the search by text function or so-called request, and then, an app sends the

most relevant results to a user. This technology is named full-text search service. With the help of keywords,

4

CHAPTER 1. WEB APPLICATION SECURITY

it searches the needed data among a vast number of documents.[18]

Services:

When a web application reaches a specific level, services are created in the form of separate apps. They are not

that visible among other web application components, but the web application and other services interact with

them.[18]

Data Warehouse:

Almost every modern application implies the work with data, such as collecting, storing and analyzing.[18]

These processes require three stages:

• The data is sent to the data “fire-hose”, which provides a streaming interface for absorption and processing

of data.

• Raw, processed, and additional data is sent to cloud storage.[18]

• And processed and additional data also go to a data warehouse.[18] It’s a particular model of online

storage and exchange of data through the Internet. The Data Warehouse can be used for storing a variety

of files of different types such as videos, photos, or so on.

CDN:

CDN or Content Delivery System deals with sending HTML files, CSS files, JavaScript files, and images. It

delivers the content of the end server throughout the world, so people can load various sources.[18]

The scheme of the user-server process can explain the essence of the web application architecture

Figure 1.2: Web Application Architecture Diagram.[17]

1.4 Web application terminology

This section defines frequently used terms relating to web applications.

5

CHAPTER 1. WEB APPLICATION SECURITY

• Computer security Computer security is the use of technology, policies, and education to assure the

confidentiality, integrity, and availability of data during its storage, processing, and transmission. To

secure data, we pursue three activities: prevention, detection, and recovery.[29]

• Vulnerabilities A vulnerability is an inherent weakness in the design, configuration, or implementation

of a network or system that renders it susceptible to a threat. Most vulnerabilities can usually be traced

back to one of three sources: poor design, poor implementation, or poor management.[29]

• Attacks An attack is a specific technique used to exploit a vulnerability. For example, a threat could

be a denial of service. a vulnerability is in the design of the operating system, and an attack could be a

”ping of death”. There are two general categories of attacks, passive and active.[29]

• Threat A threat is anything that can disrupt the operation, functioning, integrity, or availability of a

network or system. There are different categories of threats. There are natural threats, occurrences such

as floods, earthquakes, and storms. There are also unintentional threats that are the result of accidents

and stupidity. Finally, there are intentional threats that are the result of malicious indent. Each type of

threat can be deadly to a network.[29]

• Security policy Security policy is an action plan that a public or private organization establishes in order

to reduce security risks. This plan usually includes specific plans such as a defence policy as well as other

indirect policies, purchasing policies, and personnel selection, and also establishes control measures for the

security of the organization. On brief, security policy is a statement of what is, and what is not allowed.[29]

• Countermeasures Countermeasures are the techniques or methods used to defend against attacks and

to close or compensate for vulnerabilities in networks or systems.[29]

• An application server : is software that helps a web server process web pages containing server-side

scripts or tags. When such a page is requested from the server, the web server hands the page off to the

application server for processing before sending the page to the browser. For more information, see How

a web application works.[29]

• A database is a collection of data stored in tables. Each row of a table constitutes one record and each

column constitutes a field in the record, as shown in the following example.[29]

• A dynamic page is a web page customized by an application server before the page is sent to a browser.

For more information, see How a web application works.[29]

• A server technology is the technology that an application server uses to modify dynamic pages at

runtime.

The Dreamweaver development environment supports the following server technologies:

1. Macromedia ColdFusion

6

CHAPTER 1. WEB APPLICATION SECURITY

2. Microsoft ASP.NET

3. Microsoft Active Server Pages (ASP)

4. Sun Java Server Pages (JSP)

5. PHP: Hypertext Preprocessor (PHP)

You can also use the Dreamweaver coding environment to develop pages for any other server technology

not listed.

• A static page is a web page that is not modified by an application server before the page is sent to a

browser. For more information, see Processing static web pages.[29]

• A web application is a website that contains pages with partly or entirely undetermined content. The

final content of these pages is determined only when a visitor requests a page from the web server. Because

the final content of the page varies from request to request based on the visitor’s actions, this kind of page

is called a dynamic page.[29]

• A web server is software that sends out web pages in response to requests from web browsers. A page

request is generated when a visitor clicks a link on a web page in the browser, selects a bookmark in the

browser, or enters a URL in the browser’s address text box.[29]

Figure 1.3: Web application terminology[45]

7

CHAPTER 1. WEB APPLICATION SECURITY

1.5 Why is web application not secure

1.5.1 What is a vulnerability ?

A vulnerability is a weakness or error in a system or device’s code that, when exploited, can compromise

the confidentiality, availability, and integrity of data stored in them through unauthorized access, elevation of

privileges, or denial of service. A code or tool used to take advantage of a vulnerability is called an exploit. Most

of the disclosed vulnerabilities are shared on the National Vulnerability Database (NVD) and enumerated in the

Common Vulnerabilities and Exposures (CVE) List to make it easier to share data across separate vulnerability

capabilities.[30]

1.5.2 Vulnerabilities classification

[42]

1. Vulnerabilities related to physical domains:

• Lack of redundancy and resource at the equipment level.

• Access to computer rooms not secured.

• Absence or bad data backup strategy.

2. Vulnerabilities related to organizational areas:

• Lack of: human resources and qualified personnel, communications.

• Lack of: periodic inspections, procedural documents adapted to the company, means relating to the

risks involved.

• Too much functional complexity.

3. Vulnerabilities related to technological fields :

• Numerous flaws in web services and applications and databases.

• No operating system and patch updates.

• Lack of sufficient control over malware.

• Recurrence of flaws and lack of supervision of events.

• Complex, unprotected, poorly organized, non-redundant networks.

• Misuse of messaging.

1.5.3 Types of vulnerabilities

• Mechanism authentication:

Failure to properly authenticate users.[21]

• Management of the session:

Failure to adequately create, store, transmit and protect sensitive session information such as passwords.[21]

• Permissions, privileges and access control:

Failure to enforce permissions and other resource access restrictions, or privilege management issues.[21]

8

CHAPTER 1. WEB APPLICATION SECURITY

• Buffer:

Buffer overflow, caused by poor buffer management, allowing more information than possible and thus

creating a potential code injection into memory.[21]

• Cross-Site Request Forgery (CSRF):

Failure to verify that a web request made by a user is from the user.[21]

• Cross-Site Scripting (XSS):

Failure of a site to properly validate, filter or encode information sent by a user before returning it.[21]

• Cryptography:

use of an insecure encryption algorithm or misuse of an algorithm.[21]

• Pathways access:

Failure to properly validate paths, allowing access to files outside the intended directory or directories.[21]

• Injection:

Failure to validate user data or file uploads, allowing arbitrary code to be executed on the system 20.[21]

• Configuration:

configuration error of an organization’s system, allowing it to be used unsafely.[21]

• Leakage of information:

Exposure of system, sensitive or private information.[21]

• Competitive situation:

A system fault, characterized by a different result depending on the order in which components and clients

of the system act.[21]

• Architecture:

A design fault that is not caused by a layout or configuration problem.[21]

thus, the types of vulnerabilities potentially present differ depending on the systems to be tested.[21]

In addition, a test may be restricted to certain types of vulnerabilities. For example, for a web vulnerability

test, testing could be restricted to the top ten vulnerabilities identified by a recognized body such as the Open

Web Application Security Project (OWASP). [21]

9

CHAPTER 1. WEB APPLICATION SECURITY

Figure 1.4: Types of vulnerabilities[31]

1.6 Web Attacks

1.6.1 Definition

Web attacks refer to threats that target vulnerabilities in web-based applications. Every time you enter infor-

mation into a web application, you are initiating a command that generates a response. For example, if you

are sending money to someone using an online banking application, the data you enter instructs the application

to go into your account, take money out, and send it to someone else’s account. Attackers work within the

frameworks of these kinds of requests and use them to their advantage.

Some common web attacks include SQL injection and cross-site scripting (XSS), which will be discussed later

in this article. Hackers also use cross-site request forgery (CSRF) attacks and parameter tampering. In a CSRF

attack, the victim is fooled into performing an action that benefits the attacker. For example, they may click

on something that launches a script designed to change the login credentials to access a web application. The

hacker, armed with the new login credentials, can then log in as if they are the legitimate user.

Figure 1.5: web Attacks[13]

10

CHAPTER 1. WEB APPLICATION SECURITY

1.6.2 Malware

A malware is a type of cyberattack where malicious software is installed on the victim’s systems through

executable files, usually without the user’s knowledge. Malware includes malicious software, including spyware,

ransomware, viruses, and worms. After installation, a malware can keep track of the user’s activity or can

trigger codes resulting into access to sensitive information, login details, credit cards or intellectual properties

by the hacker.[13]

1.6.3 Phishing

Phishing refers to spoofing or deceptive communications activities performed by the attackers that appear to

originate from a credible source such as emails, messages, legitimate websites that are disguised. Through

phishing, attackers try to fetch sensitive information, user details, credit card numbers or make fraudulent

attempts.[13]

1.6.4 Man-in-the-middle attack

These attacks happen with relaying or altering the communication channels. This can be communication

between organisations and cloud server or over unsecured networks.[13]

1.6.5 DoS/DDoS

A DoS/DDoS attack aims at flooding the target website with overwhelming traffic to exhaust resources and

bandwidth of the system. These are not to bring down a website, but to breach a security perimeter and smoke

out the online systems. This can reduce a user base or may bring down the entire network.[13]

1.6.6 SQL Injection

This is injecting a nefarious code or statements into SQL queries or a database server to extract information

from the database or to take a data dump of the complete database.[13]

1.6.7 Zero-day exploit

Zero-day is a software security flaw which is known to the software developers. Attackers try to exploit a

vulnerability before a patch or solution is implemented to capture the system with known weaknesses.[13]

1.6.8 Cross Site Scripting

XSS attacks occur when a web app sends malicious code in the form of a side script to another user, thus

bypassing access controls of the site as the same as the origin.[13]

1.6.9 Business Email compromise

This is an attack to spoof business emails and gain illegal access to company accounts and IDs to defraud the

company or its employees.[13]

11

CHAPTER 1. WEB APPLICATION SECURITY

1.7 Security mechanisms and approaches for securing web applica-

tions

1.7.1 Security mechanisms

1. Encryption

Cryptography is a mathematical science in which methods for transmitting data confidentially are studied.

In order to protect a message, a transformation is applied to it that makes it incomprehensible; this is

called encryption, which, from a clear text, gives a cipher or cryptogram. Conversely, decryption is the

action that allows the reconstruction of the plain text from the cipher text. In modern cryptography, the

transformations in question are mathematical functions, called cryptography algorithms, which depend

on a parameter called a key . [14]

In networks, to prevent information theft in the transmission path, cryptography techniques are used to

encrypt and decrypt transmitted messages. There are currently two main encryption principles: symmetric

encryption based on the use of a private key and asymmetric encryption based on two keys, one private

and one public. encryption, which is based on two keys, one private and the other public.[14]

Figure 1.6: the operation of encryption[41]

2. Firewall

A firewall is a hardware or software solution implemented within the network infrastructure to filter access

to defined network resources. It allows only authorised users with a key or badge to enter and creates

a protective layer between the network and the outside world. It has built-in filters that can prevent

unauthorised or potentially dangerous material from entering the system. It also records attempted

intrusions in a log that is sent to network administrators. It can also control access to applications and

to prevent misuse [5].

The firewall allows all or some of the packets they are allowed to pass through, and to block and log

exchanges that are prohibited.

12

CHAPTER 1. WEB APPLICATION SECURITY

Figure 1.7: The firewall[33]

The firewall is an IDS, but it only detects attacks from outside. For Intranet, firewalls are necessary, but

not sufficient, to start implementing a security policy.

Some firewalls only allow email to pass through. In this way, they prohibit any attack other than an

attack based on the mail service. Other firewalls are less strict and only block services that are known

to be dangerous. Typically, firewalls are configured to protect against unauthenticated access from the

external network.

3. antivirus

Antivirus is a kind of software used to prevent, scan, detect and delete viruses from a computer. Once

installed, most antivirus software runs automatically in the background to provide real-time protection

against virus attacks.Comprehensive virus protection programs help protect your files and hardware from

malware such as worms, Trojan horses and spyware, and may also offer additional protection such as

customizable firewalls and website blocking.[44]

4. Intrusion detection and prevention

An intrusion detection system (IDS) is used to constantly monitor the network. It analyses the flow of

data packets through the network, looking for unauthorised activity (such as hacker attacks) and allows

users to address security breaches before systems are compromised.

Today, IDS systems are evolving into so-called intrusion prevention systems (IPS) which, in addition to

detection, provide active protection. An IPS system can decide, following alerts, to close ports and reject

packets according to the parameters that have been set. [32]

1.7.2 Security approaches

1. Signature approach

The signature approach (Misuse Detection) could be very just like the strategies utilized by antivirus,

the not unusualplace precept of all strategies on this elegance is to apply a database, containing specs

of assault signatures. The intrusion detector compares the determined behaviour of the machine to this

database and increases an alert if this behaviour fits a predefined signature. ”Thus, the entirety that isn’t

explicitly described is allowed” and the entirety this is explicitly described is prohibited.[12]

13

CHAPTER 1. WEB APPLICATION SECURITY

2. Behavioural approach

Behavioural intrusion detection (Anomaly Detection) became the primary method proposed and devel-

oped. Anderson proposes to discover violations of the device’s protection coverage through staring at

the behaviour of customers and evaluating it to a version of behaviour taken into consideration everyday,

known as a profile. In general, the behavioural method has phases: a studying segment wherein the profile

is constructed through staring at the behaviour of the monitored entity and a detection segment wherein

the IDS examine the behaviour of the entity, measures the similarity among the latter and the profile and

problems an alert if the deviation is just too large. The most important concept of this method is to do not

forget any deviation, any anomaly withinside the behaviour as an intrusion. This assumption is sincerely

wrong: uncommon activities or behaviours can be valid from the factor of view of the device’s protection

coverage. The device is probably to emit fake positives. As lengthy because the quantity of fake positives

stays low enough, the technique may be valid. This results in critical questions withinside the subject of

behavioural intrusion detection, at the correctness and completeness of the of everyday behaviour .[12]

3. Hybrid approach

The hybrid technique is an technique that mixes each approaches (the behavioural technique and the

signature technique). First the behavioural technique seems for feasible intrusions after which those are

surpassed to the signature technique for updating its database. surpassed to the signature technique for

updating its database.[12]

1.8 Conclusion

Given the empowering nature of web applications, it is clear that securing web applications is important. Specif-

ically, to focus the needs of the users: making sure that their data is safe, and that they are safe while browsing

the web. To accomplish this, that we make strides to create automated tools that are able to automatically

find security vulnerabilities. These tools can be used by developers with no security expertise, thus putting

developers on a level playing field with the attackers.

14

Chapter 2
Vulnerabilities detection methods

2.1 Introduction

In this chapter, we talk about what vulnerabilities and top ten vulnerabilities first detection methods are, which

structure they usually have and, then we give a Web Application Architecture Diagram, we continue by web

application terminology, then we talk about types vulnerabilities and the last thing about security mechanisms

and approaches for securing web application .

2.2 The Open Web Application Security Project (OWASP)

The Open Web Application Security Project (OWASP) is a non-profit foundation dedicated to improving soft-

ware security. It operates under an “open community” model, which means that anyone can participate in and

contribute to OWASP-related online chats, projects, and more. For everything from online tools and videos to

forums and events, the OWASP ensures that its offerings remain free and easily accessible through its website.

The OWASP Top 10 provides rankings of—and remediation guidance for—the top 10 most critical web ap-

plication security risks. Leveraging the extensive knowledge and experience of the OWASP’s open community

contributors, the report is based on a consensus among security experts from around the world. Risks are ranked

according to the frequency of discovered security defects, the severity of the uncovered vulnerabilities, and the

magnitude of their potential impacts. The purpose of the report is to offer developers and web application

security professionals insight into the most prevalent security risks so that they may fold the report’s findings

and recommendations into their own security practices, thereby minimizing the presence of known risks in their

applications.[16]

15

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.1: top 10 vulnerabilities [11]

2.3 Top 10 vulnerabilities

2.3.1 Broken access control

Access control imposes a policy such that users cannot act outside their intended permissions. Failures usually

lead to unauthorized disclosure, modification or destruction of information from all data, or performing a

business function outside the user’s boundaries. [19]

Objectives:

* Bypass access controls by changing the URL, internal application state, or HTML page, or simply by using a

custom API attack tool.

* Elevation of privilege.

Parades:

* Establish access control mechanisms.

* Disable the web server directory list and ensure that file metadata (e.g. .git) and backup files are not present

in the web roots.[19]

16

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.2: Broken access control [19]

2.3.2 Cryptographic failures

This flaw includes all vulnerabilities related to the protection of sensitive data.[19] Objectives:

* Access confidential data.

* Identity theft.

Parades:

* Use strong encryption algorithms.

* Do not store unnecessary information.

* Use TLS throughout the chain.

* Decryption keys must be stored separately from the data.

Figure 2.3: Grain of salt technique [19]

17

CHAPTER 2. VULNERABILITIES DETECTION METHODS

2.3.3 Injection

An injection attack is a malicious code injected in the network which fetched all the information from the

database to the attacker.[19]

Objectives:

* reading, deletion, alteration of data.

* access to the system without authentication.

Parades:

* Verification of the data entered (blacklists, whitelist, regular expressions...).

Figure 2.4: Injection [19]

2.3.4 Insecure design

A new category for 2021 focuses on risks related to design and architecture flaws, with a call for increased use

of threat modeling, secure design patterns, and reference architectures. [19]

Parades:

* Establish and use a secure development life cycle with professionals (AppSec) to help assess and design secu-

rity and privacy controls.

* Establish and use a library of secure design templates.

18

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.5: insecure design [19]

2.3.5 Security misconfiguration

This flaw includes all vulnerabilities related to configuration problems, on all elements of the application layer

(servers, language, framework, components ...).[19]

Objectives:

* Access confidential information.

* Take control of a server.

Parades:

* Do not assign components more rights than necessary.

* Rigorously study the configuration.

Figure 2.6: misconfiguration [19]

19

CHAPTER 2. VULNERABILITIES DETECTION METHODS

2.3.6 Vulnerable and Outdated components

This flaw concerns all components used for the operation of an application. They may have vulnerabilities

(version, compatibility of libraries...) and must be the subject of special attention.[19] Objectives:

* Access confidential data.

* Take control of a server.

Parades:

* Maintain a list of the components used and their version.

* Update these components as soon as a vulnerability is detected and patched.

Figure 2.7: Vulnerable and Outdated components [19]

2.3.7 Identification and authentication failures

Objectives:

* Access features reserved for certain people.

* Access confidential data.

Parades:

* Require strong passwords.

* Use a captcha system.

* Use cookies to manage sessions.

* Set a maximum session duration.

20

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.8: Authentication Management Violation and Session Theft [19]

2.3.8 Software and data integrity failures(XSS and insecure deserialization)

An example of this vulnerability is when an application relies on plugins, libraries, or modules from not trusted

sources, repositories, and content delivery networks. Thus, many apps now include an automatic update feature,

where updates are downloaded without sufficient integrity checks and applied to the previously approved app.

Another example is where objects or data are encoded or serialized in a structure that an attacker can see and

modify is vulnerable to insecure deserialization.[19]

Parades:

* Use digital signatures or similar mechanisms

* Ensure that unsigned or unencrypted serialized data is not sent to untrusted clients.

* Ensure that there is a process for reviewing code and configuration changes.

21

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.9: Cross Site Scripting [19]

2.3.9 Security Logging and Monitoring Failures

Insufficient logging and monitoring, coupled with missing or ineffective integration with incident response, allows

attackers to further attack systems, maintain persistence, pivot to more systems, and tamper, extract, or destroy

data. Most breach studies show that the time to detect a breach exceeds 200 days, usually detected by external

parties rather than by internal or monitoring processes.[19]

Parades:

* Performing penetration tests and security auditing.

* Ensure that log data is properly encoded to prevent injections or attacks on logging or monitoring systems.

2.3.10 Server-side request forgery (SSRF)

SSRF vulnerabilities occur whenever a Web application retrieves a remote resource without validating the URL

provided by the user. It allows an attacker to force the application to send a specially crafted request to an

unexpected destination, even when it is protected by a firewall, VPN, or other type of network access control

list (ACL).[19]

Parades:

* Disable HTTP redirects

* Validate all input data provided by the customer.

22

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.10: Server-side request forgery [19]

2.4 National vulnerability database (NVD)

The NVD is the U.S. government repository of standards based vulnerability management data, represented

using the Security Content Automation Protocol (SCAP). This data enables automation of vulnerability man-

agement, security measurement, and compliance. The NVD includes databases of security checklist references,

security related software flaws, misconfigurations, product names, and impact metrics.[34]

The NVD performs analysis on Common Vulnerabilities and Exposures (CVEs) that have been pub-

lished to the CVE Dictionary. NVD staff are tasked with analysis of CVEs by aggregating data points from the

description, references supplied and any supplemental data that can be found publicly at the time. This analysis

results in association impact metrics Common Vulnerability Scoring System (CVSS), vulnerability types

(Common Weakness Enumeration - CWE), and applicability statements (Common Platform Enumeration -

CPE), as well as other pertinent metadata. The NVD does not actively perform vulnerability testing, relying

on vendors, third party security researchers and vulnerability coordinators to provide information that is then

used to assign these attributes. As additional information becomes available, CVSS score , CWEs, and appli-

cability statements are subject to change. The NVD endeavors to re-analyze CVEs that have been amended as

time and resources allow, ensuring that the information offered is up-to-date.[34]

23

CHAPTER 2. VULNERABILITIES DETECTION METHODS

2.4.1 A Brief History of the NVD

Figure 2.11: A Brief History of the NVD [34]

2.4.2 CVEs and the NVD Process

An Introduction

The Common Vulnerabilities and Exposures (CVE) program is a dictionary or glossary of vulnerabilities that

have been identified for specific code bases, such as software applications or open libraries. This list allows

24

CHAPTER 2. VULNERABILITIES DETECTION METHODS

interested parties to acquire the details of vulnerabilities by referring to a unique identifier known as the CVE

ID. It has garnered increasing awareness in recent years, making it important for participants and users to

understand the fundamental elements of the program.[34]

The CVE Assignment and Vetting Process

CVE IDs are assigned by the CVE Assignment Team and CNAs. The diversity of CNAs provides varied yet

specific areas of expertise for different types of vulnerabilities. Each CNA is given a realistic number of possible

candidates based on their scope and ability to timely vet each one. Regular training and retraining of CNA

staff and the establishment of a hierarchy of CNAs to govern various authorities help ensure that the guidelines

for the process are strictly followed and that standards are being met.[34]

CNAs use a policy known as the Counting Process in addition to an inclusion decision tree to determine if an

individual vulnerability should be included in the CVE list and if more than one CVE ID needs to be assigned.

This process begins when a reporter (typically the original individual or organization(s) that discovered the

bug) contacts the CVE Assignment Team or an appropriate CNA to request a CVE ID.[34]

Each CVE must include a description that is either provided by the reporter or created using the CVE As-

signment Team’s optional template. This description includes the type of vulnerability (e.g., a buffer overflow,

NULL pointer dereference, or cross-site request forgery), the product’s vendor, and the affected code base(s).

Reporters can provide further information, such as the expected impact, attack vectors, or state of remediation.

Once the vetting process is completed, a CVE ID is assigned.[34]

RESERVED tags are used when CVE IDs have been assigned or potentially assigned to vulnerabilities which

need further details before they can be finalized. Should the vulnerability be unsuitable for publication, it will

be denied a CVE ID and tagged REJECTED by the CNA. This may occur due to a lack of qualifying factors,

irregularities in the reporting process, or a request to be withdrawn by the original reporter.[34]

A CVE ID also may be given a DISPUTED tag should the vendor or other authoritative entity challenge the

validity of the vulnerability. This can occur before or after the National Vulnerability Database publishes their

analysis (see below).[34]

NVD CVE Analysis

The National Vulnerability Database (NVD) is tasked with analyzing each CVE once it has been published to

the CVE List, after which it is typically available in the NVD within an hour. Once a CVE is in the NVD,

analysts can begin the analysis process. The processing time can vary depending on the CVE, the information

available, and the quantity of CVEs published within a given timeframe. NVD analysts use the reference in-

formation provided with the CVE and any publicly available information at the time of analysis to associate

Reference Tags, Common Vulnerability Scoring System (CVSS) v2.0, CVSS v3.1, CWE, and CPE Applicability

statements.[34]

The following is a general overview of the analysis process for a given CVE:

1. An analyst reviews any reference material provided with the CVE record and assigns appropriate reference

tags. This helps organize the various data sources to help researchers find the relevant information for their

needs. The analyst also performs manual searches of the internet to ensure that any other available and

relevant information is used for the analysis process. NVD analysts only use publicly available materials

in the analysis process.

2. A common weakness enumeration (CWE) identifier is assigned that categorizes the vulnerability. NVD

analysts use a subset of the full list of CWEs that best represents the distribution of specific types of

vulnerabilities. This subset is known as the CWE-1003 view and was created through coordination with

the MITRE CWE team.

3. CVSS V2.0 exploitability and impact metrics are assigned based on publicly available information and

the guidelines of the specification.

4. CVSS V3.1 exploitability and impact metrics are assigned based on publicly available information and

25

CHAPTER 2. VULNERABILITIES DETECTION METHODS

the guidelines of the specification.

5. A Common Product Enumerator (CPE) Applicability Statement is associated with the vulnerability. The

CPE match criteria identifies all potentially vulnerable software and/or hardware for the vulnerability.

For example, an application may have several versions affected or must be running on a specific operating

system to be vulnerable. Automated processes can reference match criteria within the applicability state-

ments against the CPE dictionary to assist in identifying vulnerable products within an organization’s

information system.

6. Analysis results are given a quality assurance check by another, more senior analyst prior to being pub-

lished to the website and data feeds.

CVE Maintenance Once a CVE is published and NVD analysis is provided, there may be additional main-

tenance or modifications made. References may be added, descriptions may be updated, or a request may be

made to have a set of CVE IDs reorganized (such as one CVE ID being split into several). Furthermore, the

validity of an individual CVE ID can be disputed by the vendor. The NVD does make efforts to reanalyze

CVEs that have been changed after previous analysis. The NVD always appreciates and encourages feedback

from the community to keep the database and CPE dictionary accurate and current.[34]

2.5 Vulnerability detection using machine learning

The first step in the study of computer algorithms and the use of mathematical methods in the field of computer

science, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning

algorithms build a mathematical model based on a sample data, known as ”training data”, Machine learning

algorithms are used in a wide variety of applications, such as email filtering, and computer vision, where

it is infeasible to develop an algorithm of specific instructions for performing the task. Machine learning is

closely related to computational statistics, which focuses on making predictions using computers. The study of

mathematical optimization delivers methods, theory and application domains to the field of machine lea mining

is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised

learning. In its application across business problems, machine learning is also referred to as predictive analytic.

For example: Kernel machines are used to compute non-linearly separable functions into a higher dimension

linearly separable function. [26]

2.5.1 Machine learning tasks

At a high-level, machine learning is simply the study of teaching a computer program or algorithm how to

progressively improve upon a set task that it is given. On the research-side of things, machine learning can

be viewed through the lens of theoretical and mathematical modeling of how this process works. However,

more practically, it is the study of how to build applications that exhibit this iterative improvement. There

are many ways to frame this idea, but largely there are three major recognized categories: supervised learning,

unsupervised learning, and reinforcement learning.[43]

26

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.12: Machine learning tasks[24]

I. Supervised Learning

Supervised learning is the most popular paradigm for machine learning. It is the easiest to understand and

the simplest to implement. Given data in the form of examples with labels, we can feed a learning algorithm

these example-label pairs one by one, allowing the algorithm to predict the label for each example, and

giving it feedback as to whether it predicted the right answer or not. Over time, the algorithm will learn to

approximate the exact nature of the relationship between examples and their labels. When fully-trained,

the supervised learning algorithm will be able to observe a new, never before seen example and predict a

good label for it.[43]

Figure 2.13: Supervised Learning[3]

Supervised learning is often described as task-oriented because of this. It is highly focused on a singular

27

CHAPTER 2. VULNERABILITIES DETECTION METHODS

task, feeding more and more examples to the algorithm until it can accurately perform on that task. This

is the learning type that you will most likely encounter, as it is exhibited in many of the following common

applications:

• Advertisement Popularity Selecting advertisements that will perform well is often a supervised

learning task. Many of the ads you see as you browse the internet are placed there because a learning

algorithm said that they were of reasonable popularity (and click ability). Furthermore, its placement

associated on a certain site or with a certain query (if you find yourself using a search engine) is largely

due to a learned algorithm saying that the matching between ad and placement will be effective.[43]

• Spam Classification If you use a modern email system, chances are you’ve encountered a spam filter.

That spam filter is a supervised learning system. Fed email examples and labels (spam/not spam), these

systems learn how to preemptively filter out malicious emails so that their user is not harassed by them.

Many of these also behave in such a way that a user can provide new labels to the system, and it can

learn user preference.[43]

• Face Recognition Do you use Facebook? Most likely, your face has been used in a supervised learning

algorithm that is trained to recognize your face. Having a system that takes a photo, finds faces, and

guesses who that is in the photo (suggesting a tag) is a supervised process. It has multiple layers to it,

finding faces and then identifying them, but is still supervised nonetheless. [23]

II. Unsupervised Learning

Unsupervised learning is very much the opposite of supervised learning. It features no labels. Instead,

our algorithm would be fed a lot of data and given the tools to understand the properties of the data.

From there, it can learn to group, cluster, and/or organize the data in a way such that a human (or other

intelligent algorithm) can come in and make sense of the newly organized data.[43]

Figure 2.14: unsupervised Learning[10]

What makes unsupervised learning such an interesting area is that an overwhelming majority of data

in this world is unlabeled. Having intelligent algorithms that can take our terabytes and terabytes of

unlabeled data and make sense of it is a huge source of potential profit for many industries. That alone

could help boost productivity in a number of fields.[43]

III. Reinforcement Learning

Reinforcement learning is fairly different when compared to supervised and unsupervised learning. Where

we can easily see the relationship between supervised and unsupervised (the presence or absence of labels),

the relationship to reinforcement learning is a bit murkier. Some people try to tie reinforcement learning

closer to the two by describing it as a type of learning that relies on a time-dependent sequence of labels,

however, my opinion is that simply makes things more confusing.I prefer to look at reinforcement learning

28

CHAPTER 2. VULNERABILITIES DETECTION METHODS

as learning from mistakes. Place a reinforcement learning algorithm into any environment, and it will

make a lot of mistakes in the beginning. So long as we provide some sort of signal to the algorithm that

associates good behaviors with a positive signal and bad behaviors with a negative one, we can reinforce

our algorithm to prefer good behaviors over bad ones. Over time, our learning algorithm learns to make

less mistakes than it used to.[43]

Figure 2.15: unsupervised Learning[10]

Reinforcement learning is very behavior driven. It has influences from the fields of neuroscience and

psychology. If you’ve heard of Pavlov’s dog, then you may already be familiar with the idea of reinforcing an

agent, albeit a biological one. However, to truly understand reinforcement learning. For any reinforcement

learning problem, we need an agent and an environment, as well as a way to connect the two through a

feedback loop. To connect the agent to the environment, we give it a set of actions that it can take that

affect the environment. To connect the environment to the agent, we have it continually issue two signals

to the agent: an updated state and a reward (our reinforcement signal for behavior).[43]

2.5.2 Machine learning algorithms

A Machine Learning algorithm is an evolution of the regular algorithm. It makes your programs “smarter”,

by allowing them to automatically learn from the data you provide. The algorithm is mainly divided into:

Training Phase : You take a randomly selected specimen of apples from the market (training data), make

a table of all the physical characteristics of each apple, like color, size, shape, grown in which part of the

country, sold by which vendor, etc (features), along with the sweetness, juiciness, ripeness of that apple (output

variables). You feed this data to the machine learning algorithm (classification/regression), and it learns a

model of the correlation between an average apple’s physical characteristics, and its quality.[43]

Testing Phase : Next time when you go shopping, you will measure the characteristics of the apples which

you are purchasing (test data)and feed it to the Machine Learning algorithm. It will use the model which was

computed earlier to predict if the apples are sweet, ripe and/or juicy. The algorithm may internally use the

rules, similar to the one you manually wrote earlier (for eg, a decision tree). Finally, you can now shop for

apples with great confidence, without worrying about the details of how to choose the best apples.[43]

2.5.3 types of machine learning algorithms

So, it can be categorized by the following three types. As the following figure shows.

29

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.16: ML algorithms types[4]

2.6 Vulnerability detection using Deep Learning

Deep learning is a machine learning technique that teaches computers to do what comes naturally to humans:

learn by example. Deep learning is a key technology behind driverless cars, enabling them to recognize a stop

sign, or to distinguish a pedestrian from a lamppost. It is the key to voice control in consumer devices like

phones, tablets, TVs, and hands-free speakers. Deep learning is getting lots of attention lately, and for good

reason. It’s achieving results that were not possible before. In deep learning, a computer model learns to

perform classification tasks directly from images, text, or sound. Deep learning models can achieve state-of-the-

art accuracy, sometimes exceeding human level performance. Models are trained by using a large set of labelled

data and neural network architectures that contain many layers.[5]

2.6.1 How Deep Learning Works

Most deep learning methods use neural network architectures, which is why deep learning models are often

referred to as deep neural networks.The term “deep” usually refers to the number of hidden layers in the neural

network. Traditional neural networks only contain 2-3 hidden layers, while deep networks can have as many as

150.Deep learning models are trained by using large sets of labelled data and neural network architectures that

learn features directly from the data without the need for manual feature extraction .[5]

30

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.17: Neural networks[9]

2.6.2 Difference Between Machine Learning and Deep Learning

Deep learning is a specialized form of machine learning. A machine learning workflow starts with relevant

features being manually extracted from images. The features are then used to create a model that categorizes

the objects in the image. With a deep learning workflow, relevant features are automatically extracted from

images. In addition, deep learning performs “end-to-end learning” – where a network is given raw data and a

task to perform, such as classification, and it learns how to do this automatically. Another key difference is

deep learning algorithms scale with data, whereas shallow learning converges. Shallow learning refers to machine

learning methods that plateau at a certain level of performance when you add more examples and training data

to the network. A key advantage of deep learning networks is that they often continue to improve as the size of

your data increases.[5]

Figure 2.18: difference between Machine Learning and Deep Learning

31

CHAPTER 2. VULNERABILITIES DETECTION METHODS

2.6.3 How to create and train deep learning models

The three most common ways people use deep learning to perform object .[5] classification are:

• Training from Scratch

To train a deep network from scratch, you gather a very large labelled data set and design a network architecture

that will learn the features and model. This is good for new applications, or applications that will have numerous

output categories. This is a less common approach because with the large amount of data and rate of learning,

these networks typically take days or weeks to train .

• Transfer Learning

Most deep learning applications use the transfer learning approach, a process that involves fine-tuning a pre-

trained model. You start with an existing network, such as AlexNet or Google Net, and feed in new data

containing previously unknown classes. After making some tweaks to the network, you can now perform a new

task, such as categorizing only dogs or cats instead of 1000 different objects. This also has the advantage of

needing much fewer data (processing thousands of images, rather than millions), so computation time drops to

minutes or hours. Transfer learning requires an interface to the internals of the pre-existing network, so it can

be surgically modified and enhanced for the new task.

• Feature Extraction

A slightly less common, more specialized approach to deep learning is to use the network as a feature extractor.

Since all the layers are tasked with learning certain features from images, we can pull these features out of

the network at any time during the training process. These features can then be used as input to a machine

learning model such as support vector machines (SVM).

2.6.4 Deep Neural Network

Deep Neural Networks (DNNs) are typically Feed Forward Networks (FFNNs) in which data flows from the

input layer to the output layer without going backward³ and the links between the layers are one way which is

in the forward direction, and they never touch a node again.

32

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.19: DNN types

2.7 Vulnerability detection using Natural Language Processing (NLP)

technology

2.7.1 Natural Language Processing

Natural language processing (NLP) is the use of computers to model human natural language in order to solve

the application of natural language in some related problems. In NLP, the problems that need to be solved can

be divided into twocategories [1]:

• One is the natural language understanding (NLU) problem, including text classification, named entity recog-

nition, relation extraction, reading comprehension ...

• The second is natural language generation (NLG) problems, including machine translation, text summary

generation, automatic question and answer system, Image caption generation...

When NLP researchers studied and solved these two types of problems, they found that the underlying problems

that constitute these problems are basically the same, such as embedding expressions of vocabulary. Now

researchers are more inclined to use a unified model for modeling (pretraining stage), and then adjust the model

according to specific problems (fine-tuning stage). Research at this stage has made great progress. It is believed

that in the near future, machines can truly understand human language and even understand human thinking.

Since 1980s, traditional NLP has increasingly relied on statistics, probability and shallow learning (traditional

machine learning) [24], such as naive Bayes, hidden Markov model, conditional random field, support vector

33

CHAPTER 2. VULNERABILITIES DETECTION METHODS

machines and proximity algorithms, etc., these algorithms are still widely used in NLP today. But with the

development of deep learning (DL), people are paying more and more attention to how to use DL models to

solve the problems in NLP.[22]

2.7.2 How does Natural Language Processing Works

NLP entails applying algorithms to identify and extract the natural language rules such that the unstructured

language data is converted into a form that computers can understand. When the text has been provided, the

computer will utilize algorithms to extract meaning associated with every sentence and collect the essential data

from them. Sometimes, the computer may fail to understand the meaning of a sentence well, leading to obscure

results. For example, a humorous incident occurred in the 1950s during the translation of some words between

the English and the Russian languages. Here is the biblical sentence that required translation[1]:

Figure 2.20: biblical sentence that required translation

2.7.3 Deep Learning in Natural Language Processing

The main goal of DL is to learn the deep neural network model. The neural network model is composed of

neurons and the edges connected to them. Each neuron can input and output. The data inside the neuron

can be non-linearly transformed. According to the development of the timeline, we use the time point at which

Transformer is proposed as the segmentation point. The model method before its appearance is called the basic

model method, and the later one is called the modern model method (or attention model method). We will

introduce them separately below Basic model method introduction [27]:

1. Convolutional Neural Network (CNN) : Due to the excellent abstract feature extraction ability of

the convolution kernel, it has achieved great success in the field of computer vision (CV). In the field of

NLP, CNN based algorithms have also appeared one after another, such as, etc. In the research related

to vulnerability detection, some scholars have used CNN to mine vulnerabilities, as shown in figure.

34

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.21: Using CNN to classify source code [27]

Although these models use CNN as a feature extractor to extract features from text data, because the

feature dimensions of text data are not many, in text data, more attention is paid to the close connection

between contexts, and the model is required to have a ”memory” function, So CNN does not perform very

impressively when processing tasks in NLP. But the latest research shows that with the development of

multimodel technology, is some code generation tasks, such as image generation instructions, the use of

CNN-based models has achieved good results.

2. Recurrent Neural Network(RNN) [27]:

One of the characteristics of RNN is its ”memory”. RNN can take serialized data as input or output

serialized data. For serialized data such as text, using RNN for processing has a natural advantage. In

the output of the RNN, the above sequence information of the current token can be included, which

makes the RNN have a ”memory” function. When processing the data in this article, people often use

a two-way RNN, that is, to process the above and below information of the current token separately.

Let the token contain the current context information at the same time, which is very important for the

model to understand the meaning of the sentence. However, the model with RNN structure cannot be

processed in parallel. Today, with massive data, it greatly reduces the development of RNN in engineering

applications. In NLP, CNN and RNN are used to extract the character-level representation of words, as

shown in Figure.[27]

35

CHAPTER 2. VULNERABILITIES DETECTION METHODS

Figure 2.22: CNN RNN for extracting character-level representation for a word [27]

3. Long Short-Term Memory Networks(LSTM) : In addition to the structural limitations, RNN

cannot capture long sequence text information due to the problem of vanishing gradient [42], so scholars

modified RNN The LSTM model is proposed to solve the defect that RNN cannot process data in parallel.

LSTM is one of the models with the strongest ”memory” ability in NLP so far, and it is also one of the most

widely used models. However, because LSTM has complex gating logic, it consumes a lot of space and

time during training. Gated Recurrent Unit (GRU) is a model that is similar in structure to LSTM but

more lightweight, and its performance in training is not worse than LSTM. For the comparison between

the three basic models of CNN, GRU, and LSTM in NLP applications, please refer to . Since LSTM

is a one-way model, in order to obtain the context information of the token, people often superimpose

the LSTM/GRU model in two directions to obtain a two-way LSTM model (Bi-LSTM). In practical

applications, the BiLSTM model is often used to extract the features of the sentence, and then the CRF

algorithm is used to process the downstream tasks.[27]

Figure 2.23: LSTM network [27]

36

CHAPTER 2. VULNERABILITIES DETECTION METHODS

So far, the basic concepts necessary for this work have been described. The next section describes previous

work in finding vulnerabilities and also attempts a classification, although there are many criteria under which

approaches can be compared. The advantages and disadvantages of the previous approaches are described.[27]

2.8 Related work

2.8.1 Vulnerability prediction based on metrics

What are the functions to apply while predicting whether code is susceptible or now no longer? For a lengthy

time, the maximum typically used functions had been observed out of doors the supply code itself, with inside

the shape of software program and developer metric. Those consist of length of the code (LOC), cycloramic

complexity, code churn, developer activity, coupling, quantity of dependencies or legacy metrics. Such metrics

had been universally used as functions for constructing fault prediction models, and are particularly applicable

with inside the subject of software program first-class and reliability assurance. To provide simply one example,

Nagappan et al. use organizational metrics to expect faults in a software program. It appears workable that the

ones metrics may also be utilized in vulnerability prediction - however, there are a few issues with that. First, it’s

far viable that portions of code have the equal metrics (for instance, complexity) however a very extraordinary

behavior, main to an extraordinary probability to be susceptible. In addition to that, additionally, they have

a tendency to now no longer generalize nicely from one software program assignment to the next. The most

powerful grievance is that such metrics do now no longer seize the semantics of the code, and this technique does

now no longer take the real supply code, the program behavior, or the records circulate in account. The technique

is correctly making use of a foregone end that sure meta functions might be associated with safety flaws, that’s

now no longer always true. For example, many vulnerabilities also can get up in very easy programs. In fact,

regularly the trivial or direct method to an algorithmic problem does now no longer include the safeguards

and precautions which might be required for stopping exploits, that’s exactly the cause why software program

builders who’re below time constraints or lack revel in with safety concerns run into issues. Code complexity

is now no longer a super predictor for safety flaws, and comparable arguments and counterexamples may be

observed for the alternative metrics as nicely. However, it ought to be stated that as a minimum, a few insights

may be won from software program metrics. This is illustrated with the subsequent works that use gadget

getting to know procedures utilising code metrics to expect the prevalence of safety-associated flaws in software

program. Shin et al. use 9 complexity metrics to expect vulnerabilities in JavaScript projects, attaining a

low fake fine rate, however an incredibly excessive fake terrible rate. In a later work, the authors leveraged

code complexity, code churn and developer metrics to expect vulnerabilities, attaining 80% to take into account

and 25% positives with linear discriminant evaluation and Bayesian networks. Using complexity, coupling and

brotherly love metrics (typically abbreviated as CCC), Chowdhury et al. try and expect software program

vulnerabilities in the use of procedures that had been carried out to fault detection before. The behavior a

take a look at on releases of Mozilla Firefox and use selection trees, random forest, logistic regression, and

naive Bayes models to expect vulnerabilities, attaining round 70% precision and take into account, respectively.

Zimmerman et al. delivered even extra metrics to the list: they investigated code churn, code complexity, code

coverage, organizational measures and real dependencies. They observed a weak, however statistically good-

sized correlation among the investigated metrics and used logistic regression to expect vulnerabilities primarily

based totally on them, focusing on the proprietary code of Windows Vista. The metrics had been capable of

expect vulnerabilities with a mean precision of 60%, however with an incredibly disappointing take into account

of 40%. Neuhaus et al. checked out import statements with inside the Mozilla assignment, reporting a median

precision of 70% and take into account of 40% while predicting vulnerabilities via way of means of import

statements with assist vector machines. Yu et al. take many extraordinary viable functions into account,

which includes software program metrics consisting of quantity of subclasses, or quantity of techniques in a

file, in addition to crash functions and code tokens with their tf-idf scores. Their technique is consequently a

37

CHAPTER 2. VULNERABILITIES DETECTION METHODS

combination of many extraordinary angles. They expect vulnerabilities on the extent of entire documents and

achieve very enjoyable consequences in narrowing down the quantity of code that needs to be inspected via

way of means of human professionals to discover a vulnerability. Other researchers had been capable to make

predictions simply with dedicate messages. Zhou et al. leverage a K-fold stacking set of rules to investigate

dedicate messages to expect whether a dedicate includes vulnerabilities, reportedly with first-rate success. In

contrast, Russel et al. observed that each human beings and Machine Learning algorithms accomplished poorly

at predicting construct screw-ups or insects simply from dedicate messages. [37]

2.8.2 Anomaly detection approaches for finding vulnerabilities

Anomaly Detection refers to the problem of describing normal and expected behavior and detecting deviations

from it. The assumption is that code not conforming to the implied rules can often be the cause of a defect. Data

mining techniques have been used to analyze source code and extract normal coding patterns. To name one

example, Li et al. developed a tool called PR-Miner that can find code patterns in any programming language

and that has been proven to be quite useful. Their approach, which relies mostly on associating programming

patterns that are used together with each other, is independent of any chosen language and violations reported by

their tool have been confirmed as bugs in Linux, PostgreSQL and Apache. A fundamental problem is, however,

that bugs that are themselves typical patterns (and therefore occur frequently in the code) are systematically

overlooked, resulting in common flaws not being detected. At the same time, rare programming patterns or

API usages can be flagged as false positive simply because they do not occur often. Several of the anomaly

detection approaches have quite high false-positive rates.

Figure 2.24: One way to structure different approaches for vulnerability detection

Specifically for finding security vulnerabilities (and not mere bugs that do not have any implication for security),

38

CHAPTER 2. VULNERABILITIES DETECTION METHODS

anomaly detection in code is not a straightforward approach, since it is hard to tell when a violation of common

code patterns has an implication for security and when it does not. The approach in this work differs from typical

anomaly detection insofar as explicit labels are used to train a model on vulnerable and (mostly) secure code,

thereby avoiding the questionable assumption that ’typical’ equals ’correct’. It belongs in the next category:

vulnerable code pattern analysis.[20]

2.8.3 Vulnerable code pattern analysis and similarity analysis

Since the purpose is to discover vulnerabilities, in assessment to getting to know approximately summary metrics

or the definition of accurate code, it appears nearly just like the maximum herbal desire to simply try to reply

the question: What does prone code usually appearance like? There are two barely unique techniques to reply

that question: prone code sample evaluation and similarity evaluation. Similarity evaluation does precisely

what they call suggests. Given a prone code snippet, the purpose is to discover the maximum comparable

code fragments, assuming that they’re at threat to share the vulnerability. This method works nice for equal

or almost equal code clones wherein the inherent shape of the in comparison code fragments could be very

comparable, a state of affairs that happens pretty often, particularly through code sharing with inside the open

supply community. In prone code sample evaluation, prone code segments are analyzed with data mining and

device-getting to know strategies to extract their usual functions. Those functions constitute patterns, that

may then be implemented on new code segments to discover vulnerabilities. Most of the works on this location

acquire a huge dataset, procedures it to extract function vectors, after which makes use of device-getting to

know algorithms on it, as defined through Ghaffarian et al. Both techniques are usually implemented to supply

code without executing it, as a static evaluation, even though a few researchers additionally integrate their

method with a dynamic evaluation. The crux of the problem is that during comparison to ’traditional’ static

evaluation, the functions are created mechanically or semi-mechanically, putting off the want for subjective

human experts. By getting to know at once from a dataset of code what prone code entails, an independent

version may be built. In many cases, the ones techniques additionally rely upon a completely hard granularity,

classifying complete programs, documents, components or functions, which makes it not possible to pin down

the precise vicinity of a vulnerability. Some, like Li et al. and Russell et al. use a greater fine-grained illustration

of the code. Furthermore, the techniques vary in lots of aspects: the language used, the supply of the data

(real-existence tasks or artificial databases) and the dimensions of the dataset, the introduction method for

labels, the granularity stage of the evaluation (complete documents right all the way down to code tokens), the

device getting to know version that become used, the tested varieties of vulnerabilities, and whether the version

is usable in cross-venture predictions or simply at the venture it becomes educated on. First, a few fundamental

techniques in the use of numerous device getting to know strategies might be defined. Afterwards, techniques

that leverage deep getting to know are tested in greater detail. Morrison et al. study protection vulnerabilities

in Windows 7 and Windows eight with numerous device getting to know strategies which includes logistic

regression, naive Bayes, guide vector machines and random woodland classifiers, with particularly disappointing

consequences, attaining very low precision and recollect values. In a completely truthful method, Pang et al.

take labels from an online database and use a mixture of function choice and n-gram evaluation to categorise

complete Java lessons as prone or now no longer prone. Working on a particularly small dataset of four Java

android applications, they follow an easy n-gram version in aggregate with function choice (or better: ranking)

techniques to mix associated functions and decrease the range of beside the point functions taken into account.

Afterwards, they select out guide vector machines as getting to know algorithm, attaining round 92% curacy,

96precision and 87% recollect with inside the equal venture, and values round 65 % in cross-venture prediction

(schooling on one venture and looking to classify prone documents in some other one). Shar et al. follow

device getting to know to lessen fake positives in recognizing XSS and SQLI vulnerabilities in PHP code. They

first select out a few code attributes manually and then teach a multi-layer perceptron to supplement static

evaluation tools. Compared to a static evaluation tool, they detected much fewer vulnerabilities, however

39

CHAPTER 2. VULNERABILITIES DETECTION METHODS

additionally finished to decrease fake fantastic quotes in a universal fulfilling result. In their later paintings,

they use a hybrid method which includes dynamic evaluation, enhancing their preceding consequences notably,

as examined on six large PHP tasks. They additionally test with unsupervised predictors, which can be much

less accurate, however nonetheless a promising location of research. Hovsepyan et al. examine uncooked supply

code as textual content. As their example, they picked an Android e-mail purchaser written in Java and mainly

centred on studying the supply code like a herbal language, processing documents as a complete. After filtering

out comments, they remodel documents in function vectors made up from Java tokens with their respective

counts with inside the document (in a bag-of-words-fashion method). Those function vectors are categorised in a

binary scheme as prone or clean. Finally, the classifier (a guide vector device) is educated to expect if a document

is prone. The accuracy finished through this classifier is 87%, with 85% precision and 88% recollect. Their

achievement suggests that a great deal of perception may be gained without tricky fashions of code illustration,

through simply taking the supply code as herbal textual content and studying it as-is. Unfortunately, their

paintings are restrained through the utility on an unmarried software program repository. In a later painting,

they used choice trees, k-nearest-neighbor, naive Bayes, random woodland and guide vector machines for the

same task.[38]

2.9 conclusion

In this chapter, we have tried to cover ways to prevent gaps in web applications, including machine learning

and deep learning, these are two interesting areas where it is widely used by many companies because it gives

good results and gives solutions to problems through the data provided and advances data .In the next chapter,

we will try to apply one of the learning algorithms, and they have been trained in the field of injection and XSS

attacks prevention and some special designs.

40

Chapter 3
Conception

3.1 Introduction

In the previous chapter, we have seen some techniques and methods used to prevent gaps in Web applications

and some work done, and we have chosen logistic regression and convolutional neural network and how it helps

prevent SQL/XSS gaps and protect users from this gap . We will explain in this chapter the steps and units

that make up our system and where to present the design of the system through its general design, then move

on to its detailed design by explaining the components and elements of the system and identifying it and the

principle of its operation.

3.2 System presentation

we will describe our system globally and give the shape of its structure, such as its components and purpose.

3.2.1 System objectives

The proposed system is a system that allows the analysis of (SQL) commands and Cross Site Scripting (XSS)

and other words and symbols that the user enters into the web application for the purpose of accessing the

platform by SQL and XSS injection OR input data in the request contains such special characters and Web

applications generate response pages using this data, the model we have developed where everything that the

user enters, We merged into one model each of (XSS and SQL) such as password, name or email, verifies and

authenticates it by analyzing all the entries and comparing them to the database of known entries if there is

consensus who passes and if otherwise he suspends and cancels them.

Any prevention and protection of our application is carried out against any vulnerability or attacker intended

to cause damage or steal information... etc

3.2.2 Flow chart of the global system Architecture

This flow chart contains of information are exchanged between the user and our system (web application) where

the user enters the information and then passes it on the CNN model so that model can expect if this information

request vulnerable or not and if the request is vulnerable code the system will display sql or xss detected if not

and if the user had account in database the system will display the interface user .

41

CHAPTER 3. CONCEPTION

Figure 3.1: flow chart of the global system

3.3 Detailed System Design

3.3.1 Flow chart of creating CNN model

In general, we can represent the structure of the (SQL/XSS) CNN Model and evaluation system as follows :

42

CHAPTER 3. CONCEPTION

Figure 3.2: The General flow chart of CNN Model

The system can be divided into 3 components:

• Data Collection

• Data Preparation

• Classification and Training

3.3.2 Data Collection

In this unit we will collect as much data as possible, which is a collection of SQL and XSS query, letters, numbers

and constraint codes, JavaScript Which in turn can be the cause of a vulnerability, leading to exploitation

by attackers.

The process of collecting this dataset was difficult because most of the datasets were not free and did not have

public access, but we succeeded to find one on the KAGGLE platform (kaggle.com), which did not contain

much data, just a satisfactory amount.

this link from KAGGLE for dataset :

43

CHAPTER 3. CONCEPTION

SQL : https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset

XSS : https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-scripting-xss-dataset-for-deep-learning

Dataset name/label Dataset size total entries Malicious entries Secure Entries Source File Name

Database SQL Injection 723.15 KB 4200 1128 3072 Sqli.csv

Database XSS 16700 KB 13686 7373 6313 XSS-dataset.csv

all dataset 2393.15 KB 17886 8501 9385 SQL-XSS.csv

Table 3.1: Metadata of the Collected Data Set

The dataset contains two columns, a sentence, and a Label column. The value in column Label 1 means that

the data is a SQL injection, the value 2 means the data is XSS vulnerability and 0 means that it is normal data.

3.3.3 Data Preparation

In this component we will try to train our system, which in turn learns in the field of classification and division

of applications through specific data, where the algorithm vectorizes the data of the text or (SQL order and XSS

order) into a matrix to be easily identified and manipulated, then preserve a model and if it is high resolution,

let us use it or not use it using other more precise and effective parameters.

1. Using TF-IDF in machine learning natural language processing (CNN)

In our system, we have chosen to use TF-IDF as a data vectoring technique, in which we apply ourselves

to extract characteristics from our textual dataset.Machine learning algorithms often use numerical data,

so when dealing with textual data or any natural language processing (NLP) task, a subfield of ML/AI

dealing with text, that data first needs to be converted to a vector of numerical data by a process known

as vectorization

2. TF-IDF vectorization involves calculating the TF-IDF score for every word in your corpus relative to

that document and then putting that information into a vector (see image below using example documents

“A” and “B”). Thus, each document in your corpus would have its own vector, and the vector would have

a TF-IDF score for every single word in the entire collection of documents. Once you have these vectors,

you can apply them to various use cases, such as seeing if two documents are similar by comparing their

TF-IDF vector using.[40]

44

CHAPTER 3. CONCEPTION

Figure 3.3: example documents“A” and “B”).

3.3.4 Classification and Training

In this part we will try to train our system, which in turn learns in the field of classification and division of

commands from specific data, then saves a model and if it has high accuracy, we exploit it or do not reform it

with other parameters.

We chose to use convolutional neural network (CNN) to train our model, which provided us with better

accuracy compared to other machine learning algorithms such as SVM, Decision Tree and others, the following

figure shows the training steps.

45

CHAPTER 3. CONCEPTION

Figure 3.4: Training the Model

3.4 Model Testing

We will test our simple system which is to try the model of us by testing it, and we calculate the accuracy on

the whole of which test provided that the model of us has not seen it and if the result is more than 75% means

that it has passed, and therefore we run it, or we will retreat in another way which is the use of other good

parameters and training again

3.4.1 Using the model

We can use our saved model as follows :

46

CHAPTER 3. CONCEPTION

Figure 3.5: Using the Model

3.5 Designed by UML

3.5.1 Sequence diagram for ” Registration ”

This diagram explains how to create a new account in a web application where the system user accesses the

record, and when the required interface is displayed, the fields are correct from the process where the system

ensures that the data is entered and corrected after verification by (XSS-SQL-Model), and then stored and

saved in the database as shown in the figure below.

47

CHAPTER 3. CONCEPTION

Figure 3.6: ”Inscription” Sequence Diagram

3.5.2 Sequence diagram for ” Authentication”

In this diagram, we have described the authentication scenario by displaying our system as an authentication

form after the user has requested after writing down their complete information and submitting the form, and

then the system reacts to perform the procedures to meet the requirements.

48

CHAPTER 3. CONCEPTION

Figure 3.7: ”Authentication” Sequence Diagram

3.6 Conclusion

In this chapter, we have presented how we designed our system, where we presented the overall design, and also

detailed the steps we took to access our system, and we detailed the components used and the basic steps (data

collection, data preparation, training and testing). We present, in the next chapter, the implementation of the

system and the obtained results .

49

Chapter 4
Implementation

4.1 Introduction

In this chapter, we will introduce the work environment, the programming language, and the tools we used to

build the system.Also we will Present the database used and some images of the application interface. Then,

explain all the experiments we have applied to the proposed method and the results obtained . in the end we

show a comparison with different models.

4.2 Development Environment

4.2.1 Python

Figure 4.1: Python Logo

Python is the open source programming language most used by computer scientists. This language has propelled

itself to the top of infrastructure management, data analysis or in the field of software development. Indeed,

among its qualities, Python allows developers to focus on what they do rather than how they do it. It freed

developers from the constraints of forms that occupied their time with older languages. Thus, developing code

with Python is faster than with other languages. [2]

50

CHAPTER 4. IMPLEMENTATION

4.2.2 Environment using google colab for creating the model

Figure 4.2: google Colab Logo

Google Colab

was developed by Google to provide free access to GPU’s and TPU’s to anyone who needs them to build a

machine learning or deep learning model. Google Colab can be defined as an improved version of Jupyter

Notebook. Another attractive feature that Google offers to the developers is the use of GPU. Colab supports

GPU and it is totally free. The reasons for making it free for public could be to make its software a standard

in the academics for teaching machine learning and data science. It may also have a long term perspective of

building a customer base for Google Cloud APIs, which are sold per-use basis.[36]

What Colab Offers You?

• Write and execute code in Python

• Create/Upload/Share notebooks

• Import/Save notebooks from/to Google Drive

• Import/Publish notebooks from GitHub

• Import external datasets

• Integrate PyTorch, TensorFlow, Keras, OpenCV

• Free Cloud service with free GPU

4.2.3 XAMPP

XAMPP is a set of software that is used to easily set up a Web server, ftp server, and e-mail server. It is a free

software distribution (X Apache MySQL Perl PHP) offering good flexibility of use, recognized for its simple

and fast installation. [?]

Figure 4.3: XAMPP Icon

Thus, it is within the reach of most people insofar as it does not require specific knowledge and works, moreover,

on the most common operating devices

51

CHAPTER 4. IMPLEMENTATION

4.2.4 Django

Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design.

Built by experienced developers, it takes care of much of the hassle of web development, so you can focus on

writing your app without needing to reinvent the wheel. It’s free and open source.[6]

why choose Django ?

Figure 4.4: Ridiculously fast

Django was designed to help developers take applications from concept to completion as quickly as possible.

Figure 4.5: Reassuringly secure

Django takes security seriously and helps developers avoid many common security mistakes, such as SQL

injection, cross-site scripting, cross-site request forgery and clickjacking. Its user authentication system provides

a secure way to manage user accounts and passwords.[6]

Figure 4.6: Exceedingly scalable

Some of the busiest sites on the planet use Django’s ability to quickly and flexibly scale to meet the heaviest

traffic demands.

What does Django code look like ?

In a traditional data-driven website, a web application waits for HTTP requests from the web browser (or other

client). When a request is received, the application works out what is needed based on the URL and possibly

information in POST data or GET data. Depending on what is required, it may then read or write information

from a database or perform other tasks required to satisfy the request. The application will then return a

response to the web browser, often dynamically creating an HTML page for the browser to display by inserting

52

CHAPTER 4. IMPLEMENTATION

the retrieved data into placeholders in an HTML template.[6]

Django web applications typically group the code that handles each of these steps into separate files:

Figure 4.7: Django architecture

4.3 The used tools

4.3.1 Tensorflow

Figure 4.8: tensorflow logo

TensorFlow is an open-source library developed by the Google Brain team that initially used it internally. It

implements machine learning methods based on the principle of deep neural networks (Deep Learning). A

Python API is available, we can exploit it directly in a program written in Python. It enables easy deployment

of compute across a variety of platforms (CPU, GPU, TPU), and from desktops to server clusters to mobile

devices and peripherals. [25]

53

CHAPTER 4. IMPLEMENTATION

Why TensorFlow ?

• Easy model building

Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which

makes for immediate model iteration and easy debugging.

• Robust ML production anywhere

Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language

you use.

• Powerful experimentation for research

A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and

to publication faster.

4.3.2 Keras

Figure 4.9: keras logo

Keras is an open source software library that provides multiple backends supported by Keras, including Tensor-

Flow, Microsoft Cognitive Toolkit, Theano, only Tensor Flowis supported. Designed to enable rapid experimen-

tation with deep neural networks, it focuses on usability, modularity, and extensibleness. It has been developed

as part of the research effort of the ONEIROS (Open ended Neuro-Electronic Intelligent Robot Operating

System) project[39]

4.4 Structures of Data

4.4.1 Part of the used dataset

For SQL

Figure 4.10: positive items

54

CHAPTER 4. IMPLEMENTATION

Figure 4.11: negative items

For XSS

Figure 4.12: positive items

Figure 4.13: negative items

4.4.2 pre-processing Data

we will vectorize the dataset (SQL/XSS) words to numbers

55

CHAPTER 4. IMPLEMENTATION

Figure 4.14: code source TF-IDF

we drop the first row of XSS dataset because we don’t need it and merge tow table or data tables (XSS and

SQL) then convert first colomun values of merged to string and finally call TF-IDF to vectorized the data to

be ready and use it CNN model .

4.4.3 Training

To train the CNN model, we used the Keras library, a library written in Python, and we used some super

parameters as a comparison, where vectorize converts these parameters into a numerical matrix to make it

easier to read and calculate the results to classify them as shown in the figure below.

56

CHAPTER 4. IMPLEMENTATION

Figure 4.15: training CNN Model

4.4.4 Evaluation

For the purpose of prediction and classification, four key concepts are usually the basis for evaluation: true

positives, true negatives, false positive and false negatives. They have been mentioned before but shall be

defined properly here. Positive and negative refer to the prediction, meaning that (without loss of generality)

in this work a prediction of ’vulnerable’ would be a positive and a prediction of ’not vulnerable’ would be a

negative. The terms true and false refer to whether the prediction corresponds to the actual value or external

judgment. Hence, a false positive is a clean code incorrectly labeled as vulnerable by the classifier, a true

positive is a vulnerability that was correctly spotted, a false negative is an actual vulnerability that was not

classified as such, and a true negative is a piece of code that was classified as ’not vulnerable’ and is indeed

harmless.

The precision

is the rate of true positives within all positives. It measures how precise the model is in terms of how many of the

predicted positives are actual positives, or phrased differently,how much trust can be placed in the classification

of a positive and how many false alarms are produced. [35]

Figure 4.16: Equation of The precision

The recall

also called sensitivity, is a measurement for the rate of positives that were correctly identified in comparison to

the total number of actual positives. One could take it as a measurement for how vigilantly the classifier spots

all positives - or how much gets overlooked .[35]

Figure 4.17: Equation of The recall

57

CHAPTER 4. IMPLEMENTATION

The accuracy

is the fraction of correct predictions compared to all predictions. For binary classification [35] , it is defined as

following:

Figure 4.18: Equation of The accuracy

4.4.5 Experiments and Obtained Results

To get a better model, we had several experiments, applied the dataset on several methods, including CNN,

KNN, SVM, and Naivebayse, and we got some results summarized in the figures below.

• Convolutional Neural Network (CNN)
To arrive at a good model, we tested our database on CNN and got the results below. we got effective

results.

Figure 4.19: result CNN Model

• NaiveBayes
The results of the Naive Bayes model did not give excellent results compared to the CNN.

58

CHAPTER 4. IMPLEMENTATION

Figure 4.20: result NaiveBayes

• K-nearest Neighbors (KNN)
To arrive at a good model, we tested our database on KNN and got the results below, which are not

enough.

Figure 4.21: result K-nearest Neighbors (KNN)

• Support Vector Machine (SVM)
We also did the same on SVM algorithm, and it gave good results.

Figure 4.22: result Support Vector Machine (SVM)

• Comparison accuracy result

CNN Naive Bayes KNN SVM

98% 86% 79% 83%

Table 4.1: Comparison accuracy result

59

CHAPTER 4. IMPLEMENTATION

So the best model is CNN because it is larger than them in terms of ratio, it is suitable and effective to detect

and prevent SQL injections and XSS attack

4.4.6 Testing

• we will display CNN Model Accuracy and Loss History

Figure 4.23: Model Accuracy and Model Loss

• we will display Confusion Matrix Of CNN Model

Figure 4.24: Matrix Of CNN Model

in the test :

– case 0 : 1866 case true , 52 case false(sql) , 1 case false (xss)

– case 1 : 3 case false , 218 case true , 1 case false (xss)

– case 2 : 2 case false , 0 case true(sql) , 1429 case true

• We trying to put a XSS injection example and see the result .

60

CHAPTER 4. IMPLEMENTATION

Figure 4.25: model testing

4.5 Presentation system

4.5.1 Database

The following database set was used: User database .

Figure 4.26: database myphp with xamp

4.5.2 Interface Already Registered ”Login”

This interface allows the registered user in the database to enter as soon as they type their username and

password.

61

CHAPTER 4. IMPLEMENTATION

Figure 4.27: Interface ”Login”

4.5.3 First Time Registration Interface ”New User”

This interface allows the server to register for the first time because the interface contains certain features and

allows you to type the username, sex, email, password, and Description , as shown in the figure below

62

CHAPTER 4. IMPLEMENTATION

Figure 4.28: interface ”New User”

4.5.4 First Time Registration Interface ”New User”

This interface allows The user’s interface is displayed with all the location data and this website is a social

media, as shown in the figure below :

63

CHAPTER 4. IMPLEMENTATION

Figure 4.29: interface of User profile

4.5.5 Application After Prevention

Example 1

SQL injection :
In this example, we will apply SQL injection by attacker to enter the data of users. by using SQL injection

attack : like this form : ”select * from users where id = 1 +$+ or 1 = 1 – 1 ”

other SQL examples didn’t excite in dataset :

• hi’) or (’a’ = ’a

• ”) or true–

• ”) or sleep (TIME) = ”

• select * from users where id = 1 or ”?;” or 1 = 1 – 1

64

CHAPTER 4. IMPLEMENTATION

Figure 4.30: SQL injection try ”New User”

Example 2

XSS injection :
In this example, we will apply XSS injection by attacker to enter the data of users. by using SQL injection

attack : like this form ” ¡a onblur=alert(1) tabindex=1 id=x¿¡/a¿¡input autofocus¿ ”

other XSS examples didn’t excite in dataset :

• < aonblur = alert(1)tabindex = 1id = x >< /a >< inputautofocus >

• ” < style > @keyframesxfromleft : 0;toleft : 1000px; : targetanimation : 10sease− in− out0s1x; <

/style >< acronymid = xstyle = ”position : absolute; ”onanimationcancel = ”alert(1)” >< /acronym >

• < style > @keyframesslidein < /style >< dialogstyle = ”animation − duration : 1s; animation −
name : slidein; animation− iteration− count : 2”onanimationiteration = ”alert(1)” >< /dialog >

• < bodyonpointermove = alert(1) > XSS < /body >

65

CHAPTER 4. IMPLEMENTATION

Figure 4.31: XSS injection in web site

4.6 Conclusion

In this chapter, we have described the implementation of our system, where we present the environment and the

development tools we used. We used a database with different commands and a form. The database training

and classification model was applied with the used parameters and tested, and we also showed the use of our

model, such as we also provided graphical interfaces for our system. Finally, we explained the experiments and

the obtained results .

66

General conclusion

Preventing vulnerabilities in web applications is not an easy task as hackers and
attackers find new ways to break protections, making these techniques obsolete,
researchers plan to apply machine learning . In the cybersecurity field to provide
more dynamic and robust protection for new types of attacks that we have never
seen before.
Machine learning is still a developing field in the field of cyber security, and there
is a lack of open source libraries, frameworks, and tools to use for threat and attack
issues.
In this work, we proposed a method to prevent two vulnerabilities of injection (SQL
and XSS) common and dangerous that occurs in Web applications using relational
database systems. The results were effective.
To continue work on this project, we could increase the size of the dataset by
collecting more or even using the ones already built to increase efficiency. We could
also manipulate the hyper parameters and recycle the model to get better results,
we can also add protection against vulnerabilities other than SQL injection and XSS
injection, such as ”XSRF”, ”remote code execution”, ”path disclosure”, ”command
injection”, ”open redirect” and other common and dangerous vulnerabilities.

67

Bibliography

[1] Deep learning, 06. 19 ,2022. URL: https://mc.ai/understanding-deep-learning-dnn-rnn-lstm-cnn-and-r-cnn/.

[2] python, urldate:06.19, 2022. URL: https://www.python.org/.

[3] Supervised machine learning, urldate:06.19, 2022. URL: https://tutorialforbeginner.com/

supervised-machine-learning.

[4] types of machine learning methods, urldate:06.19, 2022. URL: https://www.sneakernews66.top/

products.aspx?cname=types+of+machine+learning+methods&cid=66.

[5] What is deep learning?, urldate:06.19, 2022. URL: https://www.mathworks.com/discovery/

deep-learning.html.

[6] Meet django, urldate:06.19, jun,20,2022. URL: https://www.djangoproject.com/.

[7] altexsoft. Web application architecture. 2019.

[8] A beginner’s course for Biologists and Bioinformatics students. Adding a dynamic layer – introducing the

php programming language, urldate:06.19, 2022. URL: http://www.cellbiol.com/bioinformatics_web_

development/chapter-4-adding-a-dynamic-layer-introducing-the-php-programming-language/.

[9] Yoshua Bengio and Aaron Courville. Ian Goodfellow,Deep learning. MIT .Press, 2016.

[10] Diego Calvo. Unsupervised learning, urldate:06.19, Mar 24, 2019. URL: https://www.diegocalvo.es/

en/learning-non-supervised/.

[11] Isaiah Chua. Real life examples of web vulnerabilities (owasp top 10), urldate:06.19, JAN 4 2022. URL:

https://www.dnsstuff.com/intrusion-detection-system.

[12] Staff Contributor. What is an intrusion detection system? latest types and tools, urldate:06.19, 2019.

URL: https://www.dnsstuff.com/intrusion-detection-system.

[13] Staff Contributor. Things you need to know about cyber attacks, threats risks, urldate:06.19, 2022. URL:

https://blog.ecosystm360.com/cyber-attacks-threats-risks/.

[14] TechTarget Contributor. cryptology. 2022.

[15] Daniel. Web applications, urldate:06.19, 01.20.2014. URL: https://www.WebapplicationAbout.com.

[16] Daniel. A Guide to Building Secure Web Applications. The Open Web Application Security Project, 2015.

[17] Iryna Deremuk. Modern web application architecture explained: Components, best practices and more,

urldate:06.19, Apr 23, 2021. URL: https://litslink.com/blog/web-application-architecture.

68

https://mc.ai/understanding-deep-learning-dnn-rnn-lstm-cnn-and-r-cnn/
https://www.python.org/
https://tutorialforbeginner.com/supervised-machine-learning
https://tutorialforbeginner.com/supervised-machine-learning
https://www.sneakernews66.top/products.aspx?cname=types+of+machine+learning+methods&cid=66
https://www.sneakernews66.top/products.aspx?cname=types+of+machine+learning+methods&cid=66
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://www.djangoproject.com/
http://www.cellbiol.com/bioinformatics_web_development/chapter-4-adding-a-dynamic-layer-introducing-the-php-programming-language/
http://www.cellbiol.com/bioinformatics_web_development/chapter-4-adding-a-dynamic-layer-introducing-the-php-programming-language/
https://www.diegocalvo.es/en/learning-non-supervised/
https://www.diegocalvo.es/en/learning-non-supervised/
https://www.dnsstuff.com/intrusion-detection-system
https://www.dnsstuff.com/intrusion-detection-system
https://blog.ecosystm360.com/cyber-attacks-threats-risks/
https://www.WebapplicationAbout.com
https://litslink.com/blog/web-application-architecture

BIBLIOGRAPHY

[18] Iryna Deremuk. Modern web application architecture explained: Components, best practices and more.

Apr 23, 2021.

[19] Dr Mme. Boukhlouf Djemaa. Cours Sécurité des systèmes d’Information et Web , Cours of university

Mohamed Khider Biskra. 2021.

[20] Seyed Mohammad Ghaffarian, Hamid Reza Shahriari. Software vulnerability analysis, discovery using ma-

chine learning, and 50(4):56 data-mining techniques: A survey. ACM Computing Surveys (CSUR). .

Springer, 2017.

[21] Sébastien Gioria. Introduction à la sécurité des web services, confoo, montréal, canada. 10 Mars 2011.

[22] zhejiang hangzhou. Literature review on vulnerability detection using nlp technology. 23 Apr 2021.

[23] Hunter Heidenreich. What are the types of machine learning, urldate:06.19, 2018. URL: https:

//towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f.

[24] Hunter Heidenreich. What are the types of machine learning?, urldate:06.19, Dec 4, 2018. URL: https:

//towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f.

[25] Daniel Johnson. What is tensorflow?, urldate:06.19, May 14, 2022. URL: https://www.guru99.com/

what-is-tensorflow.html/.

[26] karabaghli mouatez bellah. A deep learning approach for the analysis of feelings on social networks. 2019.

[27] Rebecca L. Automated vulnerability detection in source code using deep representation learninge. April,

2018.

[28] Anton Logvinenko. How to secure web applications from vulnerabilities in 2022. 2022.

[29] Marcus A Maloof. Machine learning and data mining for computer security :methods and applications.

Springer, 2006.

[30] mark donson. Web applications security, urldate:06.19, 2020. URL: https://www.trendmicro.com/vinfo/

us/security/definition/Vulnerability.

[31] Daniel Milodin. Non security – premise of cybercrime. April, 2002.

[32] Joëlle MUSSET. Sécurité informatique Ethical Hacking Apprendre l’attaque pour mieux se défendre≫Edi-

tions ENI. 2009.

[33] Marius Nestor. Shoreline firewall beginners guide, urldate:06.19, Oct 20, 2006. URL: https://news.

softpedia.com/news/Shoreline-Firewall-Beginners-Guide-38434.shtml.

[34] NVD. National vulnerability database, urldate:06.19, 2022. URL: https://nvd.nist.gov/general.

[35] Brendan Murphy Patrick Morrison, Kim Herzig and Laurie Williams. Challenges with applying vulnera-

bility prediction models. In Proceedings of the 2015 Symposium and Bootcamp on the Science of Security,

page 4, 2015.

[36] Prabanjan Raja. What is google colab? 28 Aug 2021.

[37] Lei Hamilton Tomo Lazovich Jacob Harer Onur Ozdemir Paul Ellingwood Rebecca Russell, Louis Kim,

Marc McConley. Automated vulnerability detection in source code using deep representation learning. 17th

IEEE International Conference on Machine Learning, and 2018. Applications (ICMLA), pages 757–762. .

Springer, 2018.

69

https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f
https://www.guru99.com/what-is-tensorflow.html/
https://www.guru99.com/what-is-tensorflow.html/
https://www.trendmicro.com/vinfo/us/security/definition/Vulnerability
https://www.trendmicro.com/vinfo/us/security/definition/Vulnerability
https://news.softpedia.com/news/Shoreline-Firewall-Beginners-Guide-38434.shtml
https://news.softpedia.com/news/Shoreline-Firewall-Beginners-Guide-38434.shtml
https://nvd.nist.gov/general

BIBLIOGRAPHY

[38] Aram Hovsepyan Riccardo Scandariato, James Walden and 40(10):993–1006 Wouter Joosen. Predicting

vulnerable software components via text mining. IEEE Transactions on Software Engineering. . Springer,

2014.

[39] Mau Ruanova. Keras, urldate:06.19, Oct 14, 2020. URL: https://keras.io/.

[40] William Scott. Tf-idf from scratch in python on a real-world dataset. 15 Feb 2019.

[41] Dinesh Thakur. What is data encryption in dbms?, urldate:06.19, 2022. URL: https://ecomputernotes.

com/database-system/adv-database/data-encryption.

[42] Rafael D Tordecilla. Vulnerabilities related to technological fields. urldate:06.19, 2021.

[43] Upasana. Machine learning algorithms. May 2022.

[44] verizon. Antivirus definition, urldate:06.19, 2022. URL: https://www.verizon.com/info/definitions/

antivirus/.

[45] web site. Introduction to web application and web terminology, urldate:06.19, 20122. URL: https://

dotnettutorials.net/lesson/introduction-to-web-application/.

70

https://keras.io/
https://ecomputernotes.com/database-system/adv-database/data-encryption
https://ecomputernotes.com/database-system/adv-database/data-encryption
https://www.verizon.com/info/definitions/antivirus/
https://www.verizon.com/info/definitions/antivirus/
https://dotnettutorials.net/lesson/introduction-to-web-application/
https://dotnettutorials.net/lesson/introduction-to-web-application/

	General introduction
	Web application security
	Introduction
	Web application
	definition

	Web application architecture
	Web application architecture components

	Web application terminology
	Why is web application not secure
	What is a vulnerability ?
	Vulnerabilities classification
	Types of vulnerabilities

	Web Attacks
	Definition
	Malware
	Phishing
	Man-in-the-middle attack
	DoS/DDoS
	SQL Injection
	Zero-day exploit
	Cross Site Scripting
	Business Email compromise

	Security mechanisms and approaches for securing web applications
	Security mechanisms
	 Security approaches

	Conclusion

	Vulnerabilities detection methods
	Introduction
	The Open Web Application Security Project (OWASP)
	Top 10 vulnerabilities
	Broken access control
	Cryptographic failures
	Injection
	Insecure design
	Security misconfiguration
	 Vulnerable and Outdated components
	Identification and authentication failures
	Software and data integrity failures(XSS and insecure deserialization)
	Security Logging and Monitoring Failures
	Server-side request forgery (SSRF)

	National vulnerability database (NVD)
	A Brief History of the NVD
	CVEs and the NVD Process

	 Vulnerability detection using machine learning
	 Machine learning tasks
	Machine learning algorithms
	types of machine learning algorithms

	Vulnerability detection using Deep Learning
	How Deep Learning Works
	Difference Between Machine Learning and Deep Learning
	 How to create and train deep learning models
	Deep Neural Network

	Vulnerability detection using Natural Language Processing (NLP) technology
	Natural Language Processing
	How does Natural Language Processing Works
	Deep Learning in Natural Language Processing

	Related work
	Vulnerability prediction based on metrics
	Anomaly detection approaches for finding vulnerabilities
	Vulnerable code pattern analysis and similarity analysis

	conclusion

	Conception
	Introduction
	 System presentation
	System objectives
	Flow chart of the global system Architecture

	Detailed System Design
	Flow chart of creating CNN model
	Data Collection
	Data Preparation
	Classification and Training

	Model Testing
	Using the model

	 Designed by UML
	Sequence diagram for " Registration "
	Sequence diagram for " Authentication"

	Conclusion

	Implementation
	Introduction
	Development Environment
	Python
	Environment using google colab for creating the model
	XAMPP
	Django

	The used tools
	 Tensorflow
	Keras

	Structures of Data
	Part of the used dataset
	pre-processing Data
	Training
	Evaluation
	Experiments and Obtained Results
	Testing

	 Presentation system
	Database
	Interface Already Registered "Login"
	First Time Registration Interface "New User"
	First Time Registration Interface "New User"
	Application After Prevention

	Conclusion

	General conclusion

