الجمهورية الجزائرية الديمقراطية الشعبية

RépubliqueAlgérienneDémocratiqueetPopulaire

وزارة التعليم العالى والبحث العلمسى

Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mohamed khider – Biskra

Faculté des Sciences et de la Technologie

Département de Génie civil et Hydraulique

Référence :...../ 2020

جامعة محمد خيضر بسكرة كلية العلوم و التكنولوجيا قسم الهندسة المدنية و الري المرجع:/ 2020

Mémoire de Master 2^{ième} année

Option: Voies et Ouvrages d'Arts (V.O.A).

THEME:

Etude du dédoublement de la RN 09B

du Pk 00 au Pk 05 entre El Ouricia et Ain El Kbira (Wilaya de Sétif)

Étudiant : Encadreur :

•Bouzad Idir •Dr: Bensmaine Aissa

PROMOTION: 2020

REMERCIEMENTS

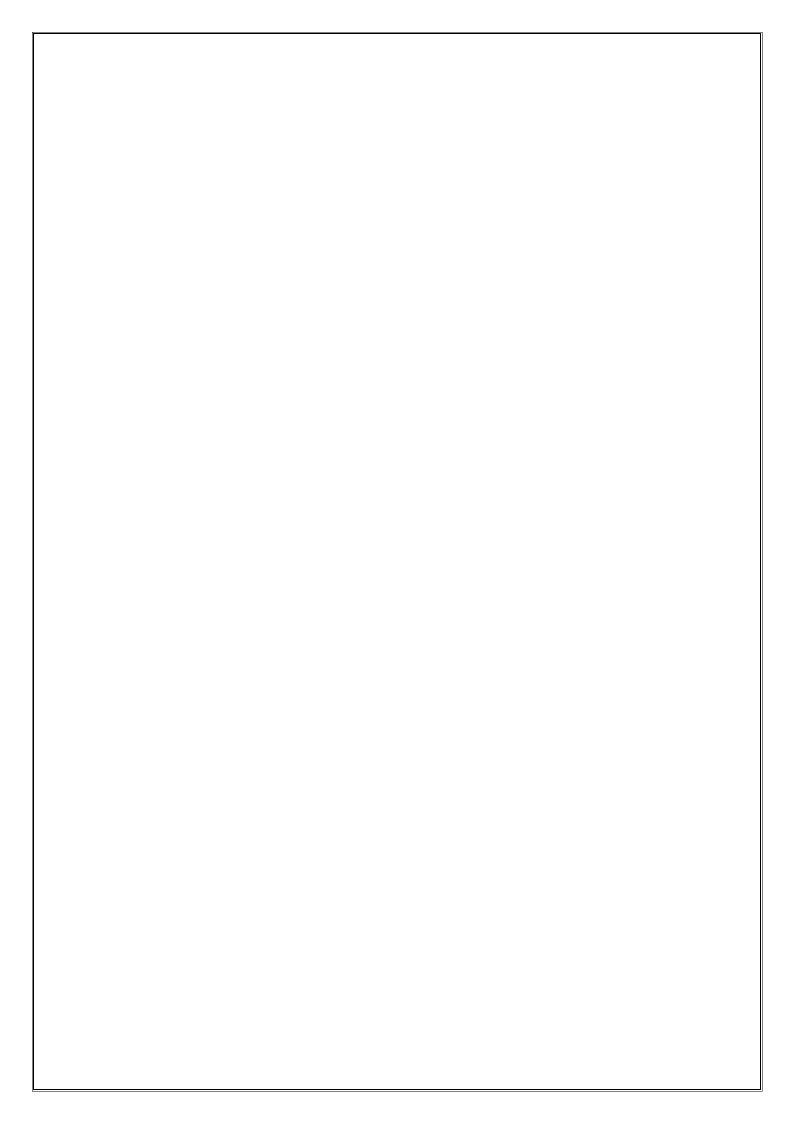
Nous tenons à remercier en premier lieu et avant tout ALLAH le tout puissant, qui nous a donné la force et la patience d'accomplir notre travail dans les meilleures conditions.

Je cite nommément :

Et nous remercions nos familles pour les sacrifices qu'elles ont faits pour que nous puissions terminer nos études.

A mon encadreur Dr: BENSMAINE AISSA; A pour avoir accepté de prendre en charge et pour leurs appréciations compétentes, leurs précieux conseils et son aide durant toute la période du travail.

Enfin, nos remerciements s'adressent à l'ensemble des professeurs et du personnel pédagogique de Mohamed Khider Biskra. qui nous ont accompagnés tout au long de ces années d'études, à l'ensemble des étudiants de notre promotion, aux membres du jury qui ont accepté de juger notre travail et à toute personne ayant contribuée de près ou de loin à l'élaboration de ce projet de fin d'étude.


DEDICACE

En premier apport, je dédie fortement ma mère et mon père après le dieu qui m'a donnée la force pour atteindre un certain niveau dans université Mohamed Khi der Biskra.

En deuxième apport, j'ai fait toujours pensé et dédier ma famille pour le courage qui m'a pousse toujours à faire un travail qui reflète leur aide, sans oublier mes chers frères.

Le tranche le plus important dans ma vie c'est qu'on j'ai connu des amis frères que j'en porte à jamais pour eux le bon qu'ils font pour soit des amis à Voa

bouzad idir

Résumé:

Notre projet de fin d'étude rentre dans le domaine des infrastructures de transport, et en particulier des routes. Ce projet présente une étude détaillée d'un élargissement de la route nationale RN46 (CHAAIBA – BIR ENAAME) sur un tronçon de 06 Km.

Cette étude se compose de trois parties :

- La première partie : Présentation du projet et étude de trafic.
- La deuxième partie : Géométrie de la route (Tracé en plan ; Profil en long ; Profil en travers
- La dernière partie : dimensionnement de la route et l'impact sur l'environnement.

Mots clés : Trafic, Géométrie de la route, Tracé Routière, Vitesse de référence, Carrefour, Chaussé

ملخص:

در استنا النهائية للمشروع هي في مجال البنية التحتية للنقل ، و يعرض هذا المشروع در اسة مفصلة لتوسيع ، لا سيما الطريق الوطني رقم (09B) على امتداد (05) كلم الرابط بين (أوريسيا و عين الكبيرة).

تنقسم هذه الدراسة إلى ثلاثة مراحل:

المرحلة الأولى: وصف عام للمشروع بالإضافة إلى حساب حجم المرور عبر الطريق.

المرحلة الثانية: تتضمن التصميم الهندسي للطريق المتمثل في مختلف المخططات.

المرحلة الثالثة: التحجيم من الطريق و تأثير ها على البيئة.

الكلمات المفتاحية

حركت المرور ، هندسة الطريق ، المحاذاة الطريق ،السرعة التصميمية ، مفترق الطرق ، الأرضية ، المنحدرات .

Sommaire

INTRODUCTION GENERALE

CHAPITER I

PRESENTATION DU PROJET

I.1. INTRODUCTION	02
I.2. PRESENTATION DU PROJET DE RN 09B	02
I.3. RESEAU ROUTE DE LA WILAYA SETEF	07
I.4. OBJECTIFS PRINCIPAUX DU PROJET	10

CHAPITER II ETUDE DU TRAFIC

I.1. INTRODUCTION	12
II.2. I'ETUDE DU TRAFIC	12
II.3. DIFFERENTS TYPES DE TRAFICS	12
II.4. MODELES DE PRESENTATION DE TRAFIC	13
II.5 CALCUL DE LA CAPACITE	14
II.6 APPLICATION AU PROJET	17
II .7 CONCLUSION	20

CHAPITER III DIMENSSIONEMENT DU CORPS DE CHAUSSEE

III.1. INTRODUCTION	22
III.2. LA CHAUSSEE	22
III.3. LES DIFFERENTS FACTEURS DETERMINANTS POUR LES ETUDES DE	25
DIMENSIONNEMENT DE CHAUSSEE	
III.4. LES PRINCIPALE METHODES DE DIMENSIONNEMENT	26
III.5. APPLICATION AU PROJET	35

CHAPITER IV

CARASTIRISTIQUE DE PROJET

GENERALITE

IV.1. TRACER EN PLAN	43
IV .1.1. DEFINITION	43
IV.1.2. LES REGLES A RESPECTER POUR LE TRACE EN PLAN	43
IV.1.3. LES ELEMENTS GEOMETRIQUES DU TRACE EN PLAN	44
IV.1.4. COMBINAISON DES ELEMENTS DU TRACE EN PLAN	48
IV.1.5. LA VITESSE DE REFERENCE	48
IV.6. APPLICATION AUPROJET	59
IV.2. PROFIL EN LONG	62
IV .2.1. INTRODUCTION	62
IV .2.2. DEFINITION	62
IV.2.4. COORDINATON ENTRE LE PROFIL EN LONG ET LE TRACE EN PLAN	63
IV.2.5. LES PALIERS ET LES DECLIVITES	63
IV.2.6. VOIE SUPPLÉMENTAIRE POUR VÉHICULE LENT	64
IV.2.7. RACCORDEMENTS DANS UN PROFIL EN LONG	65
IV.2.7. DETERMINATION PRATIQUE DU PROFIL EN LONG	69
IV.2.8.APPLICATION DE PTOJET	71
IV.3. ROFIL EN TRAVERS	72
IV.3.1. DEFINITION	72
VI.3.2. DIFFERENTE TYPE DE PROFIL EN TRAVERS	72
VI.3.3. LES ELEMENTS DU PROFIL EN TRAVERS	73
IV.3.4. APPLICATION AU PROJET	74

CHAPITER V CUBATURES

V. 1. INTRODUCTION	78
V. 2. DEFINITION	78
V.3. METHODE DE CALCUL DES CUBATURES	78

CHAPITER VI ETUDE GEOTECHNIQUES

VI.1. INTRODUCTION	83
VI.2. OBJECTIFS DE LA GEOTECHNIQUE	83
VI.3. RECONNAISSANCE DE SITE	83
VI.4. ESSAIS AU LABORATOIRE	84
VI.5. CONDITION D'UTILISATION DES SOLS EN REMBLAIS	93
VI.6. CONCLUSION	94

CHAPITER VII ETUDE DU CARREFOURS

VII.1. INTRODUCTION	96
VII.2. TYPE DES CARREFOURS	96
VII.3. ELEMENTS DE BASE POUR L'AMENAGEMENT DES CARREFOURS	99
VII.4. LES AVANTAGES ET LES INCONVENIENTS DU CARREFOUR	99
GIRATOIRE	
VII.5. DONNEES APPRENDRE POUR L'AMENAGEMENT D'UNCARREFOUR	99
VII.6. PRINCIPES GENERAUX D'AMENAGEMENT D'UN CARREFOUR	100
VII.7. SIGNALISATION DU CARREFOUR	101
VII.8. APPLICATION AU PROJET	102
VII.9. CONCLUSION	104

CHAPITER VIII ASSAINISSEMENT

VIII.1. INTRODUCTION	106
VIII .2 DRAINAGE DES EAUX	107
VIII.3.OUVRAGE DE DRAINAGE ET D'ASSAINISSEMENT	107
VIII .4.Dimensionnement des fossés	110
VIII.5. Application	111

CHAPITER IX SIGNALISATION

IX.i.SIGNALISATION	
IX.i.1. INTRODUCTION	116
IX.i.2. L'OBJECTIF DE LA SIGNALISATION	116
IX.i.3. CRITERES A RESPECTER POUR LES SIGNALISATIONS	116
IX.i.4. CATÉGORIES DE SIGNALISATION	116
IX.i.5. TYPE DE SIGNALISATION	117
IX.ii. ECLAIRAGE	123
IX.ii.1. INTRODUCTION	123
IX.ii.2. CATEGORIES D'ECLAIRAGE	123

X: DEVIS DU PROJET 127

CONCLUSION GENERALE

REFERANCES BIBLIOGRAPHIQUES

ANNEXES

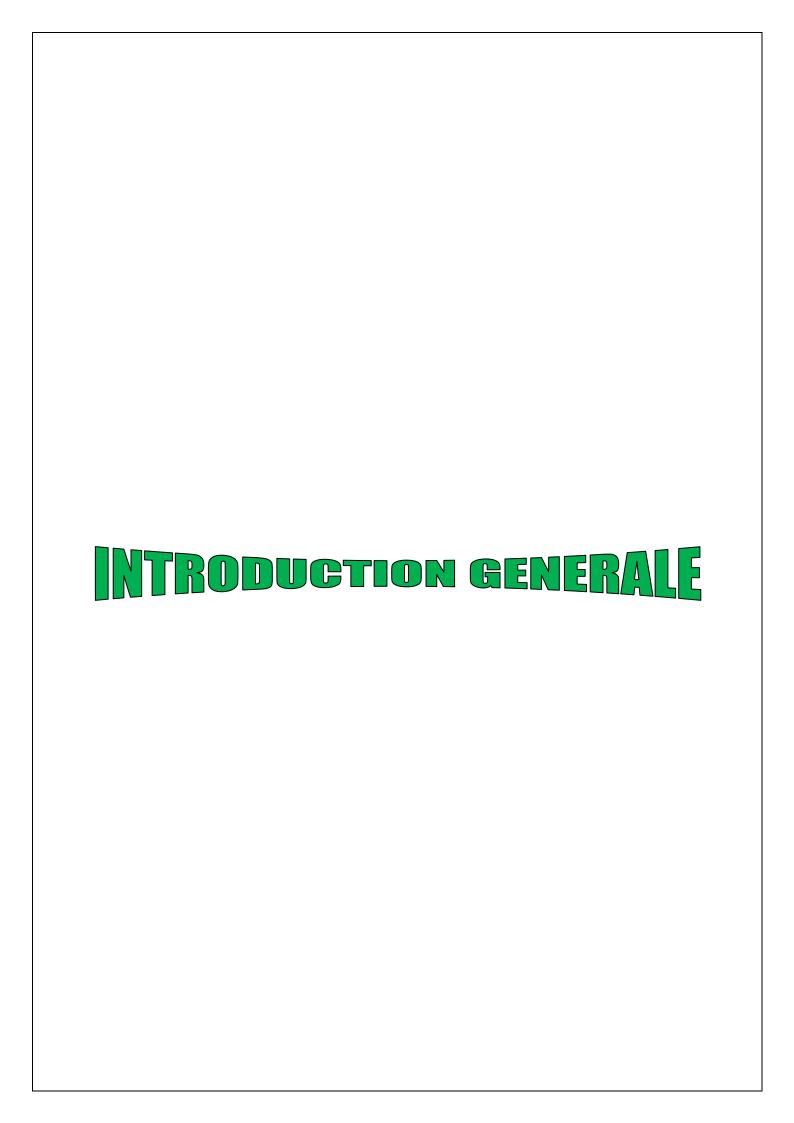
LISTE DES FIGURES

Figure (I.1): Google earth debut de projet et fin de projet 09B	02
Figure (I.2): Google earth début de projet et fin de projet tronçon 09B	03
Figure (I.3): Situation et découpage administratif de la wilaya de Sétif	05
Figure (I.4) Situation de la région d'étude dans le dispositif structural de la chaîne alpine d'Algérie Nord- orientale.(Wildi, 1983)	05
Figure (I.5) : Carte de zonage sismique du territoire national	07
Figure (I.6): réseau routier de la wilaya de Sétif	08
Figure(I.7): début du projet (PK 00)	09
Figure(1.8): Fin du projet (PK 05)	09
Figure (III.1): Chaussée souple	23
Figure(III.2) : Structure type d'une chaussée rigide	24
Figure(III.3) : Structure type d'une chaussée semi-rigide	25
Figure (III.4) : Organigramme de la démarche du catalogue	30
Figure (III.5): Position du projet dans la carte climatique de l'Algérie	33
Figure (III-6) :Les Choix de dimensionnement par la méthode du catalogue	36
Figure (IV.1): Les éléments géométriques de la Clothoïde	45
Figure (IV.2) Les éléments géométriques d'un tracé en plan	47
Figure(IV.3): voie de décélération	51
Figure (IV.1.4): Force centrifuge	54
Figure (IV.1.5): Courbe en S	48
Figure (IV.1.6):. Courbe à sommet	49
Figure (IV.1.7): courbe constituée	49
Figure (IV.2.1): la distance de visibilité	67
Figure (IV.2.2): visibilité en raccordement concaves	69
Figure (IV.2.3): Représentation du schéma de la pratique du profil en long	69
Figure (IV.3.1) : Les éléments de profil en travers	73

LISTE DES FIGURES

Figure (IV.3.2): Les éléments du profil en travers type sont comme	75
Figure (V.1): Les surfaces remblai déblai	79
Figure(V.2) : Profil en long d'un tracé donné	79
Figure(V.3) Méthode linéaire	79
Figure(V.4): Méthode de Gulden	81
Figure(VI.1): Machine de forage géotechnique	84
Figure(VI.2): L'essai granulométrique	86
Figure (VI.3): L'essai équivalente sable	87
Figure (VI.4): l'appareil de casagrande	88
Figure (VI.5): L'essai équivalente sable	89
Figure (VI.6): Essai PROCTOR	91
Figure(VI.7): l'essai C.B.R	92
Figure(VI.8): l'essai los Angeles	93
Figure (VII.1): Carrefour en T	96
Figure (VII.2): Carrefour en y	97
Figure (VII.3): Carrefour en X	97
Figure VII.4): Les éléments d'un carrefour à sens giratoire	98
Figure (VII.5): Terminologie d'un carrefour giratoire	102
Figure (VII.6): Carrefour giratoire	103
Figure (IX.1): : Type de modulation référence signalisation routière (art 144)	119
Figure (IX. 2):Flèche de rabattement	120
Figure (IX. 3): Flèche de sélection	121
Figure (IX. 4): Défirent panneaux utilisés dans notre projet	123

LISTE DES FIGURES


Figure (IX.5): éclairage compose	124
Figure (IX.6) :éclairage simple	125

LISTE DES TABLEAUX

Tableau I.1: Types d'environnement-Normes B40	04
Tableau II.1: Coefficient d'équivalence	15
Tableau II.2: Valeurs de K1	16
Tableau II.3: Valeurs de K2	16
Tableau II.4: Valeurs de Cth	16
Tableau II.5: Environnement de la route	17
Tableau II.6: les valeurs données dans le tableau B 40	18
Tableau II.7: gamme de vitesses de base pratiquées dans ceratains pays	18
Tableau II.8: Résultats de calcul de capacité	20
Tableau III.1:coefficients d'équivalence pour quelque matériaux	29
Tableau III.2: La classe de trafic	30
Tableau III.3: Tableau représentatif de la classe de sol en fonction de l'indice CBR	32
Tableau III.4: Les zones climatiques	32
Tableau III.5 :: Choix des températures équivalentes	33
Tableau III.6: Représentation des résultats obtenus	34
Tableau III.7. Tableau représente les épaisseurs calculées	35
Tableau III.8: Résumé des résultats obtenu par les deux méthodes	39
Tableau III.9 : récapitulatif des épaisseurs de corps de chaussée selon les différentes méthodes	41
Tableau IV.1: distingue trois types de bretelles	50
Tableau IV.2: Distance d'insertion (d'accélération) : (I.C.T.A.A.L)	50
Tableau IV.3: ci-dessous (B40) donne la longueur	52
Tableau IV.1.4: la vitesse pratiquée sur la route principale	52
Tableau IV.1.5: Distance de visibilité B40	59
Tableau IV.1.6 : coefficient de frottement longitudinal(FL) (Norme Algériennes)B40	60
Tableau IV.1.7 : coefficient de frottement transversal (Ft) (normes algériennes) B40	60
Tableau IV.1.8: longueurs minimales de raccordement entre une droite et un cercle.	61
Tableau IV.2.2: . paramètres du tracé en plan.(B40)	62
Tableau IV.2.1. Valeurs des déclivités maximales-Normes B40	65
Tableau IV.2.2 :ci-après résume les valeurs proposées dans diverses catégories (B40)	67
Tableau IV.2.3: hauteur visée –stéra	67
Tableau IV.2. 4 :Paramètres du profil en long (B40)	72
Tableau.VI.1: Catégorie de sols selon la valeur au bleu méthylène	90

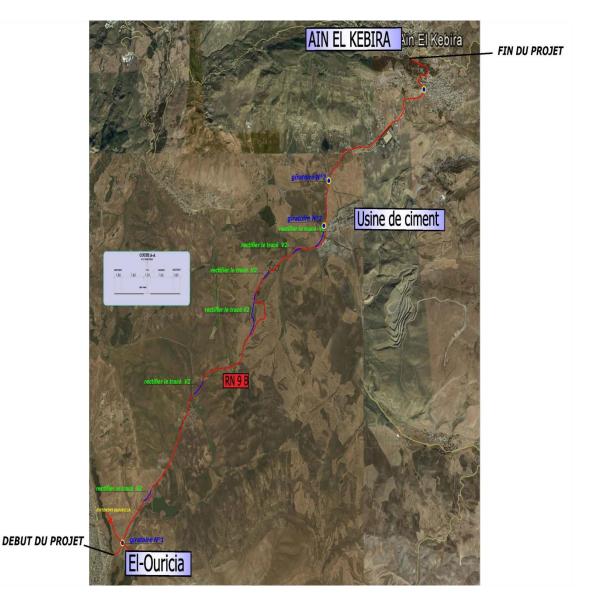
LISTE DES TABLEAUX

Tableau.VI.2: spécification CBR	92
Tableau.VI.3: spécification de los Angeles	93
Tableau VII.1: Les caractéristiques géométriques du carrefour.	102
Tableau VII.2: récapitulatif des différents paramètres de construction des	103
Tableau IX.1: Les caractéristiques des lignes discontinu	119

INTRODUCTION GENERALE:

L'analyse de la situation des pays équipés et développés, montre que le secteur du transport constitue une base au plan du développement national et de la croissance économique. Cela montre bien que le secteur du transport est un secteur stratégique sur les plans économique et social, et de l'intégrité du territoire. Il concourt à la satisfaction des besoins essentiels de la population et impulse et conforte le reste de l'économie national, dont il constitue une véritable locomotive; comme cela a été le cas dans l'histoire des pays actuellement développés, ou en voie de développement. En Algérie le transport routier joue un rôle majeur dans la mesure où la route supporte plus de 80% du trafic marchandises et voyageur. La croissance socioéconomique impose la préservation et la rénovation de ses moyens de communication notamment dans le domaine des infrastructures routières les préoccupations dominantes des responsables d'infrastructures routières ont tendues progressivement à des techniques de réalisation nouvelles qui pouvant faciliter la circulation, et amortir l'augmentation du trafic prenant conscience du problème. La direction politique de notre pays a inscrit plusieurs projets routiers (dans le programme du développement) portant sur la réalisation du tracé routier neuf, l'aménagement des carrefours, des rocades et le dédoublement des routes excitantes, c'est dans ce contexte qu'on peut classer notre projet. L'évolution de la demande de transport générée par le développement et l'extension du tissu urbain, s'est traduite par des niveaux de trafic très élevés.

PRESENTATION DU PROJET


PROMOTION 2020

1- Introduction:

Dans le cadre du développement du réseau routier national et toutes catégorie des routes, la direction des travaux publics de la wilaya de setif a programmé l'étude de dédoublement de la Route Nationale **09B** Sur **05** Km **PK00** au **PK05**.

1-2Présentation de la route nationale 09B (RN09B):

La route nationale 09B troncon de **5 km**. elle relie entre les deux la commune El Ouricia et Ain El Kbira , en passant par Le dédoublement passe par des localités comme Zairi, Ouled Adouane, El Kharba, Ain Touila ensuite il se raccorde au giratoire existant au niveau de croisement avec CW170 PK 00et PK 05côté sud de la commune de Ain Kbira.

Figure (I.1) :Google earth debut de projet et fin de projet 09B.

1-3Présentation de projet :

Mon projet se situe au niveau de la RN09B ; plus précisément au niveau El Ouricia jusqu'à la limite Usine de ciment .

Le projet consiste en l'aménagement d'une route bidirectionnelle au niveau de la RN09B. Le projet prend naissance du PK 00 à sa fin au PK 05

Il s'inscrit dans le cadre de drainage du trafic important incluant un pourcentage dominant du poids lourd, le contexte géologique fait de ce tronçon un environnement Vallonne avec des déclivités très grandes, c'est-à-dire que notre projet s'installe sur un terrain oblique et Vallonne.

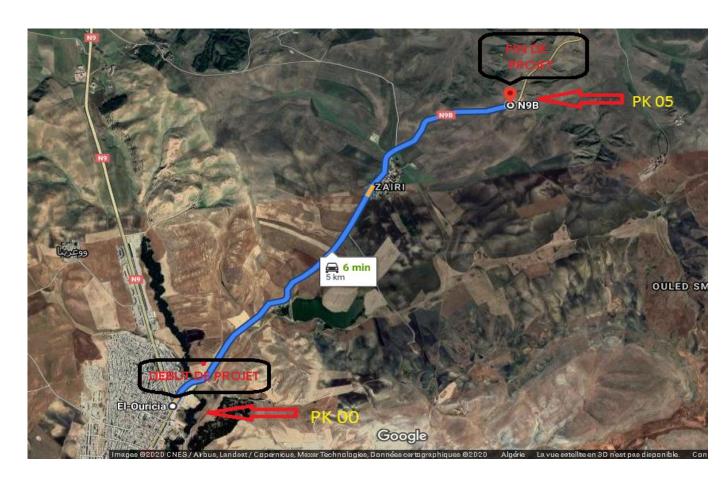


Figure (I. 1): Google earth début de projet et fin de projet tronçon 09B.

1-4) description du projet:

L'itinéraire du projet se situe dans un relief pratiquement, vallonné et se caractérise par des sinuosités faible et des déclivités faible à moyen c'est-à-dire il peut être classé dans environnement 2.

Donc notre projet de :

Environnement 2

Categorie: C1

Tableau1.1: Types d'environnement-Normes B40

	Faible	Moyenne	Forte
Relief sinuosite			
Plat	E1	E2	
Vallonne	E2	E2	E3
Montagneux		E3	E3

1-1) Dénivelée cumulée moyenne :

La somme des dénivelées cumulées, le long de l'itinéraire existant, rapportée à la longueur de cet itinéraire, permet de mesurer la variation longitudinale du relief.

 $h/l \le 1.5 \%$ Terrain plat.

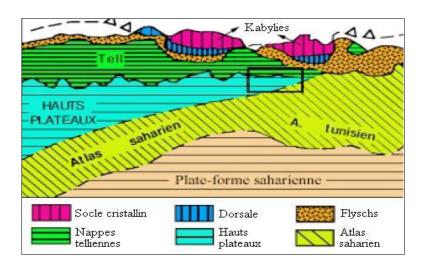
 $1.5\% < h/l \le 4\%$ Terrain vallonne.

4% < h/L Terrain montagneux.

1-2) Sinuosité:

La sinuosité σ d'un itinéraire est égale au rapport de la longueur sinueuse 1 s sur la longueur totale de l'itinéraire.

1-5) Présentation général de la wilaya de Sétif :


***** 5-1) Situation géographique:

La wilaya de Sétif est située dans l'Est Algérien, dans la région des hauts plateaux, elle est distante de la Capitale Alger de 300 Kms, La wilaya de Sétif compte 60 communes rattachées à 20 daïras, s'étendant sur 6500 Km2 et s'élève à 1100 m d'altitude, au Nord, elle est limitrophe des wilayas de Bejaia et de Jijel au Sud, elle jouxte les wilayas de M'sila et de Batna, à l'Est la wilaya de Mila et à l'Ouest, la wilaya de Bordj-Bou-Arréridj

Figure (I.3): Situation et découpage administratif de la wilaya de Sétif

5-2) Géologie:

Figure (I.4) Situation de la région d'étude dans le dispositif structural de la chaîne alpine d'Algérie Nord- orientale. (Wildi, 1983).

5-3 Climatologie:

Sur le plan climatologique, la Wilaya est caractérisée par deux périodes principales qui expriment le contraste important durant l'année à savoir :

- Un Hiver rigoureux avec de fréquentes chutes de neige.
- ❖ Un Eté chaud et très sec. Ce qui favorise l'apparition des plantes résistantes à la sécheresse.

5-4 Température:

laisse apparaître des changements temporels (un Hiver froid de température moyenne de 12° C et un Eté chaud de 36° C).

5-5 Sismicité de la région :

D'après le RPA99/version 2003 du centre national de la recherche appliquée en génieparasismique et la révision « court terme » du RPA99 intitulée ADDENDA au RPA99 (suite au séisme du 21 mai 2003), la région de SETIF est classée zone

«IIa» c'est-à-dire zones à sismicité moyenne.

Le document technique réglementaire suscité, divise le territoire algérien en quatre (05) zones de sismicité croissante, soit :

Zone 0 : Sismicité négligeable

Zone I : Sismicité faible

Zone IIa et IIb : Sismicité moyenne

Zone III : Sismicité élevée

Le niveau minimal de protection sismique accordé à un ouvrage dépend de sa situation et de son importance vis-à-vis des objectifs fixés par la collectivité. Tout ouvrage qui relève du domaine d'application des règles parasismiques algériennes RPA 99 doit être classé dans l'un des quatre groupes définis ci-après :

Groupe 1A: Ouvrages d'importance vitale

Groupe 1B: Ouvrages de grande importance

Groupe 2 : Ouvrages courants ou d'importance moyenne

Groupe 3 : Ouvrages de faible importance

	ZONE			
Groupe	I	lia	lib	III
1A	0.15	0.25	0.30	0.40
1B	0.12	0.20	0.25	0.30
2	0.10	0.15	0.20	0.25
3	0.07	0.10	0.14	0.18

Les coefficients d'accélération (A) sont donnés ci-après :

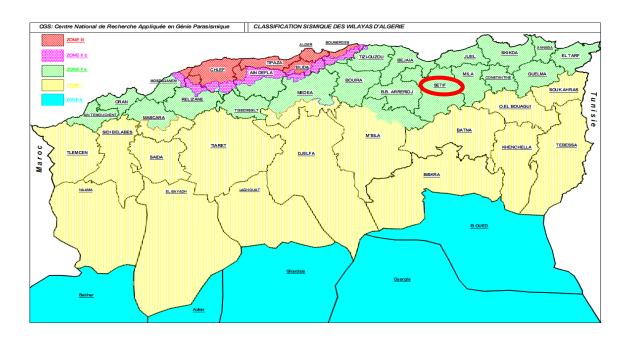


Figure (I.5): Carte de zonage sismique du territoire national.

5-6) Population:

Recensement de la population de la ville de Sétif était 288461 en 2008.et la population estimée denviron 410.000 personnes pour l'an 2015.

1-6) Réseau routier a Sétif:

Les problèmes posés par le réseau routier de la willaya de Sétif, avec un état de sa dimension réelle, sont désormais compris par les autorités locales, principalement la direction des travaux publics.

En plus de l'intensité du trafic enregistrer au tribunal au cours des quatre dernières années mais elle est menacée par des accidents fréquents pour la vie humaine et entraine d'énormes retards dans l'acheminement de marchandises et le transport du voyageur.

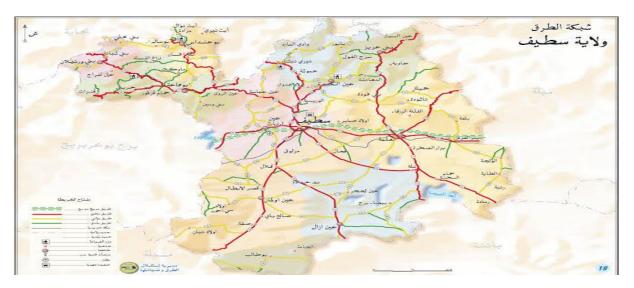


Figure (1.6): réseau routier de la wilaya de Sétif.

1-7) ANALYSE DU TRAFIC:

Afin de déterminer en un point et un instant donné le volume et la nature du trafic il est nécessaire de procéder a un comptage qui nécessite une logistique et organisation appropriée. Pour obtenir le trafic, on peut recourir d divers qui sont :

- Le comptage sur route (manuel et automatique).
- Une enquête de circulation.
- La statique général.

7-1) DONNES DE TRAFIC SUR LE PROJET :

Sur la base des résultats du comptage du trafic réalisé en mois de mars 2017 par CTTP, le terçons de la RN09B concerné par l'étude draine un trafic moyen journalier (TJMA) de l'ordre de 9773 v/J avec un pourcentage de poids lourds qui est de l'ordre 24 % Ce trafic a été évalué par catégorie de véhicule selon leurs caractéristiques. On distingue six(06) catégories définies comme suit :

Localisation Pk-pk	TJMA (véh/j)	%poids lourds
PK 00+PK 05	9773	24%

TJMA 9773 Année de comptage 2017 Année de service 2022. Durée de vie 20 ans.

Photo du site le long du projet:

Figure(I.7): début du projet (PK 00)

Figure (I.8): Fin du projet (PK 05)

7-2) Principes généraux :

les normes utilisées dans le projet routier :

B40: norme technique d'aménagement des routes

. **B40**: manuel du projecteur.

• Ces normes fixent les caractéristiques géométriques et cinématiques à utiliser projection routière en Algérie.

Niveau de Service Dans chaque catégorie de liaison, la route est caractérisée par des conditions minimales d'aménagement dépendant particulièrement de :

la qualité des services assurée.

l'intensité et la composition du trafic.

7-3) des caractéristiques topographiques :

- > Plat.
- vallonné.
- > montagneux.

Ces conditions d'aménagement permettent de fixer le niveau de service.

La catégorie par définition, le classement de la route selon son importance Économique. Administrative et stratégique assignée par la politique d'aménagement du territoire.

On distingue :

Catégorie C1 : liaison entre deux grands centres économiques et des centres d'industrie lourde.

Catégorie C2: liaison des pôles d'industrie de transformation entre eux.

Catégorie C3: liaison des chefs lieux de daïra et ceux de la wilaya non desservie par le réseau précédent.

Catégorie C4: liaison de tous les centres de vie qui ne sont pas reliés au réseau de catégories 1-2 et 3 avec le chef lieu de daïra, dont ils dépendent, et avec le réseau précédent.

Catégorie C5: routes et pistes non comprises dans les catégories précédentes..

7-4) particularité du projet:

Le projet de dédoublement est situé dans un site urbain, il joue le rôle de contournement de la wilaya pour les poids lourds. La particularité de cet axe est le nombre important d'intersection. Alors, il est classé comme un tronçon dangereux.

8) Objectifs principaux du projet:

Les objectifs fixés par le maître d'ouvrage dans le cadre de ce projet sont :

- ➤ Objectif primordial est d'assurer la sécurité des usagers de la route en diminuant les déclivités agressives pour les adapter aux normes B40.
- L'amélioration du niveau de service de la route.
- L'augmentation de capacité de la route.
- Elimination des points singuliers jugés dangereux
- Amélioration du système de drainage et assainissement
- Assurer une chaussée bidirectionnelle de largeur 7m et d'accotement 2m.
- ➤ Doter la chaussée d'une structure adéquate capable de supporter le trafic actuel et futur.

CHAPITRE II CTUDE DE TRAFIC

PROMOTION 2020

II-1) INTRODUCTION:

L'étude du trafic est un élément primordial et indispensable dans toute réflexion d'aménagement routier, à cet effet, une enquête de trafic au niveau de ce projet et ses carrefours annexes devront être exécutés ayant pour objectif la connaissance de fonctionnement ultérieur du flux de circulation.

Les résultats de l'enquête permettront de déterminer le degré de saturation et l'appréciation de son fonctionnement ainsi que sa réserve de capacité.

- Apprécier la valeur économique des projets routiers.
- > estimer les coûts d'entretien du réseau routier, qui sont en fonction du volume de circulation.
- > estimer les coûts de fonctionnement des véhicules.

II-2) DIFFERENTS TYPES DE TRAFICS:

a-Trafic normal:

C'est un trafic existant sur l'ancien aménagement sans prendre compte du nouveau projet.

b-Trafic dévié:

C'est le trafic attiré vers la nouvelle route aménagée et empruntant, sans investissement, d'autres routes ayant la même destination, la dérivation de trafic n'est qu'un transfert entre les différents moyens d'atteindre la même destination.

c-Trafic induit : C'est le trafic qui résulte de :

Des nouveaux déplacements des personnes qui s'effectuent et qui en raison de la mauvaise qualité de l'ancien aménagement routier ne s'effectuaient pas antérieurement ou s'effectuaient vers d'autres destinations.

d-Trafic total : Le trafic sur le nouvel aménagement qui sera la somme du trafic induit et du trafic dévié.

II -3) L'ANALYSE DE TRAFIC EXISTANT :

Pour connaître en un point et un instant donné le volume et la nature du trafic, il est nécessaire de procéder à un comptage, ces derniers nécessitent une logistique et une organisation appropriées.

L'analyse de circulation sur les diverses artères des réseaux routiers sont nécessaire pour l'élaboration des plans d'aménagement ou de transformation de l'infrastructure, détermination de dimensions à donner aux routes et appréciation d'utilité des travaux projetés.

Les éléments de ces analyses sont multiples :

- > Statistiques générales.
- ➤ Comptages sur routes.
- Enquête de circulation.

Ces méthodes peuvent être classées en deux catégories :

- ➤ Celles qui permettent de quantifier le trafic (les comptages).
- > Celles qui permettent d'obtenir des renseignements qualificatifs

(Les enquêtes).

II -4) Modèles de prévision de trafic:

La première étape de ce type d'étude est le recensement de l'existant .Ce recensement permettra de hiérarchiser le réseau routier par rapport aux fonctions qu'il assure, et de mettre en évidence les difficultés dans l'écoulement du trafic et de ses conséquences sur l'activité humaine.

Les diverses méthodes utilisées pour estimer le trafic dans le futur sont :

- Prolongation de l'évolution passée.
- Corrélation entre le trafic et des paramètres économiques.
- ➤ Modèle gravitaire.

Corrélation entre le trafic et des paramètres économiques :

Elle consiste à rechercher dans le passé une corrélation entre le niveau de trafic d'une part et certains indicateurs macro-économiques :

- > Produit national brut (PNB).
- Produits des carburants, d'autre part, si on pense que cette corrélation restera à vérifier dans le taux de croissance du trafic, mais cette méthode nécessite l'utilisation d'un modèle de simulation, ce qui sort du cadre de notre étude.

4-1) Modèle gravitaire :

Il est nécessaire pour la résolution des problèmes concernant les trafics actuels au futur proche, mais il se prête mal à la projection.

4-2) Modèle de facteur croissance :

Ce type de modèle nous permet de projeter une matrice origine destination.

La méthode la plus utilisée est celle de FRATAR qui prend en considération les facteurs suivants :

- Le taux de motorisation des véhicules légers et utilisation.
- ➤ Le nombre d'emploi.
- La population de la zone.

Cette méthode nécessite des statistiques précises et une recherche approfondie de la zone à étudier.

Pour notre cas, nous utiliserons la première méthode **prolongation del'évolution passée**, vu sa simplicité et parce qu'elle intègre l'ensemble des variables économiques de la région.

II-5) CALCUL DE LA CAPACITE:

a-Définition de la capacité :

La capacité et le nombre de véhicule qui peut raisonnablement passer sur une direction de la route « ou deux directions » avec des caractéristiques géométriques et de circulation qui lui est propre durant une période bien déterminer, la capacité s'exprime sous forme d'un débit horaire.

b-La procédure de détermination de nombre de voies :

Le choix de nombre de voies résulte de la comparaison entre l'offre et la demande, c'est à dire, le débit admissible et le trafic prévisible à l'année d'exploitation.

Pour cela il est donc nécessaire d'évaluer le débit horaire à l'heure de pointe pour la vingtième année d'exploitation.

b₁-Calcul de TJMA horizon:

La formule qui donne le trafic journalier moyen annuel à l'année horizon est :

$$T_n = T_0 (1 + \tau)^n$$

 T_0 , τ , n: sont définies précédemment.

b₂ -Calcul du trafic effectif:

C'est le trafic traduit en unités de véhicules particuliers (U.V.P) en fonction de :

- Type de route et de l'environnement :

Pour cela on utilise des coefficients d'équivalence pour convertir les PL en (U.V.P).

Le trafic effectif donné par la relation suivant :

$$T_{eff} = [(1 - Z) + PZ] \cdot T_n$$

T_{eff}: trafic effectif à l'horizon en (U.V.P/j)

Z : pourcentage de poids lourds (%).

P : coefficient d'équivalence pour le poids lourd, il dépend de la nature de la route.

Tableau(II -1) coefficient d'équivalence (B40)

Environnement	E ₁ (plaine)	E ₂ (vallonne)	E ₃ (montagneux)
Routes à bonnes			
Caractéristique	2-3	4-6	8-12
Routes étroites	3-6	6-12	16-24

b₃-Débit de point horaire normal :

Le débit de point horaire normal est une fraction du trafic effectif à l'horizon, il

est donné par la formule :

$$\frac{1}{n} = 0.12$$
 en général

$$Q = \left(\frac{1}{n}\right) T_{\text{eff}}$$

Q : est exprimé en UVP/h.

b4-Débit horaire admissible :

Le débit horaire admissible est le nombre de véhicules toléré pouvant passer en un point donné pendent une heure, il est déterminé par la formule suivante :

$$Q_{adm} (uvp/h) = K_1.K_2.C_{th}$$

Avec:

K1: coefficient lié à l'environnement.

K2 : coefficient de réduction de capacité.

Cth: capacité théorique du profil en travers en régime stable

Tableau(II -2) Valeurs de k1 (B40)

Environnement	$\mathbf{E_1}$	$\mathbf{E_2}$	E ₃
K ₁	0 ,75	0,85	0,90 à 0,95

Tableau(II -3) Valeurs de k2 (B40)

	Catégorie de la route				
Environnement	1	2	3	4	5
$\mathbf{E_1}$	1,00	1,00	1,00	1,00	1,00
\mathbf{E}_2	0,99	0,99	0,99	0,98	0,98
E ₃	0,91	0,95	0,97	0,96	0,96

C_{th}: capacité théorique du profil en travers en régime stable.

Tableau(II- 4) Valeurs de Capacité théorique (B40)

	Capacité théorique
Route à 2 voies de 3,5m	1500 à 2000 uvp/h
Route à 3 voies de 3,5m	2400 à3200 uvp/h
Route à chaussées séparées	1500 à 1800 uvp/h/sens

b5-Calcul de nombre de voies :

- Cas d'une chaussée bidirectionnelle :

On compare Q à Q_{adm} et en prend le profil permettant d'avoir : $Qadm \ge Q$

- Cas d'une chaussée unidirectionnelle :

Le nombre de voie par chaussée est le nombre entier le plus proche

Du rapport : $S \times \frac{Q}{Q_{adm}}$

Avec : S le coefficient dissymétrie en général = 2/3

Q_{adm}: débit admissible par voie.

Catégorie et environnement de la route :

- Catégorie de la route :

Le choix de la catégorie est fonction de l'importance de la liaison ; les caractéristiques imposées par les normes. Chaque catégorie, vise à assurer l'adéquation de la route aux fonctions que celle-ci doit assurer.

En Algérie, les routes sont classées en cinq catégories :

La catégorie C1 : liaison entre deux grands centres économique et des centres d'industrie lourde.

La catégorie C2 : liaison des pôles d'industries de transformations entre eux.

La catégorie C3: liaison des chefs-lieux de daïra et ceux de wilaya.

La catégorie C4: liaison de tous les centres de vie avec le chef-lieu de daïra.

La catégorie C5: routes pistes non comprises dans les catégories précédentes.

- Environnement de la route :

Trois classes d'environnements (E_1 , E_2 et E_3) ont été proposées dans le guide B40 du ministère des travaux publics. Les deux indicateurs adoptés pour caractériser chaque classe d'environnement sont :

- La dénivelée cumulée moyenne au kilomètre.
- La sinuosité.

Sinuosite
Relief
Plat
E1
E2
Vallonne
E2
E3
Montagneux
E3
E3

Tableau(**II-5**) Environnement de la route

II-6) APPLICATION AU PROJET:

a-Les données de trafic de RN09B sur 05km:

D'après les résultats de comptage du trafic qui nous ont été fournis par les éléments du bureau qui sont les suivants :

- Le trafic à l'année 2017 **TJMA**₂₀₁₇=9773 v/j
- Le taux d'accroissement annuel du trafic noté $\tau = 4$!
- La vitesse de base sur le tracé V_b=80km/h

Tableau (II-6) : les valeurs donnees dans le tableau $\, B \, 40 \,$

	Cat 1	Cat 2	Cat 3	Cat 4	Cat 5
E1	120/100/80	120/100/80	120/100/80	100/80/60	80/60/40
facile					
E2	100/80/60	100/80/60	100/80/60	80/60	60/40
moyen					-
E3	80/60/40	80/60/40	80/60/40	60/40/	40
difficile	,	,	,		

Tableau (II-7): gamme de vitesses de base pratiquées dans ceratains pays.

Pays	Type de route	V _B (Km/h) hors localites
Algerie	Routes cat 1-2,topographie facile.	80-100-120
Aigerie	Routes cat 1-2,topographie moyenne.	60-80-100
	Routes cat 1-2,topographie difficile.	40-60-80
	Routes à grand debit	80-120
suisse	Routes principales	60-120
	Routes collectrices	50-80
	Autoroutes de liaison	140
France	Idem,topographie,tres accidentee .	100
	Grandes routes ,topographie tres facile	120
	Route ordinaire ,topographie peu accidentee	100
	Route ordinaires ,topographie accidentee.	80
	Route ordinaire ,topographie vallonnee.	65

- Le pourcentage moyen de poids lourds **Z=24** ½
- L'année de mise en service sera en 2022
- La durée de vie estimée de 20 ans

b- Projection future de trafic :

L'année de mise en service (2022)

$$TJMA_h = TJMAo(1+\tau)^n$$
 Avec:

TJMA_h: trafic à l'horizon (année de mise en service 2042)

TJMA_o: trafic à l'année zéro (origine 2017)

TJMA₂₀₂₂= **9773**
$$(1 + 0.04)^5 \approx 11890 \text{ v/j}.$$

Trafic à l'année (2042) pour une durée de vie de 20 Ans

$$TJMA_{2042} = 11890 \text{ x } (1 + 0.04)^{20} = 26052 \text{ v/j}.$$

c- Calcul du trafic effectif:

$$T_{eff} = [(1 - Z) + Z.P]TJMA_h$$
 avec:

P: cœfficient d'équivalence pris pour convertir le poids lourds. Pour une route à deux voies et un environnement E₂ on a P=4

Z: le pourcentage de poids lourds est égal à 24%

$$T_{\text{eff}} = 26052 [(1 - 0.24) + 4 \times 0.24]$$

$$T_{eff}$$
=44809uvp/j

d- Débit de pointe horaire normale:

 $Q=(1/n)T_{eff}$

Avec:

1/n: coefficient de pointe horaire pris est égal à 0.12

$$Q = 5377uvp/h$$

e- Débit admissible :

Le débit que supporte une section donnée

$$Q_{adm} = K_1$$
. K2. Cth

K₁: coefficient correcteur pris égal à 0.85 pour E₂

K₂: coefficient correcteur pris égal à 0.99 pour environment (E₂) et categorie (C₁)

C_{th}: capacité théorique

Cth= 1800(d'après le B40 pour E2, C1 et pour une chaussée séparées à 2 voies)

$$Q_{adm} = 0.85 \times 0.99 \times 1800$$

Q_{adm}=1515 uvp/h

f- Le nombre des voies :

$$N=S \times (Q/Q_{adm/voie})$$

Avec S=2/3

$$N = (2/3) \times (5377/1515) = 2.03 \approx 2$$

Donc : N = 2 voie /sens

g-Calcul de l'année de saturation de 2×2 voies :

$$T_{eff(2022)} = [(1 - z) + p \times z] \times TJMA_{2022}$$

$$T_{eff(2022)} = [(1 -0.24) + 4 \times 0.24] \times 11890$$

 $T_{eff(2022)} = 20451 uvp/j.$

$$Q_{2022} = 0.12 \times 20451 = 2454 \text{uvp/h}.$$

 $Q_{2022} = 2454 uvp/h$

$$Q_{saturation} = 4 \times Q_{adm} = 6060 \text{ uvp/h}$$

$$Q_{\text{saturation}} = (1 + \tau)^n \times Q_{2014} \Rightarrow N = \frac{l^n (Q_{\text{saturation}} / Q_{2022})}{l^n (1 + \tau)}$$

$$\Rightarrow N = \frac{\ln(\frac{6060}{2454})}{\ln(1+0.04)} = 23.04 \text{ ans } \approx 23$$

Théoriquement la saturation de la RN09B interviendra au bout de la 23eme année (2045)

Tableau (II -8): les résultats de calculs:

TJMA2017	TJMA2022	TJMA2042	Teff2042	Q2042	N
(v / j)	(v / j)	(\mathbf{v}/\mathbf{j})	(uvp/j)	(uvp/h)	Voies
9773	11890	26052	38557	4627	2

II.7. CONCLUSION

D'après les calculs effectués, deux doublement (El Ouricia- Ain elkbira) aura sur le tronçon étudié, un profil composé de «2×2» voies. Une saturation est prévisible en 2045.

CHAPITER III DIMONSIONMENT DE CHOUSSE

PROMOTION 2020

INTRODUCTION:

La qualité d'un projet routier, ne se limite pas à l'obtention d'un bon tracé en plan et d'un bon profil en long. En effet une fois réalisée, la route devra réaliser aux agressions des agents extérieurs et aux surcharges d'exploitation : action des essieux des véhicules et notamment les poids lourds.

La qualité de la construction des chaussées joue un rôle primordial. Celle-ci passe d'abord par une bonne connaissance du sol support et un choix judicieux des matériaux à réaliser. Le dimensionnement des structures de chaussée constitue une étape importante de l'étude. Il s'agit en même temps de choisir les matériaux nécessaires ayant des caractéristiques requises et de déterminer les épaisseurs des différentes couches de la structure de la chaussée. Tout cela en fonction du paramètre très fondamental suivant :

- Le trafic (l'importance de la circulation et surtout l'intensité du trafic en poids lourds)
- Les matériaux utilisés.
- La portance du sol support désignée par son indice CBR.
- La durée de vie de la chaussée.

III.1 LA CHAUSSEE:

1) Définition:

- ➤ Au sens géométrique : la surface aménagée de la route sur laquelle circulent les véhicules.
- ➤ Au sens structurel: l'ensemble des couches des matériaux superposées qui permettent la reprise des charges.

2) Les différents types de chaussée :

Il existe trois types de chaussée:

- Chaussée souple.
- Chaussée semi rigide.
- Chaussée rigide.

2-1) Chaussée souple:

a) La chaussée souple est constituée de deux éléments constructifs :

Les sols et matériaux pierreux granulométrie étalée ou serrée.

Les liants hydrocarbonés qui donnent de la cohésion en établissant des liaisons souples entre les grains de matériaux pierreux.

b) La chaussée souple se compose généralement de quatre couches différentes :

- Couche de roulement (surface).
- Couche de base.
- > Couche de fondation.
- Couche de forme.

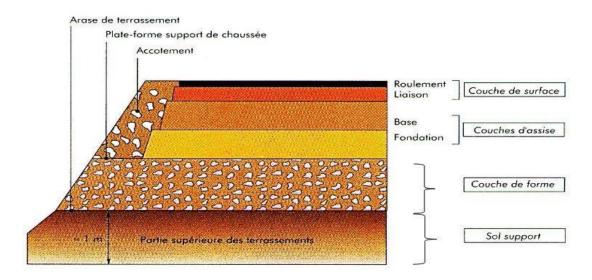


Figure III.1. Chaussée souple

b-1) Couche de roulement (surface)

La couche de surface est constituée d'un matériau traité au liant hydrocarboné, qui est en contact direct avec les pneumatiques des véhicules et les charges extérieures.

Elle a pour rôle essentiel:

- > D'encaisser les efforts de cisaillement provoqués par la circulation,
- D'assurer une transition avec les couches inférieures les plus rigides,
- > D'imperméabiliser la surface de chaussée
- D'assurer la sécurité (par l'adhérence) et le confort des usages (diminution de bruit, bon uni).

b-2) La couche de base :

Cette couche est constituée d'un matériau non traité (ou traité) de bonne caractéristique mécanique. Elle est conçue pour répartir, transmettre les charges sur la couche de fondation et le passage progressif entre la couche de roulement et la couche de fondation. L'épaisseur de la couche de base est entre 10 et 25 cm.

b-3) Couche de fondation:

La couche de fondation Assure un bon uni et bonne portance de la chaussée finie, et aussi, elle a le même rôle que celui de la couche de base.

b-4) Couche de forme:

La couche de forme est la surface de terrain préparée sur laquelle est édifiée la chaussée. Elle est constituée d'un matériau non traité. Son rôle est d'améliorer la portance du sol support en permettant l'homogénéisation des contraintes transmises par le trafic et la circulation d'engins de chantiers.

2-2) Chaussée semi-rigide :

Les chaussées comportant une couche de base (quelques fois une couche de fondation) traitée au liant hydraulique (ciment, granulat,...) La couche du roulement est en enrobé hydrocarboné et repose quelque fois par l'intermédiaire d'une couche de liaison également en enrobé strictement minimale doit être de 15 cm.

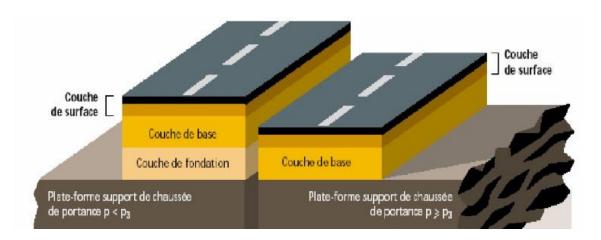


Figure: (III-2) Structure type d'une chaussée rigide

2-3) Chaussée rigide :

Elle est constituée d'une dalle de béton, éventuellement armée (correspondant à la couche de surface de chaussée souple) reposant sur une couche de fondation qui peut être un grave stabilisé mécaniquement, une grave traitée aux liants hydrocarbonés ou aux liants hydraulique.

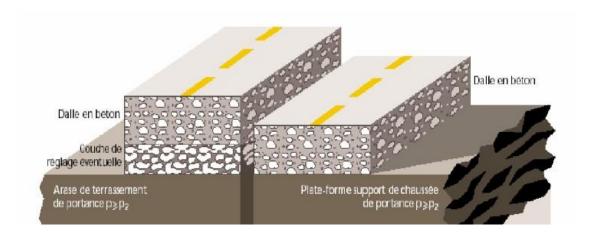


Figure (III-3) Structure type d'une chaussée semi-rigide

III.2) LES DIFFERENTS FACTEURS DETERMINANTS POUR LES ETUDES DE DIMENSIONNEMENT DE CHAUSSEE :

Toutes les méthodes de dimensionnement basées sur la connaissance de certains paramètres fondamentaux liés au :

2-1) Trafic:

La connaissance du trafic et principalement celui des poids lourd, constitue un élément essentiel pour un bon dimensionnement de la chaussée. Ce trafic s'exprime généralement par deux paramètres :

- Le TJMA à la mise en service qui permet de choisir les matériaux nécessaires pour la construction de la chaussée
- Le nombre cumulé d'essieux de référence passant sur la chaussée tout au long de sa durée de vie et qui sert à faire le calcul de dimensionnement proprement dit. Le trafic des poids lourds comprend tous les véhicules dont la charge utile est supérieure ou égale à 15 tonnes.

2-2) Trafic à la mise en service :

Ce trafic compté sur la base du **TJMA** est estimé à partir du trafic des **PL** par sens, circulant sur la voie la plus chargée à l'année de mise en service de la route.

On définit, en général, des classes de trafic en fonction du nombre moyen journalier annuel des poids lourd de **5t** et plus.

2-3) Trafic cumulé équivalent (NE) :

Le trafic utilisé pour le dimensionnement est le nombre équivalent d'essieux de référence correspondant au trafic des poids lourds cumulé sur la durée de service retenue.

L'essieu de référence en vigueur en Algérie est l'essieu de 13 Tonnes.

2-4) Le climat et Environnement :

L'environnement extérieur de la chaussée est l'un des paramètres d'importance essentielle dans le dimensionnement ; la teneur en eau des sols détermine leurs propriétés, la température a une influence marquée sur les propriétés des matériaux bitumineux et conditionne la fissuration des matériaux traités par des liants hydrauliques.

2-5) Le sol support:

Les structures de chaussées reposent sur un ensemble dénommé « plate – forme support de chaussée » constitué du sol naturel terrassé, éventuellement traité, surmonté en cas de besoin d'une couche de forme.

2-6) Matériaux :

Les matériaux utilisés doivent résister à des sollicitations répétées un très grand nombre de fois (le passage répété des véhicules lourds).

III-3) LES PRINCIPALE METHODES DE DIMENSIONNEMENT :

On distingue deux familles de méthodes :

- Les méthodes empiriques dérivées des études expérimentales sur les performances des chaussées.
- Les méthodes dites « rationnelles »basées sur l'étude théorique du comportement des chaussées.

Les méthodes du dimensionnement de corps de chaussée les plus utilisée sont :

- La méthode de C.B.R (California-Bearing-Ratio)
- La méthode du catalogue de dimensionnement des chaussées neuves.
- La méthode du catalogue de la structure du CTTP(Algérie)
- La méthode L.C.P.C (laboratoire central des ponts chaussés).

3-1) Méthode de C.B.R (Californie – Baring – Ratio) :

C'est une méthode (semi – empirique) qui se base sur l'essai de poinçonnement sur un échantillon du sol support en compactant des éprouvettes à (90- 100 %) de l'optimum Proctor modifié.

Le CBR retenu finalement est la valeur la plus basse obtenue après immersion de cet échantillon.

La détermination de l'épaisseur du corps de chaussée à mettre en œuvre s'obtient par l'application de la formule présentée ci-après :

$$e = \frac{100 + 150\sqrt{p}}{I_{CBR} + 5}$$

Cette formule à été amélioré par les anglais en introduisant l'influence du trafic pour aboutir à :

$$e = \frac{100 + \sqrt{P}(75 + 50\log\frac{N}{10})}{I_{CBR} + 5}$$

Avec : **Eeq**: épaisseur équivalente en cm

ICBR: indice CBR (sol support).

N: nombre de poids lourds par sens par la voie la plus chargé.

P: charge par roue P = 6.5 t (essieu 13 t).

Log: logarithme décimal.

Avec TJMAn: trafics prévus pour une durée de vie de 20 ans

n: année de prévision.

N : nombre moyen journalier de poids lourds .

Notion de l'épaisseur équivalente :

La notion de l'épaisseur équivalente est introduite pour tenir compte des qualités mécaniques différentes des couches et l'épaisseur équivalente d'une couche dont l'épaisseur équivalente de la chaussée est égale à la somme des épaisseurs équivalentes des couches :

Avec:

e1 : épaisseur réelle de la couche de roulement.

e2 : épaisseur réelle de la couche de base. e3 : épaisseur réelle de la couche de fondation. a1,

a2, a3: coefficients d'équivalence respectivement des matériaux des couches e1, e2, e3.

coefficient d'équivalence :

Tableau (III-1): coefficients d'équivalence pour quelque matériaux

Matériaux utilizes	Coefficient d'équivalence
Béton bituminoux ou enrobe	2.00
dense	
Grave bitumen	1.20 à 1.70
Grave concasse ou gravier	1.00
Grave roulée - grave sableuse	0.75
T.V.0	
Sable	0.50
Tuf	0.6

Remarque:

Pour le calcul de l'épaisseur réelle de la chaussée on fixe « e 1 » et «e2 » et on calcule « e 3 ».

Généralement les épaisseurs adoptées sont :

BB = 6 à 8 cm GB= 10 à 20 cm GC = 15 à 30 cm TVO= 30cm et plus GNT = 15 à 25 cm .

3-2) Méthode du Catalogue de dimensionnement des chaussées neuves (CTTP)

L'utilisation du catalogue de dimensionnement fait appel aux mêmes paramètres utilisés dans les autres méthodes de dimensionnement des chaussées : trafic, matériaux, sol support et environnement.

Ces paramètres constituent souvent des données d'entrée pour le dimensionnement, en fonction de cela on aboutit au choix d'une structure de chaussée donnée.

La méthode du catalogue de dimensionnement des chaussées neuves est **une méthode** rationnelle qui se base sur deux approches :

- Approche théorique.
- Approche empirique.

Figure III 4. Organigramme de la démarche du catalogue.

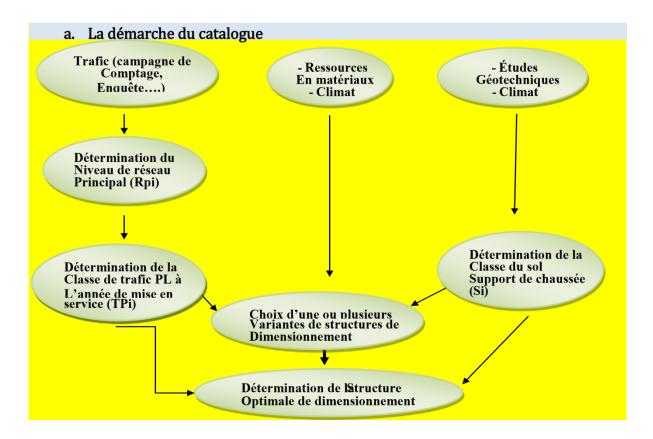


Figure III 4. Organigramme de la démarche du catalogue.

III-4) Détermination de la classe de trafic :

Le trafic : c'est le trafic poids lourds (véhicules de charge supérieure à 4 tonnes).

Le réseau principal (RP) : il se compose de route reliant :

- Les chefs-lieux de wilaya.
- Les ports, les aérodromes et les poste frontaliers.
- Les principales agglomérations et importantes zones industrielles.

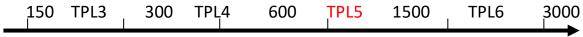
Ce réseau principal se décompose en deux niveaux :

RP1(T>1500v/j) RN, Autoroute, CW.

RP2(T<1500v/j) RN, CW, ...

Le réseau secondaire (RS) : il se compose du reste des routes qui ne sont pas en RP.


Répartition transversal du trafic : on adopte les valeurs suivantes :


- Chaussée unidirectionnelles à 2 voies : 90% du trafic PL sur la voie lent de droite.
- Chaussée unidirectionnelles à **3 voies**: **80**% du trafic **PL** sur la voie lente de droite.
- Chaussée bidirectionnelles à 2 voies : 50% du trafic PL.
- Chaussée bidirectionnelles à 3 voies : 50% du trafic PL.

La classe de trafic **(TPL_i)** est déterminée à partir du trafic poids lourds par sens circulant sur la voie la plus chargée à l'année de mise en service. Le tableau suivant donne par niveau de réseau **(RP1** ou **RP2)** les classes de trafic adoptées :

Tableau (III-2): la classe de trafic

	TPL0	TPL1	TPL2	TPL3	TPL4	TPL5	TPL6	TPL7
PL/J/Sens RP1	-	-	-	150 à 300	300 à 600	600 à 1500	1500 à 3000	3000 à 6000
PL/J/Sens RP2	0 à 50	50 à 100	100 à 150	150 à 300	-	-	-	-

PL/ j /sens

• III-5) Détermination de la classe du sol (portance)

Le classement des sols se fait en fonction de l'indice **CBR** mesuré sur éprouvette compactée à la teneur en eau optimale de Proctor modifié et à la densité maximale correspondante. Après immersion de quatre jours, le classement se fait en respectant les seuils suivant

Classe de sol (Si)	S0	S1	S2	S 3	S4
Indice C.B.R	>40	25-40	10-25	5-10	<5

Tableau (III-3): représentatif de la classe de sol en fonction de l'indice CBR.

≻Pour les sols sensibles à l'eau :

La portance du sol support est déterminée par :

- L'essai CBR imbibé à 4 jours pour les zones climatique I et Π
- L'essai CBR immédiat pour les zones climatiques Ш et IV

- > Couche de forme :

Il existe différents type de couches de forme suivant le cas de portance du sol terrassé (Si) et la classe du sol support visée (Sj).

Les zones climatiques :

Les zones climatiques de l'Algérie sont mentionnées dans le tableau suivant :

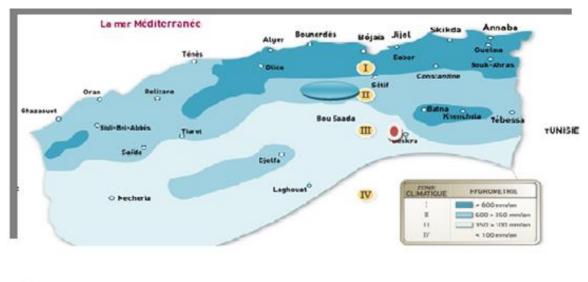

Zones Pluviométrie Région Climat Teq(°) climatiques (mm/an) Très humide >600 20 Nord i 350-600 Nord, Hauts ii Humide 20 plateaux 100-350 Semi-aride 25 Hauts plateaux iii <100 Aride 30 sud iv

Tableau (III-4): Les zones climatiques.

Les données climatiques :

Le dimensionnement de corps de chaussée s'effectue avec une température consistance, c'està- dire température équivalente θ eq, en tenant compte de cycle de variation de température de chaque année.

La température équivalente est généralement déterminée selon le zonage climatique du site D'après le «catalogue de dimensionnement des chaussées neuves (2001CCTP) », le site de projet est classé en zone II.

Notre projet

Figure (III- 1): Position du projet dans la carte climatique de l'Algérie.

Tableau (III-5): Choix des températures équivalentes

Zone climatique	I et II	III	IV	
Temperatuer	20c°	25c°	30c°	
equivalente				

Donc on prend une température équivalente égale

a 20c°

3. Méthode du catalogue des structures "SET A"

C'est le catalogue des structures types neuves et établi par « SETRA ». Il distingue les structures de chaussée suivant les matériaux employés (grave non traité GNT, grave concassée GC, sable bitume SB). Cette méthode considère également quatre classes de trafic selon leur importance, allant de 600 à 1500(véh/j). Il tient compte des caractéristiques géotechniques du sol de fondation.

Il se présente sous la forme d'un jeu de fiches classées en deux paramètres de données :

- Trafic cumulé de poids lourds à la 20 éme année.
- Les caractéristiques de sol.

III.5. APPLICATION AU PROJET

1. Méthode de C.B.R:

Données:

- La durée de vie (année d'horizon) : n=20 ans.
- Taux d'accroissement annuel de trafic : τ =4%.
- Le pourcentage des poids lourds : %PL=24%.

Le trafic à l'année 2017 : TJMA₂₀₁₇=9773v/j.

• TJMA de l'année de mise en service : TJMA₂₀₂₂=11890 v/j.

• TJMA₂₀₄₂= 26052 v/j.

Indice CBR: I_{CBR}=42.8.

Application numérique:

TJMA₂₀₄₂=TJMA₂₀₂₂× (1+\tau) ⁿ=**11890** × (1+0.04)²⁰

 $TJMA_{2042} = 26052 \text{ v/j/sens}$

N=2814 PL/j/sens

 $N=TJMA_{2042}\times\%PL\times0.9/2=26052\times0.108$

$$\mathbf{e_{eq}} = \frac{100 + \sqrt{6.5}(75 + 50 \log \frac{2814}{10})}{42.85 + 5} = 12.61 \text{ cm}$$
 $\Rightarrow \mathbf{e} = 13 \text{ (cm)}.$

Tableau (III-6): Représentation des résultats obtenus

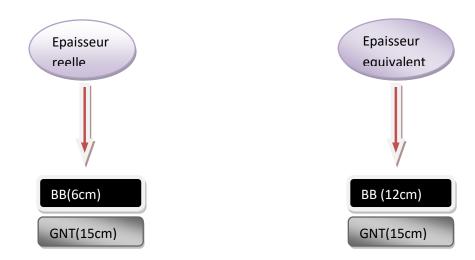
Indice C.B.R	T2042(v/j/sens)	N(Pl/J/sens)	Eeq(cm)
42.85	38557	2814	13

On a:

Nous proposons les matériaux suivants pour chaque couche :

Pour proposer le dimensionnement de la structure de notre chaussée, il nous faut résoudre l'équation suivante.

Eeq =
$$6 \times 2 + 15 \times 1 = 27$$
 cm


Pour résoudre l'équation précédente, on fixe 2 épaisseurs et on calcule la 2ème

- \triangleright Couche de roulement en béton bitumineux (B.B) : a1×e1 = 6×2=12 cm
- ➤ Couche de base en grave bitume (G.N.T) : a2×e2 :15×1=15 cm

Tableau (III-7): Tableau représente les épaisseurs calculées

Couche	Ereelle (cm)	Eequivalente (cm)
BB	6	12
GNT	15	15
Total	21	27

La chaussée prend la structure suivent :

Donc:

La structure finale de la chaussée selon la méthode de C.B.R est :

2. Méthode CTTP:

III-6) Application numérique :

PL₂₀₂₂= TJMA₂₀₂₂× Z×(répartition transversal 0.9) ×0.5=1284 PL/ j/sens

1284PL/j/s

- 600<1284<1500donc d'après le catalogue (tableau 2page29)
- trafic du poids lourds est de classe TPL5.
- D'après le catalogue (fascicule 1 page 8) on a TJMA2022 > 1500v/j.
- réseau principal est RP1.

- D'après la carte de la zone climatique de l'Algérie notre projet est dans la zone climatique II (humide).
- Taux d'accroissement : τ =4%.

D'après le fascicule 3 de C.T.T.P on aura notre dimensionnement du corps de chaussée qui sera comme suit :

Zone climatique : 1 et 2

Duree de vie :20 ans , taux d'accroissement :4%

Si	S2	S1	SO
TPLi PL/J/sens	50Mpa	125Mpa	200Mpa
6000			
TPL7			
3000			
3000			
TPL6			
1500			
1500	6BB	6BB	6BB
TPL5	1000	1 4 5 E	30 6 8
600	50 GIV	SUNGNU	Sipronia
600	6BB	6BB	6BB
TPL4	2004-000	10 (3) 7 (3)	10 65
300	Solow Harman	30 C M	,20 (8 M)
300	6 BB	6 BB	6 BB
TPL3	15/6/6	19:5B	10 50
150	CONTRACTOR	A CONTRACTOR	Car Carlotte Market

Figure (III-8): Les Choix de dimensionnement par la méthode du catalogue.

Couche de roulement : **BB =06 cm**.

Couche de base : GB =12 cm

Couche de fondation : **GNT=30 cm**.

La chaussée prend la structure suivant :

CONCLUSION

D'après le tableau ci-dessus, on remarque bien que :

laméthode C.B.R, donné un corps de chaussée avec une épaisseur de structure :

6BB+15GNT.

<u>la méthode du catalogue</u>, donné un corps de chaussée avec une épaisseur destructure:
6BB+12GB+30GNT.

L'application des deux méthodes nous donne les résultats suivants :

Tableau (III-9): Résumé des résultats obtenu par les deux méthodes

C.B.R	С.Т.Т.Р
6BB+15GNT	6BB+12GB+30GNT

Pour des raisons de sécurité ou adopte l'épaisseur du corps de chaussée issue de la méthode du catalogue (guide de dimensionnement).

❖ <u>Vérification en fatigue des structures (la déformation longitudinale et transversale) : </u>

Il faudra vérifier que ϵ_t et ϵ_z calculées à l'aide d'Alize III, sont inferieurs aux valeurs admissibles calculées $\epsilon_{T,adm}$ et $\epsilon_{z,adm}$.

Calcule de la déformation admissible sur le sol support :

$$\epsilon_{z.ad}$$
 =22.10⁻³ $imes$ $TCEi^{-0.235}$

- Coefficient d'agressivité : A= 0.6

$$TCEi = TPLi \times \frac{(1+i)^n - 1}{i} \times 365 \times A = 8.3742 \times 10^6$$
 essieux équivalents de 13 tonnes
$$\varepsilon_{z,ad} = 22.10^{-3} \times TCEi^{-0.235} = 519.43.10^{-6}$$

\stackrel{\bullet}{\bullet} Calcul de la déformation admissible $\epsilon_{t.ad}$ à la base de GB :

$$\varepsilon_{t.ad} = \varepsilon_6 (10^{\circ}\text{C}, 25\text{Hz}) \text{ x Kne x K}\theta \text{ x Kr x Kc}$$

Maté	E(30°C,	E(25°,10		E(10°,10H	ε6	-	SN	Sh	V	Kc
riau	10Hz)	Hz)	E(20°,10	z)	$(10^{\circ}, 25 \text{Hz})$	1/b		(cm)		calage
(MT	(Mpa)	(Mpa)	Hz)	(Mpa)	(10^{-6})					
B)			(Mpa)							
BB	2500	3500	4000	-	_		-	-	0.35	_
						_				
GB	3500	5500	7000	12500	100	6.8	0.4	3	0.35	1.3
						4	5			
							_			

Kne =
$$\left(\frac{TCEi}{10^6}\right)^b = \left(\frac{8.3742 \times 10^6}{10^6}\right)^{-0.146} = 0.73$$

K $\theta = \left(\frac{E(10^{\circ}\text{C}, 10\text{Hz})}{E(\theta\text{eq}, 10\text{Hz})}\right)^{0.5} = \left(\frac{12500}{7000}\right)^{0.5} = 1.3363$
Kr = $10^{-\text{tb\delta}}$, avec r= 15%, d'ou t = -1.036

$$\delta = \sqrt{\left(SN^2 + \left(\frac{c}{b} \times Sh\right)^2\right)} = \sqrt{\left(0.45^2 + \left(\frac{0.02}{0.146} \times 3\right)^2\right)} = 0.61$$

$$Kr = 10^{-1.036 \times 0.146 \times 0.61} = 0.81, Kc = 1.3$$

D'ou : $\epsilon_{t.ad} = 100.10^{-6} \text{ x } 0.81 \text{ x } 1.33 \text{ x } 0.73 \text{ x } 1.3 = 102.23 \ 10^{-6}$

> Modélisation :

	Epaisseur (cm)	Module (Mpa)	Coef de poisson v
Couche de roulement	6 BB	2500	0.35
Couche de base	12GB	3500	0.35
Couche de foundation	15 GNT	200	0.25
	30GNT	100	0.25
Sol support	Sol	50	0.35

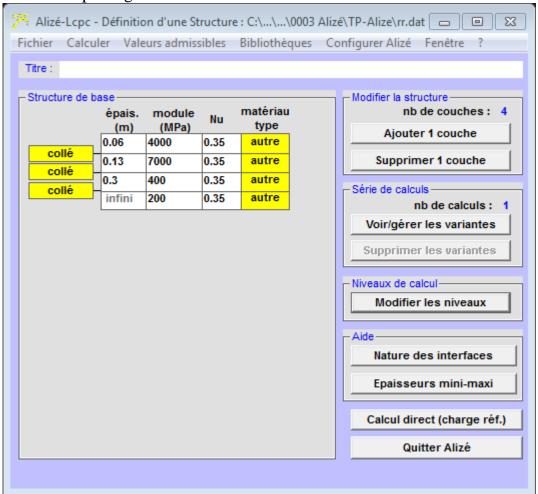
Résultats de la simulation:

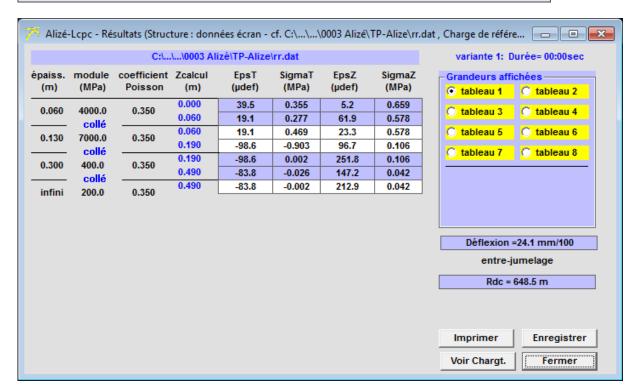
	Défotmations admissibles	Défotmations calculées
ϵ_z sol support	519,43.10 ⁻⁶	$212,9.10^{-6}$
ε _t à la base de GB	102,23.10-6	$19,1.10^{-6}$

En conclusion:

La structure 6BB + 12GB + 30GNT est donc vérifiée, car :

$$\varepsilon_t < \varepsilon_{t.ad}$$
 et $\varepsilon_z < \varepsilon_{z.ad}$.


a- Avec I_{CBR} immédiat :


Compte tenu que nous sommes dans une région ou la pluviomètrie est faible pour ne pas dire rare (intensité calculée It= 14.27 mm/heure pour une précipitation journaliére de 12 mm) et il est tout à fait juste et rationnel d'utiliser l'indice **CBR** imbibé à 24h (selon la norme algérienne), devant l'indisponibilité de cet élément, nous nous proposon d'utiliser l'indice CBR immédiat (I_{CBR}= 42.8).

C'est-à-dire, utilisation d'une portance de sol support de classe (S_1) , qui nous donne d'après la méthode du catalogue de dimensionnement des chaussées neuves la structure suivante :

T _{PL 2022}	TPL_i	S_{i}	Epaisseur convertie en
(PL/J/S)			cm+structure
1426.8	5	S_1	6 BB + 12GB + 30GNT

En virifier par logiciel ALIZE

X.6. CONCLUSION GENERALE:

Compte tenu de ce qui précede, et devant la disparité des résultats des deux méthodes, nous avons tenté de trouver une méthode médiane qui vérifie aussi bien la méthode CBR tels que utilisé à ce jour dans la région et la méthode du catalogue de dimensionnement du corps de chaussée avec utilisation de l'indice CBR_{immédiat}, le corps de chaussée ainsi obtenu voir tableau récapitulatif (BB= 6 cm; GB=12 cm et GNT= 30cm) nous semble être tout a fait indiqué par rapport aux épaisseurs minima requis pour une meilleure mise en œuvre.

	Les méthodes de dimensionnement de corps de chaussée			
Le corps de	La méthode de CBR	Méthode du catalogue de dimensionnement des chaussées neuves		
chaussée	I _{CBR} imbibé à 4 jours	ICBR immédiat	ICBR imbibé à 4 jours	
	10	42.8	10	
BB	6 cm	6cm	8 cm	
GB	12 cm	12 cm	20 cm	
GNT	25 cm	30 cm	45 cm	

Tab-18- récapitulatif des épaisseurs de corps de chaussée selon les différentes méthodes.

CARASTIRISTIQUE DE PROJET

PROMOTION 2020

GENERALITE

L'étude géométrique du tracé de la route a pour but d'obtenir un tracé confortable pour le déplacement des véhicules. Il est donc indispensable de rechercher la meilleure forme géométrique à donner au tracé. Lors de l'élaboration de tout projet routier il est nécessaire de commencer par la recherche de l'emplacement de la route dans la nature et son adaptation la plus rationnelle à la configuration du terrain. La surface de roulement d'une route est une conception de l'espace, définie

Géométriquement par trois groupes d'éléments qui sont :

- Tracé de son axe en situation ou en plan.
- Tracé cet axe en élévation ou profil en long.
- Profil en travers.

V -1) TRACE EN PLAN

1.1) **DEFINITION**:

Le tracé en plan représente une reproduction à échelle réduite d'une projection de la route sur un plan horizontal, ce plan horizontal est en générale une carte topographique ou un plan de situation.

Il est constitué en générale par une succession d'alignements droits et d'arcs de cercles reliés entre eux par des courbes de raccordements progressifs, il est caractérisé par la vitesse de référence qui permet de définir les caractéristiques géométriques nécessaires à tout aménagement routier.

1.2) REGLES A RESPECTER DANS LE TRACE EN PLAN:

L'approche d'étude de dédoublement est différente des études en site vierge et différente également des études de renforcement et réhabilitation pour cela l'approche suivante a été adoptée :

- L'emploi de rayons supérieurs ou égaux à RHnd est souhaitable, dans la mesure où cela n'induit pas de surcoût sensible, afin d'améliorer le confort et faciliter le respect des règles de visibilité.
- Elargir autant que possible d'un seul coté ; Cette démarche permet de réduire les coûts de projet, sauvegarder et préserver
 - La chaussée existante, aussi pour l'assainissement, elle permet d'exécuter les travaux sans porter de gène aux usagers (maintien de la circulation).

Néanmoins à ces avantages des inconvénients sont à prendre en charge, notamment en ce qui concerne, comment coller au maximum la chaussée nouvelle à l'ancienne en tout en respectant la largeur minimale de T.P.C.

Comment adopter l'axe nouveau à l'ancien sachant que ce dernier peut ne pas être conforme aux normes techniques (rayons au dessous du minimum)

En fin pour les sections bordées d'habitation nous avons préconisé de :

- utiliser au maximum la plate forme existante en se collant sur l'existant.
- élargir des deux cotés si ces mesures s'avèreraient insuffisantes.

Pour obtenir un bon tracé dans les normes, on essai dans la mesure du possible d'éviter :

- De passer sur les terrains agricoles.
- Le passage de très prés des zones urbaines.
- Le passage sur les oueds pour éviter la construction d'ouvrages.
- Les sites qui sont sujets à des problèmes géologiques.

Et aussi:

- * Respecter l'environnement.
- * Adapter le tracé afin d'éviter les terrassements importants.

1.3) LES ELEMENTS GEOMETRIQUES DU TRACE EN PLAN :

Les éléments du tracé en plan sont :

3.1) Droites:

la droite est l'élément géométrique le plus simple, mais les grands alignements droits sont très déconseillés.

La longueur maximale d'un alignement ne dépasse pas la longueur parcourue par la vitesse de base durant une minute.

$$L_{\text{max}} = 60 \text{ V (m/S)}$$
; $v = V_b/3.6 (km/h)$

Quand à La longueur minimale elle ne doit pas être inférieure à la distance parcourue avec la vitesse de base durant un temps d'adaptation qui est égale à 5 secondes.

$$L_{min} = 5 \text{ V (m/S)}$$

3.2) Arc de cercle:

Il est bien de rappeler que pour une route de catégorie donnée, il n y a aucun rayon inférieur à RHm (rayon minimum absolue), on utilise alors au tant que possible des valeurs supérieurs ou égale à RHm.

3.3) Courbes de raccordements :

Le fait que le tracé soit constitué d'alignement et d'arc ne suffit pas, il faut donc prévoir des raccordements à courbure progressif, qui permettent d'éviter la variation brusque de la courbe lors du passage d'un alignement à un cercle ou entre deux courbes circulaires et ça pour assurer :

- La stabilité transversale du véhicule.
- La variation progressive des devers, et la courbure afin de respecter les conditions de stabilité et de confort dynamique.
- Un tracé élégant, souple, fluide, optiquement et esthétiquement satisfaisant.

3.4) Type de courbe de raccordement :

Parmi les courbes mathématiques connues, on cite les 3 courbes suivantes :

3.4.1) Lemniscate:

est défini par l'équation est : K.F = (1/R), sa courbe est proportionnelle à la longueur du rayon vecteur F.

3.4.2) Parabole cubique:

est définie par l'équation : $y = c.x^3$.elle est peu utilisé et sa en raison de sa courbure vite atteint (utilisé sur tout dans le tracé de chemin de fer).

3.4.3) Clothoide:

c'est une spirale dont le rayon de courbure décroît dés l'origine jusqu'au point asymptotique ou il est nul.

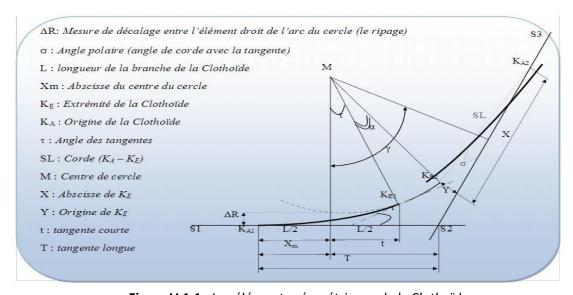


Figure V.1.1 : Les éléments géométriques de la Clothoïde .

Le choix d'une Clothoïde doit respecter les conditions suivantes :

a) Condition optique:

La clothoïde doit aider à la lisibilité de la route en amorçant le virage, la rotation de la tangente doit être \geq 3° pour etre perceptible a l'oeil.

$$\tau \ge 3^\circ$$
 soit $\tau \ge 1/18$ rads $\tau = L/2R > 1/18$ rads \Rightarrow $L > R/9$ soit $A > R/3$ $R/3 \le A \le R$

≻Règle générale (B40).

R
$$\leq$$
1500m Δ R =1m (éventuellement 0.5m) L= $\sqrt{24R\Delta R}$
1500\leq5000m L \geq R/9

b) condition de confort dynamique :

Cette condition consiste à limiter le temps de parcours Δt du raccordement et la variation par unité de temps de l'accélération transversale d'un véhicule.

Vr : vitesse de référence (km/h).

 $L \ge \frac{\mathrm{VB}^2}{18} \left(\frac{\mathrm{VB}^2}{127R} - \Delta d \right)$

R: rayon en (m).

Δd: variation de dévers.

C) condition de gauchissement :

Cette condition a pour objet d'assurer à la voie un aspect satisfaisant en particulier dans les zones de variation de devers, elle s'applique par rapport à son axe.

L: longueur de raccordement.

I : Largeur de la chaussée.

Δd: variation de dévers.

Vr : vitesse de référence (km/h).

L≥ I.∆d

Note:

La vérification des deux conditions relatives au gauchissement et au confort dynamique, peut se faire l'aide d'une seule condition qui sert à limiter pendant le temps de

parcours du raccordement, la variation par unité de temps, du dévers de la demie –chaussée extérieure au virage. Cette variation est limitée à 2% par seconde.

L≥ 5. Δd.Vr/ 36

D) Expression mathématique de la Clothoïde :

Courbure K linéairement proportionnelle à la longueur curviligne L.

$$K = C.L$$
 Avec $K=1/R \Rightarrow L.R=1/C$ On pose: $1/C = A^2$

L'équation fondamentale L.R = A²

3.5) Choix de la courbe de raccordement :

Entre les trois courbes citées au paravent la courbe de raccordement qu'on a choisis pour notre tracé est la clothoide, car théoriquement c'est l'idéal et la plus utilisé, et aussi parce qu'elle présente 3 propriétés remarquables qui sont :

- ❖ Variation constante de la courbure qui correspond au conducteur à une rotation constante.
- ❖ Elle maintient constante la variation de l'accélération, ce qui est très avantageux pour le confort des usagers.
- ❖ Sa courbure est proportionnelle à l'abscisse curviligne.

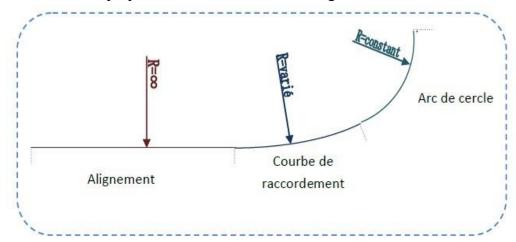


Figure V.1.2. Les éléments géométriques d'un tracé en plan.

Le chois du paramètre A de la clothoïde doit respecter les trois conditions, qui nous permet de fixé la longueur minimal de raccordement qui sont :

3.5.1) Condition de confort optique : elle permet d'assurer à l'usager une vue satisfaisante de la route et de ses obstacles éventuels et pour cela la rotation de la tangente doit être supérieure à 3°.

$$A_{min}=R/3$$
 $R/3 < A < R$

3.5.2) condition de confort dynamique : cette condition consiste à éviter la variation trop brutale de l'accélération transversale, est imposé à une variation limitée.

D'où:

$$L \ge \frac{V_r^2}{18} (\frac{V_r^2}{127.R} - \Delta d)$$

V_r: vitesse de référence (Km/h).

R: le rayon (m).

 Δd : la variation de divers ($\Delta d = d_{final} - d_{init}$) (%).

3.5.3) Condition de gauchissement : elle se traduit par la limitation de la pente relative en profil en long du bord de la chaussée déversée.

$$L \geq l \Delta d V_r$$

I : largeur de la chaussée.

L : longueur de la chaussée.

 Δd : variation des dévers.

Remarque : en peut vérifier la condition de gauchissement et de confort dynamique en appliquons la formule :

$$L \ge 5/36(\Delta d \cdot Vr)$$

5) COMBINAISONS DES ELEMENTS DE TRACE EN PLAN:

5.1. COURBE A INFLEXION (OU EN S):

C'est une courbe constituée de deux arcs de clothoïde, de concavité opposée tangente en leurs points de courbure.

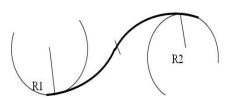


Figure V.1.3: Courbe en S

5.2. COURBE A SOMMET:

Elle Définie le raccordement entre deux éléments droits de directions différentes. Elle se compose de deux branches de clothoïde qui ont à leurs points de raccordement le même rayon de courbure et la même tangente.

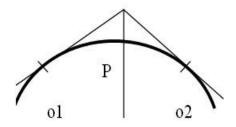


Figure V.1.4: Courbe sommet alignements.

5.3. COURBE EN ANSE DE PANIER:

Est une suite de segments de clothoïde à même sens de courbure mais de paramètres différents .

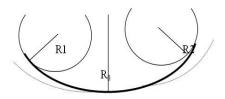


Figure V.1.5 : Courbe en constituée.

Remarque:

Pour notre tracer on n'a pas utilisé ces combinaisons.

6) LES BRETELLES :

Définition:

Une bretelle est une surface roulable qui permet le transfert du trafic d'une route à une autre.

Au sens large, c'est une chaussée de transfert dans un échangeur de circulation entre voies à niveaux différents où entre voies parallèles.

Les bretelles se terminent à une de leurs extrémités par une voie de décélération proprement dite, dont les caractéristiques découlent principalement de la vitesse d'insertion des véhicules sur l'autoroute ou de départ de celle- ci.

Types de bretelles :

On distingue trois types de bretelles, leur emploi est conditionné par le volume du débit à écouler.

Type de bretelles	Boucle	Diagonale	Anse
Type de Bretenes	Bodele	Diagonaic	THISC
Débit de point (UVP/h)	<500	500-1000	1000-2000
Rayon en plan (m)	40-75	100-175	>120

Tableau IV.1.1: distingue trois types de bretelles.

Tracé en plan de la RN09B :

C'est une route à 2×2voies de 3.5 m chacune avec TPC de 2m; qui nécessite le dédoublement du coté droite ou cote gauche sur le levé topographique.

Tracé en plan de L'évitement:

C'est une route à 2×2 voies de 3.5m chacune plus une bande d'arrêt d'urgence de 3m avec TPC de 3m.

Tracé en plan des bretelles:

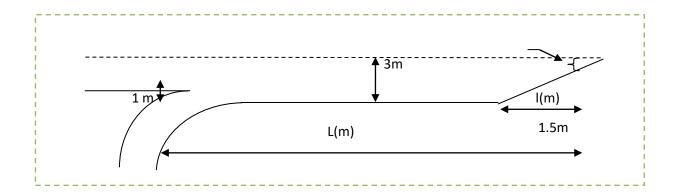
Le tracé des bretelles dépend toujours du tracé de la route à laquelle se raccordent, chaque rampe doit présenter une entrée et une sortie, et pour cela il faut bien déterminer leurs distances et prévoir des voies d'accélération ou décélération.

❖ DISTANCE D'INSERTION (D'ACCELERATION) : (I.C.T.A.A.L) :

Sa longueur est déterminée par la vitesse d'approche à vide de la route principale.

Tableau IV.1.2: Distance d'insertion (d'accélération) : (I.C.T.A.A.L) .

Va (Km/h)	60	80	100	120
L (m)	140	180	240	320
1 (m)	40	50	70	80


Va : vitesse d'approche à vide.

L : longueur de la voie d'insertion comptée du nez d'entrée réduit à 1m jusqu'au point ou la longueur se réduit à 1.5m.

Les voies d'insertion ont pour largeur :

3m pour Va < 100 Km/h

3.5m pour $Va \ge 100$ Km/h

Pour notre cas:

La longueur de la voie d'insertion :

Pour la RN09B ($V_r=60$ km/h):

- -la longueur de la voie d'insertion L=140m.
- -la longueur du sifflet d'insertion l=40m.

Pour l'évitement (V_r=80km/h):

- -la longueur de la voie d'insertion L=180m.
- -la longueur du sifflet d'insertion l=50m.

❖ VOIE DE DECELERATION :

La décélération des véhicules quittant la route principale se fait à l'aide de couloirs de décélération de type parallèle ou diagonal.

→ Voies de décélération de type parallèle :

La voie de décélération de type parallèle comprend un sifflet de raccordement et une voie parallèle à la route principale.

Sa longueur est en fonction de la vitesse d'approche à vide.

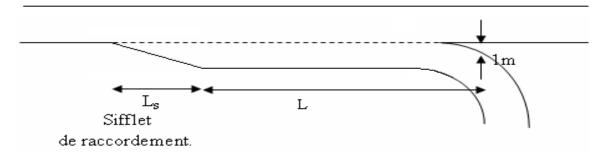


Figure V.1.3: voie de décélération

Le tableau ci-dessous (B40) donne la longueur de la voie de décélération (L) et la longueur de sifflet de raccordement (Ls) en fonction de la vitesse d'approche.

Tableau V.1.3: ci-dessous (B40) donne la longueur.

Va (Km/h)	60	80	100	120
L (m)	70	115	170	240
Ls (m)	40	50	60	75

Pour notre cas:

La RN09B. Va = 60 Km/h, on a:

✓ Longueur de décélération : L=70m.

✓ Longueur de sifflet de raccordement: L_s=40m.

L'évitement. Va = 80 Km/h, on a :

✓ Longueur de décélération : L=115m.

✓ Longueur de sifflet de raccordement: L_s=50m.

7) LONGUEUR D'ENTRECROISEMENT :

On doit déterminer la largeur d'entrecroisement et qui est en fonction de la vitesse pratiquée sur la route principale (voir tableau ci-après).

Tableau V.1.4: la vitesse pratiquée sur la route principale.

V _r (Km/h)	60	80	>80
Le (m)	200	300	500

Pour notre étude nous avons :

- ✓ Sur la voie la RN09B : ou V_r =60m/h, L_e = 200m.
- ✓ Sur l'évitement : ou V_r =80m/h, L_e = 300m.

Nous avons réduit c'est longueurs d'entrecroisement pour réduire au maximum l'emprise du terrain tout en gardant les normes requises, nous avons utilisées les normes françaises (S.E.T.R.A).

8) Les alignements :

La droite soit l'élément géométrique le plus simple, est employée dans le tracé des routes de manière restreinte. La cause en est qu'elle présente des inconvénients, notamment :

- De nuit, éblouissement prolongé des phares.
- Monotonie de conduite qui peu engendré des accidents (somnolence).
- Appréciation difficile des distances entre véhicules éloigné.
- Mauvaise adaptation de la route au paysage

Il existe toutefois des cas ou l'emploi d'alignements est justifié :

- En plaine, où des sinuosités ne sont absolument pas motivées
- Dans les vallées étroites
- Le long de construction existantes
- En zone urbaine, où existent des passages imposés des plans d'alignement Pour donner la possibilité de dépassement

La longueur des alignements dépend de :

- La vitesse de base plus précisément de la durée du parcours rectiligne.
- Des sinuosités précédant et suivant l'alignement.
- Du rayon de courbure de ces sinuosités.

a.La longueur minimale:

Celle correspondant un chemin parcourue durant un temps t=5sec a la vitesse de référence .

Avec: V_B: vitesse de référence en km/h, L min en m.

b.La longueur maximale:

Celle correspondant un chemin parcourue durant un temps t=1min a la vitesse de base

 $L_{max} = 60 V_r/3.6$

Avec: V_B: vitesse de référence en km/h, L_{max} en m.

9) Arc de cercle

Trois éléments interviennent pour limiter les courbures :

- La stabilité des véhicules en courbe.
- > La visibilité dans les tranchées en courbe.
- L'inscription de véhicules long dans les courbes de rayon faible.

9.a) Stabilité courbe des véhicules en courbe :

Le véhicule subit en courbe une instabilité à l'effet de la force centrifuge, afin de réduire cet effet on incline la chaussée transversalement vers l'intérieur, pour éviter le glissement des véhicules, en fait de fortes inclinaisons et augmenter le rayon.

Dans la nécessité de fixer les valeurs de l'inclinaison (dévers) ce qui implique un rayon minimal.

9.b) Les rayons en plans dépendant des facteurs suivant :

- > Force centrifuge Fc.
- Poids de véhicule P.
- > Accélération de la pesanteur G.
- > Devers d.

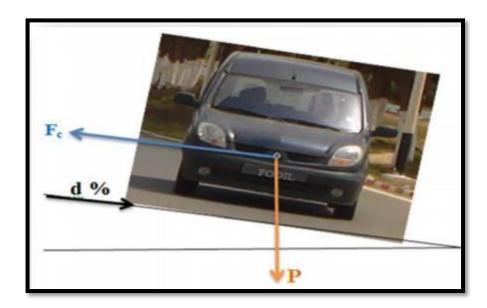


Figure V.1.4: Force centrifuge

Rayon horizontal minimal absolu (RHm) :

C'est le plus petit rayon admissible pour un courbe présentant un dévers maximal d_{max} et parcouru a la vitesse de référence V_r

RHm=
$$Vr^2/127(f_t + d_{max})$$

Avec: **ft:** coefficient de frottement transversal.

Dmax: Dévers maximal (7%).

 \mathbf{Vr} : on définit une série de couple (R,

Rayon minimal normal (RHN):

Le rayon minimal normal doit permettre à des véhicules dépassant Vr de 20 km/h De rouler en sécurité.

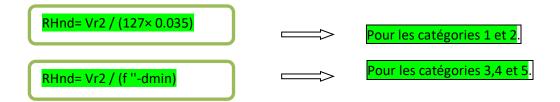
d).

$$R_{HN} = (Vr +20)^2/127(f_t + d_{max})$$

Dans la réalité pour chaque catégorie, on lui associe un devers réel

❖ Rayon au dévers minimal (R_{Hd}):

C'est le rayon au dévers minimal, au-delà duquel les chaussées sont déversées vers l'intérieur du virage et telle que l'accélération centrifuge résiduelle à la vitesse Vr serait équivalente à celle subit par le véhicule circulant à la même vitesse en alignement droit.


$$R_{Hd} = Vr^2 / (127 \times 2 \times d_{min})$$

Avec : dmin = 2.5% en catégorie 1-2

dmin=3% en catégorie 3-4 et 5

❖ Rayon minimal non déversé (RHnd) :

C'est le rayon non déversé telle que l'accélération centrifuge résiduelle acceptée pour un véhicule parcourant à la vitesse Vr une courbe de devers égal à d_{min} vers l'extérieur reste Inférieur à valeur limitée.

Avec
$$\begin{cases} f''=0.07 & \text{Pour catégorie 3} \\ f''=0,060 & \text{pour les catégories 1-2} \end{cases}$$
$$f''=0.075 & \text{Pour les catégories 4 et 5} \end{cases}$$

a) Visibilité en courbe :

Un virage d'une route peut être masqué du coté inférieur du courbe par un talus de déblai, par une Construction ou forêt. Pour assurer une bonne visibilité au conducteur d'un véhicule, il va falloir reculer le talus ou abattre les obstacles sur une certaine largeur à dé terminé.

Au lieu de cela, une autre solution serait d'augmenter le rayon du virage jusqu' à ce que la visibilité soit assurée.

b) Sur largeur:

Le calcul de la sur largeur est nécessaire pour les véhicules longs afin de leur faire Éviter qu'une partie de leur carrosserie n'empiète sur la vois adjacente. On donne à la Voie parcourue par ce véhicule une sur largeur par rapport à ça largeur normal en alignement pour plus de sécurité et pour éviter un contact avec véhicules venant en Sens inverse. Ce problème s'inscrit dans les virages à faibles rayons généralement inférieur à 200m La sur largeur sera toujours reportée à l'intérieur de la courbe.

2 S=L /2R Avec: L: longueur du véhicule (valeur moyenne L=10)

R: rayon de l'axe de route (R< 200 m)

C) Courbe en C:

Une courbe constituée de deux arcs de clothoïde, de même concavité, tangents en un point de même courbure et raccordant deux arcs de cercles sécants ou extérieurs l'un à l'autre.

10) LA VITESSE DE REFERENCE:

La vitesse de référence (Vr) est une vitesse prise pour établir un projet de route, elle est le critère principal pour la détermination des valeurs extrêmes des caractéristiques gamétiques et autres intervenants dans l'élaboration du tracé d'une route. Pour le confort et la sécurité des usagers, la vitesse de référence ne devrait pas varier sensiblement entre les sections différentes, un changement de celle-ci ne doit être admis qu'en coïncidence avec une discontinuité perceptible à l'usager (traverser d'une ville, modification du relief, etc ...

1) Choix de la vitesse de référence :

Le choix de la vitesse de référence dépend de :

- Catégorie de route.
- Caractéristique de trafic et le poids lourd.
- Topographie.
- Conditions économiques d'exécution et d'exploitation

2) Vitesse de projet:

La vitesse de projet Vr est la vitesse théorique la plus élevée pouvant être admise en chaque point de la route, compte tenu de la sécurité et du confort dans les conditions normales.

Ceci étant, les caractéristiques géométriques retenues pour le dédoublement de la RN 09 B, en conformité avec les normes techniques d'aménagement des routes B40, sont :

La catégorie de la liaison : 1

Dévers de chaussée minimal d min : 2,5 %
 Dévers de chaussée maximal d max : 7 %

3) Caractéristiques en plan :

Vitesse de référence	80 km/h	60 km/h
Rayon horizontal minimal absolu (d max) Rhm	250 m	125 m
Rayon minimal normal RHN	450 m	230 m
Rayon au divers minimal (d min) RHd	1000 m	450 m
Rayon non déversé (d min -2,5 %) RHnd	1 400 m	650 m
Longueur minimale d'alignement droit	111 m	83 m

Choix des valeurs de la vitesse de référence, au sein dune catégorie socio-économique donnée, est un compromis entre :

Nous proposons d'adopter les valeurs données dans le tableau ci-après :

	Cat 1	Cat 2	Cat 3	Cat 4	Cat 5
E1 facile	120/100/80	120/100/80	120/100/80	100/80/60	80/60/40
E2 moyen	100/80/60	100/80/60	100/80/60	80/60	60/40
E3 difficil e	80/60/40	80/60/40	80/60/40	60/40/	40

On entend par conditions normales:

- > Route propre sèche ou légèrement humide, sans neige ou glace.
- > Trafic fluide, de débit inférieur à la capacité admissible.
- Véhicule en bon état de marche et conducteur en bonne conditions normales.

4) Distance de visibilité:

Tableau IV.1.6: Distance de visibilité B40.

	V (km/h)	40	60	80	100	120
TouTes	Distance de visibilité de dépassement					
Catégories	Minimale dm (m).	150	250	325	425	550
	Normale dn (m).	250	350	500	625	800
	Distance de visibilité de manœuvre de dépassement : dMd	70	120	200	300	425

11) APPLICATION AU PROJET:

On essaye de choisir le plus grand rayon possible en évitant de descendre en dessous du rayon minimum préconise. Pour notre projet d'évitement situé dans un environnement (E2), et classé en catégorie 1 (C1) avec une vitesse de base de 80 km/h. Le B40 préconise les rayons donnés dans le tableau suivant :

Tableau IV.1.7 :coefficient de frottement longitudinal(FL) (Norme Algériennes)B40 .

V(km/h)	40	60	80	100	120	140
Catégories 1-2	0.45	0.42	0.39	0.36	0.33	0.30
Catégories 3-4-5	0.49	0.46	0.43	0.40	0.36	

Tableau IV.1.8: coefficient de frottement transversal (Ft) (normes algériennes) B40:

V (km/h)	40	60	80	100	120	140
Catégorie 1-2	0.20	0.16	0.13	0.11	0.10	0.09
Catégorie	0.22	0.18	0.15	0.125	0.11	
3-4-5						

Tableau IV.1.9: longueurs minimales de raccordement entre une droite et un cercle.

			Raccordement	Raccordement	Raccordement
Vr	Rm	d %	optique $L=\sqrt{24R.\Delta R}$	dynamique $L = \frac{0.2 \text{ V}^2 \text{r}}{3.6} \left(\frac{\text{V}^2 \text{r}}{127\text{R}} - \Delta d \right)$	de gauchissement d'une chaussée de 7m entre 7% et – 2.5 %
80 km/h	RHm=250	+7%	77 m (△ <i>R</i> : 1 <i>m</i>)	38 m	106 m
Kiny ii	RHnd=1400	-2.5%	183 m	11 m	
			$(\triangle R:1m)$		_

On essaye de choisir le plus grand rayon possible en évitant de descendre en dessous du rayon minimum préconise. Pour notre projet d'évitement situé dans un environnement (E2), et classé en catégorie 1 (C1) avec une vitesse de base de 80 km/h. Le B40 préconise les rayons donnés dans le tableau suivant :

Tableau V.1.10 . paramètres du tracé en plan.(B40) :

Paramètres	Symboles	Valeurs	Unités(m)
Vitesse	V	80	km/h
Longueur minimale	Lmin	111.11	
Longueur maximale	Lmax	1333.33	
Devers minimal	Dmin	2.5%	
Devers maximal	dmax	7%	
Temps de perception réaction : catégorie 1-2 Environnement (E1) et(E2) B40 : t =1.8 s pour V >80 km/h t = 2.0 s pour V≤80 km/h	t1	2 s	

Frottement longitudinal	fL	0,39
Frottement transversal	f _t	0,13
Distance de freinage : $d0=rac{4}{1000} imesrac{V^2}{\mathrm{fL}}$	d0	65
Distance d'arrêt : $d1 = d0 + 0.56V$ km/h $V \le 80$ km/h	d1	109
Distance de visibilité de dépassement minimale : 4 V (km/h) pour V ≤ 90(km/h).	dm	325
Distance de visibilité de dépassement normale : 6 V (km/h) pour V≤ 90 km/h).	dN	480
Distance de visibilité de manœuvre de dépassement	dMd	200
RHm	RHm	250 (7%)
RHN	RHN	450 (5%)
RHd	RHd	1000 (2.5 %)
	RHnd	1400 (-2.5%)

Remarque:

Le listing du Aux en plan est donné par logiciel AUTOPISTE (covadis10.1), les résultats sont joints en **annexe 1**.

<u>NB</u>: Comme notre projet est un projet de dédoublement nous sommes contraints de suivre la route existante, c'est pourquoi nous avons pris des rayons très petits dans quelques virages en réduisant la vitesse de base bien sûre (à 60km/h).

IV.2) PROFIL EN LONG:

IV .2.1) INTRODUCTION:

Lors de l'étude d'un projet routier, le projeteur a besoin d'une vue en coupe du terrain naturel suivant l'axe du projet qu'il étudie : ce graphique est le profil en long du terrain naturel.

IV .2.2) DEFINITION:

Le profil en long est une coupe verticale passant par l'axe de la route, développé et représentée sur un plan à une échelle. Ou bien c'est une élévation verticale dans le sens de l'axe de la route de l'ensemble des points constituant celui-ci.

Le but principal du profil en long est d'assurer pour le conducteur une continuité dans l'espace de la route afin de lui permettre de prévoir l'évolution du tracé et une bonne perception des points singuliers.

Pour chaque point du profil en long on doit déterminer :

- L'altitude du terrain naturel
- L'altitude du projet
- La déclivité du projet.

IV.2.3) REGLES A RESPECTER DANS LE TRACE DU PROFIL EN LONG :

Dans ce paragraphe on va citer les règles qu'il faut les tenir en compte –sauf dans des cas exceptionnels- lors de la conception du profil en long. L'élaboration du tracé s'appuiera sur les règles suivantes :

- Respecter les valeurs des paramètres géométriques préconisés par les règlements en vigueur.
- Eviter les angles rentrants en déblai, car il faut éviter la stagnation des eaux et assurer leur écoulement.
- Pour assurer un bon écoulement des eaux. On placera les zones des dévers nul dans une pente du profil en long.
- Assurer une bonne coordination entre le tracé en plan et le profil en long, la combinaison des alignements et des courbes en profil en long doit obéir à des certaines règles notamment.

- Limité la déclivité pour une catégorie donnée (i ≤ Imax)
- Respecter les règles de déclivités Max et Min (B40).

IV.2.4) COORDINATON ENTRE LE PROFIL EN LONG ET LE TRACE EN PLAN

Le respect de bonnes conditions de visibilité et la garantie d'une bonne lisibilité de l'itinéraire par l'usager imposent de veiller à une bonne coordination des éléments du tracé en plan et du profil en long. C'est la combinaison des deux éléments qui conditionnent l'image offerte réellement à l'usager et de ce fait est le paramètre déterminant vis-à-vis de son comportement.

Outre les objectifs d'intégration dans le site, cette coordination vis également en termes de sécurité à assurer pour l'usager :

Elle doit viser essentiellement à :

- Associer un profil en long concave, même légèrement, à un rayon en plan impliquant un dégagement latéral important.
- Faire coïncider les courbes horizontales et verticales, puis respecter la condition :

Rvertical > **6** Rhorizontal pour éviter un défaut d'inflexion.

Supprimer les pertes de tracé dans la mesure où une telle disposition n'entraîne pas de coût sensible, lorsqu'elles ne peuvent être évitées, on fait réapparaître la chaussée à une distance de 500 m au moins, créant une perte de tracé suffisamment franche pour prévenir les perceptions trompeuses.

IV.2.5) LES PALIERS ET LES DECLIVITES :

Un palier c'est une partie horizontale de la route, il se caractérise par son aspect désavantageux aux évacuations des eaux longitudinalement.

Une déclivité est la tangente de l'angle que fait le profil en long avec l'horizontale elle prend le nom de pente pour les descentes et rampe pour les montées.

Afin d'assurer une continuité entre les pentes et les rampes on a recours aux raccordements qui se font par un arc de cercle dont la nature est fixée par la différence m des deux déclivités Raccordement pente-rampe (m<0) : arc concave Raccordement rampe pente (m>0) : arc convexe

IV.2.5.1) Déclivité minimale :

Les tronçons de route absolument horizontaux, pour la raison d'écoulement des eaux pluviales car la pente transversale seule ne suffit pas, donc il est conseillé d'éviter les pentes inférieures à 0,5%, de préférence inferieures à 1%.

IV.2.5.2) Déclivité maximale :

La déclivité max dépend de :

- l'adhérence entre pneus et chaussée.
- Vitesse minimum de PL.
- Condition économique Valeurs de la déclivité maximale.

Tableau IV.2.1. Valeurs des déclivités maximales-Normes B40.

VR=80 Km/h	<mark>80</mark>	100	120	140
lmax	<mark>6</mark>	5	4	4

Pour Notre cas la vitesse VR=80 Km/h donc la pente maximale Imax = 6%.

IV.2.5) VOIE SUPPLÉMENTAIRE POUR VÉHICULE LENT:

Les déclivités importantes posent un problème pour les poids lourds. L'atténuation de ce problème de déclivité consiste à :

> En rampe:

Prévoir une voie supplémentaire pour poids lourds " **VSPL** " afin d'éviter davantage le ralentissement des véhicules et le développement des files d'attente.

> En pente:

L'influence de la pente sur la vitesse des véhicules poids lourds est importante. En conséquence la vitesse doit être adaptée au véhicule et à la pente en utilisant convenablement les freins.

Une voie supplémentaire sera envisagée si la longueur et la déclivité sont telles que la vitesse de poids lourds est réduite à moins de la vitesse critique(V_{cr}).

 $V_{cr} = V_{min} + 10 \text{ Km/h}$

V.2.6) RACCORDEMENTS DANS UN PROFIL EN LONG :

Deux déclivités de sens contraire doivent se raccorder en profil en long par une courbe .le rayon de raccordement et la courbe choisie doivent assurer le confort des usagers et la visibilité satisfaisante.

ON Distingue deux types de raccordement :

- 1) Raccordement convexes (Angle saillant)
- 2) Raccordement concaves (Angle rentrant)

V.2.6.1) Raccordement convexes (Angle saillant):

Les rayons minimums admissibles des raccordements paraboliques en angles saillants sont déterminés à partir de la connaissance de la position de l'œil humain et des obstacles d'une part, des distances d'arrêt et de visibilité d'autre part Leur conception doit répondre à conditions suivantes :

- a) Condition de Confort dynamique
- b) Condition de visibilité
- c) Condition esthétique

a. Condition de Confort dynamique :

Lorsque le profil en long comporte une forte courbure du raccordement, les véhicules sont soumis à une accélération verticale insupportable, qu'elle est limitée à :

g/40 pour les catégories 1 et 2 et g/30 pour les catégories 3,4 et 5

Rv ≥ 0.30v² pour catégories 1,2

D'où Avec Rv≥0.23v² pour catégories 3,4 et 5

Rv: vitesse de Référence (km/h)

 $g:10 \text{ m/s}^2$

la distance de visibilité en angle saillant :

La visibilité dépend de la hauteur de l'aeil $\mathbf{h0}$ et de la hauteur visée \mathbf{hv} .

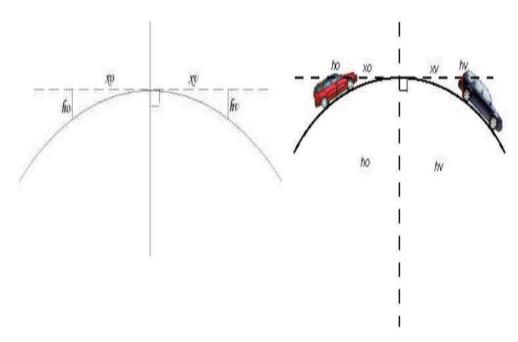


Figure V.2.1 la distance de visibilité.

La formule employée est dérivée de celle de la parabole :

$$ho = X^2 O/2R$$

$$hv = X^2v/2R$$

$$XO = \sqrt{2R. h0}$$

$$Xv = \sqrt{2R.hv}$$

b) Distance de visibilité =

$$X0+Xv=\sqrt{2R}\left(\sqrt{h0}+\sqrt{hv}\right) \ .$$

Tableau IV.2.2 : ci-après résume les valeurs proposées dans diverses catégories (B40):

	Hauteur de l'œil (h0)	Hauteur de l'obstacle (h1)	Hauteur de l'obstacle (h2)
Catégorie 1 ou 2	1,1 m	0,15 m	1,2 m
Catégorie 3-4-5	1,1 m	0,20 m	1,2 m

Tableau IV.2.3: hauteur visée – stéra.

Visibilité Sur virage	Hauteur visée 0.00 m	Description Sur l'axe: marquage au sol
Sur obstacle	0.35 m	Sur l'axe de la chaussée concernée : feux arrières de véhicules.
	0.60 m	Feux arrières de la plupart des véhicules (étude spécifique réalisée sur autoroute.
De dépassement	1.00 m	Hauteur conventionnelle prise pour véhicule en sens oppose.

N.B: La première condition est valable pour les points bas angle rentrant aussi bien que l'angle saillant.

b. Condition de visibilité :

Il complète la condition de confort dynamique seulement lorsque les raccordements des points hauts.

Il faut que deux véhicules circulent en sens opposés puissent s'apercevoir à une distance double de la distance d'arrêt au minimum.

Elle est donnée par la formule suivante :

$$Rv = \frac{D1}{2(h0+h1+2\times\sqrt{h1+h0})}$$

Avec

D1: Distance de d'arrêt en (m).

h0: Hauteur de l'œil (m).

h1: Hauteur de l'obstacle (m).

C) Condition esthétique :

Pour toute conception d'un ouvrage le facteur esthétique est prise en compte, et pour une route il est important de la réaliser de façon à procurer aux usagers une impression d'harmonie et une sensation d'équilibre. Pour cela il faut éviter de concevoir un profil en long sinusoïde qui change d'allure et de sens de déclivité sur une distance réduite.

2) Raccordement concaves (Angle rentrant):

Dans le cas de raccordement dans les points bas, la visibilité du jour n'est pas déterminante, plutôt c'est pendant la nuit qu'on doit s'assurer que les phares du véhicule devront éclairer un tronçon suffisamment long pour que le conducteur puisse percevoir un obstacle, la visibilité est assurer pour un rayon satisfaisant la relation La visibilité est assurée pour un rayon satisfaisant la relation suivante :

$$R'v = \frac{D^21}{(1.5 + 0.035D0)}$$

Rv :rayon minimum du cercle de raccordement.

D₁: distance d'arrêt.

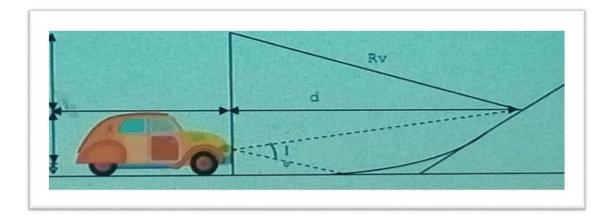


Figure V.2.2 : visibilité en raccordement concaves.

V.2.7) DETERMINATION PRATIQUE DU PROFIL EN LONG:

Dans les études des projets, on assimile l'équation du cercle : X^2+Y^2-2 R Y = 0

À l'équation de la parabole X²-2 R Y = 0 $Y = \frac{X^2}{2R}$

Pratiquement, le calcul des raccordements se fait de la façon suivante :

- > Donner les coordonnées (abscisse, altitude) les points A, D.
- ➤ Donner La pente P₁ de la droite (AS)
- Donner la pente P₂ de la droite (DS)
- Donner le rayon R

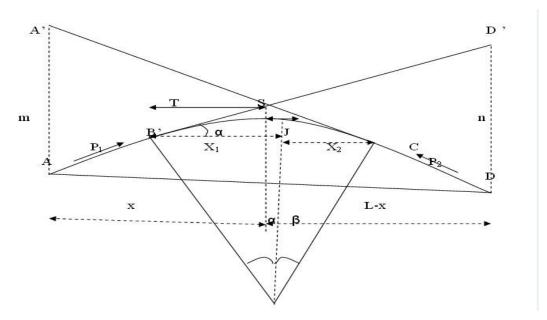


Figure V.2.3: Représentation du schéma de la pratique du profil en long

Détermination de la position du point de rencontre (s) :

On a:

$$ZA=ZD'+Lp2$$
 , $m=ZA-ZA'$

$$Z_D=Z_{A'}+Lp_1$$
 , $n=Z_D-Z_{D'}$

Les deux triangles A'SA et SDD' sont semblables donc :

$$\frac{m}{n} = \frac{X}{(L-X)}$$
 $\Longrightarrow x = \frac{m.L}{n+m}$

$$S = X + X_A$$

$$Zs = P_1X + Z_A$$

Calculs de la tangente

$$T = \frac{R}{2}(P_1 + P_2)$$

On prend (+) lorsque les deux pentes sont de sens contraires, on prend (-) lorsque les deux pentes sont de même sens. La tangente T permet de positionner les pentes de tangentes B, C

$$X_{B} = X_{S} - T$$

$$C$$

$$Z_{B} = Z_{S} - T.P_{1}$$

$$Z_{C} = Z_{S} + T.P_{2}$$

❖ Projection horizontale de la longueur de raccordement

LR=2T

Calcul de la flèche

$$H = \frac{T^2}{2R}$$

❖ Calcul de la flèche et l'altitude d'un point courant M sur la courbe

$$\mathbf{M} = \frac{X^2}{2R}$$

$$\mathbf{Z}_{M} = \mathbf{Z}_{B} + \mathbf{X} \mathbf{P}_{1} - \frac{X^2}{2R}$$

Calcul des cordonnées du sommet de la courbe (T)

Le point J correspond au point le plus haut de la tangente horizontale.

$$X_1=Rp_1$$
 $X_2=Rp_2$
 $X_j=XB-Rp_1$

Dans le cas des pentes de même sens le point J en dehors de la ligne du projet et ne présente aucun intérêt. Par contre dans le cas des pentes du sens contraire, la connaissance du point (J) est intéressante en particulier pour l'assainissement en zone du déblai, Le partage des eaux de ruissellement se fait à partir du point, c'est-à-dire les pentes de fossés descendants dans les sens J(A) et J(D).

V.2.7) APPLICATION DE PTOJET:

D'après le règlement **B40**, on définit les paramètres suivants :

Catégorie C_1 environnement E_2 Vitesses de base (Km/h) 80 Rayon angle Route unidirectionnelle : (2x2 voies) saillant RV 2500 R_{Vm1} (minimal absolu) en m 6000 R_{Vn1} (minimal normal) en m Rayon en angle Route unidirectionnelle:(2x2 voies) rentrant RV 2400 R'_{Vm1}(minimal absolu) en m 3000 R'_{Vn1} (minimal normal) en m Déclivité maximale $I_{max}(\%)$ 6

Tableau IV.2. 4: Paramètres du profil en long (B40).

Remarque:

Le listing du profil en long est donné par logiciel AUTOPISTE (covadis10.1), les résultats sont joints en **annexe 2**.

IV.3) PROFIL EN TRAVERS:

IV.3.1) DEFINITION:

Le profil en travers est une coupe suivant un plan vertical perpendiculaire à l'axe de la route projetée. La largeur de la chaussée est fonction de l'importance du trafic.

Un projet routier comporte le dessin d'un grand nombre de profils en travers, pour éviter de rapporter sur chacun de leurs dimensions, on établit tout d'abord un profil Unique appelé « profil en travers » contenant toutes les dimensions et tous les détails constructifs (largeurs des voies, chaussées et autres bandes, pentes des Surfaces et talus, dimensions des couches de la Superstructure, etc...).

IV.3.2) DIFFERENTE TYPE DE PROFIL EN TRAVERS :

On distingue deux types de profils :

- > Profil en travers courant.
- Profil en travers type.

a. Le profil en travers courant :

Le profil en travers courant est une pièce de base dessinée dans les projets à des distances régulières (10, 15, 20,25m...).qui servent à calculer les cubatures.

b. Le profil en travers type :

C'est une pièce de base dessinée dans les projets de nouvelles routes ou l'aménagement de routes existantes.

Il contient tous les éléments constructifs de la future route, dans toutes les situations (en **remblais**, **déblais**).ou mixte.

V.3.3) LES ELEMENTS DU PROFIL EN TRAVERS:

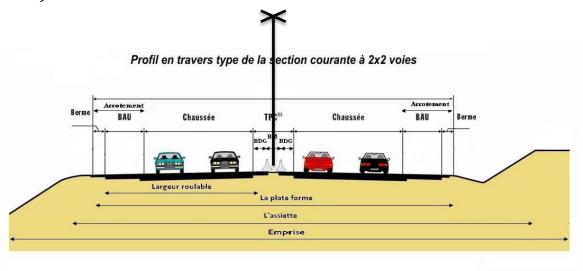


Figure IV.3.1. Les éléments de profil en travers

- **Emprise** : c'est la surface du terrain naturel affecté à la route ; limitée par le domaine public.
- Assiette : c'est la surface de la route délimité par les terrassements.
- Plate-forme : elle se situe entre les fossés ou crêtes de talus de remblais comprenant la chaussé et les accotements, éventuellement le terre-plein central et bande d'arrêt.
- Chaussée : c'est la partie de la route affecté à la circulation des véhicules.

- Terre- plein central (T.P.C): Il assure la séparation matérielle des deux sens de circulation, sa largeur est de celle de ses constituants: les deux bandes dérasées de gauche et la bande médiane.
- bande dérasée de gauche (B.D.G) :Elle est destinée à éviter un effet de paroi lié aux barrières de sécurité, elle est dégagée de tous obstacles, revêtus et se raccorde à la chaussée.
- bande médiane: Elle sert à séparer physiquement les deux sens de circulation, et à implanter certains équipements (barrière, support de signalisation, etc.), sa largeur dépend, pour le minimum des éléments qui sont implanter.
- Accotement : Comprend une bande d'arrêt d'urgence (B.A.U) bordée à l'extérieure d'une berme.
- Bande d'arrêt d'urgence :Elle facilite l'arrêt d'urgence hors chaussé d'un véhicule, elle est constituée à partir du bord géométrique de la chaussée et elle est revêtue.
- la berme : Elle participe aux dégagements visuels et supporte des équipements (barrières de sécurité, signalisations..). Sa largeur qui dépend tout de l'espace nécessaire au fonctionnement du type de barrière de sécurité à mettre en place.
- Le fossé_: C'est un ouvrage hydraulique destiné à recevoir les eaux de ruissellement provenant de la route et talus et les eaux de pluie.

V.3.4) APPLICATION AU PROJET:

Après l'étude de trafic, le profil en travers type retenu pour la **RN 09B** sud sera composé d'une chaussée de dédoublement.

Les éléments du profil en travers type sont comme suit :

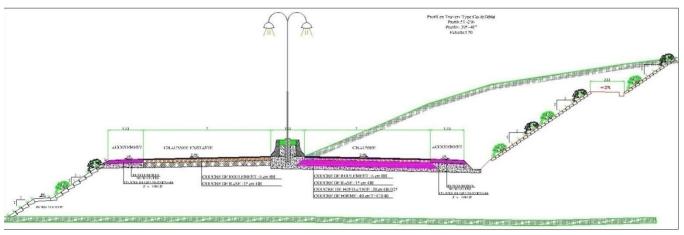
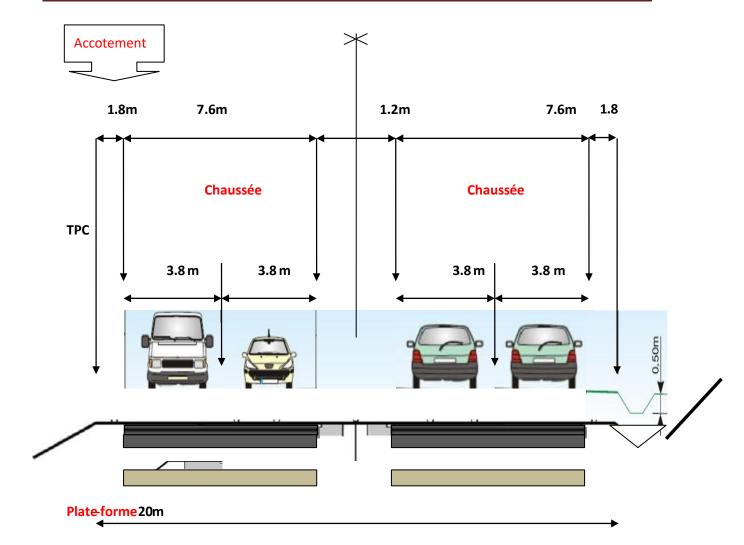



Figure IV.3.2: Les éléments du profil en travers type sont comme.

Total 2	0 m
Accotements 2 x1.8	3.6 m
Terreplein central	1.2 m
Chaussée 2 x 7.6m	15.2 m

Remarque:

Le listing du profil en travers est donné par logiciel AUTOPISTE (covadis10.1), les résultats sont joints en **annexe 3**.

PROMOTION 2020

V.1. INTRODUCTION

La réalisation d'un ouvrage routier nécessite toujours une modification du terrain naturel sur lequel l'ouvrage va être implanté. Pour les voies de circulation ceci est très visible sur les profils en longs et les profils en traveras.

Pour réaliser ces voies il reste à déterminer le volume des terres se trouvant entre le tracé du projet et celui du terrain naturel.

La modification de la forme du terrain naturel comporte deux actions, la première consiste apporter des terres (remblai) et la deuxième à enlever des terres (déblai).

Le calcul des volumes des déblais et des remblais s'appelle «les cubatures des terrassements»

V. 2. DEFINITION

Les cubatures de terrassement, c'est l'évolution des cubes de déblais que comporte le projet à fin d'obtenir une surface uniforme et parallèlement sous adjacente à la ligne projet :

Les éléments qui permettent cette évolution sont :

- les profils en long.
- les profils en travers.
- Les distances entre les profils.

V.3. METHODE DE CALCUL DES CUBATURES

Les cubatures sont les calculs effectués pour avoir les volumes des terrassements existants dans notre projet. Les cubatures sont fastidieuses, mais Il existe plusieurs méthodes de calcul des cubatures qui simplifient le calcul; parmi lesquelles on cite:

- Méthode de l'aire moyenne.
- Méthode de la longueur applicable.
- Méthode approchée.
- Méthode de GULDEN.
- Méthode de SARRUS.

Le travail consiste à calculer les surfaces <u>SD</u> et <u>SR</u> pour chaque profil en travers, ensuite on les soustrait pour trouver la section de notre projet.

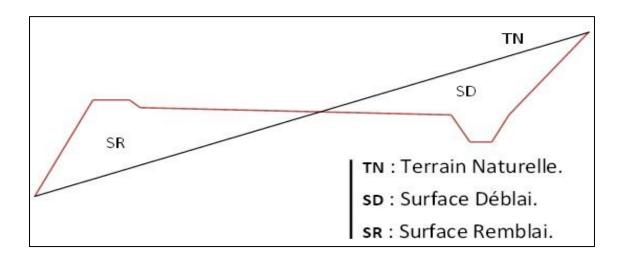
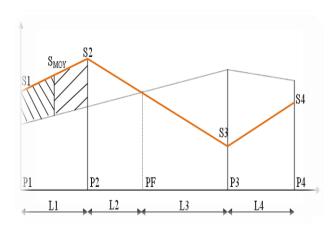



Figure V.1. Les surfaces remblai déblai

1. Méthodes des moyennes des aires (méthode linéaire)

Le principe de la méthode de la moyenne des aires est de calculer le volume compris entre deux profils par la formule suivante :

$$V = \frac{L}{6} \times (S_1 + S_2 + 4S_{Moy})$$

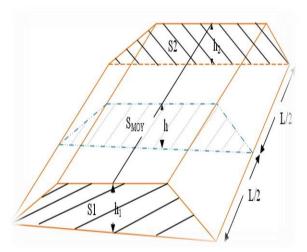


Figure V.2. Profil en long d'un tracé donné

Figure V.3. Méthode linéaire

Li: Distance entre deux profils

S_i: les surfaces verticales des profils en travers P1 et P2

S_{Moy}: surface intermédiaire (surface parallèle et à mi-distance Li)

PF: profil fictive, surface nulle

Pour éviter des calculs, très long, on simplifie cette formule en considérant comme très

$$\frac{s_{1+s_2}}{2}$$

voisines les deux expressions S_{Moy} et 2

Ceci donne:

$$Vi = \frac{Di}{2} \times (S_i + S_{i+1})$$

Avec :

V: Volume (m3).

 S_i et S_{i+1} : Surface de deux profils en travers successifs (m2).

Li: Distance entre ces deux profils (m).

Donc les volumes seront :

$$V^{1} = \frac{D_{1}}{2} \times (S_{1} + S_{2})$$
 Entre P1 et P2

$$V = \frac{D_2}{2} \times (S_2 + S_3)$$
 Entre P₂ et P_F V

$$3 = \frac{D_3}{2} \times (S_3 + S_4)$$
 Entre P_F et P₃

$$V^4 = \frac{D_4}{2} \times (S_4 + S_5)$$
 Entre P₃ et P₄

En additionnant membres à membre ces expressions on a le volume total des Terrassements qui sont donné comme suit :

$$V = \frac{D_1}{2} S_1 + \frac{D_{1-D_2}}{2} S_2 + \frac{D_2 + D_3}{2} 0 + \frac{D_{3-D_4}}{2} S_3 + \frac{D_4}{2} S_4$$

2. Méthode de Gulden

Dans cette méthode, les sections et les largeurs des profils sont calculées d'une façon classique mais la distance du barycentre de chacune des valeurs à l'axe est calculée. Pour obtenir les volumes et les surfaces, ces valeurs sont par le déplacement du barycentre en fonction de la courbure au droit du profil concerné.

Cette méthode permet donc de prendre en compte la position des quantités par rapport à la courbure instantanée

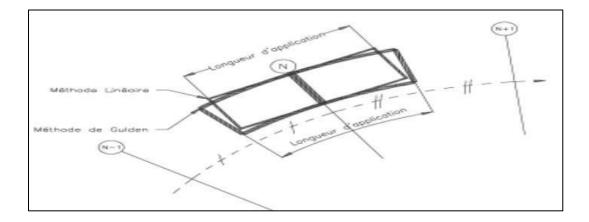


Fig ure V . 4 Méthode de Gulden

3. Calcul des cubatures

Le calcul s'effectue à l'aide du logiciel Covadis

Remarque:

Le calcul est fait automatiquement par le logiciel **Covadis** , les résultats obtenus sont résumés sous forme de tableaux en annexe. 4 et 5.

V remblais=4671.5 m^3

V Déblais= $165688 m^3$

CHAPITER VI ETUDE GEOTECHNIQUE

PROMOTION 2020

VI.1. INTRODUCTION:

Les études géotechniques sont nécessaires pour mesurer dès l'avant-projet sommaire,

L'incident des choix de profil en long et d'une manière générale du trace en termes de cout.

On peut dire aussi que La géotechnique est une science qui étudie les propriétés physiques et mécaniques des roches et des sols qui vont servir d'assise pour la structure de chaussée.

Cette étude doit d'abord permettre de localiser les différentes couches et donner les renseignements de chaque couche et les caractéristiques mécaniques et physiques de ce sol.

Pour cela en fait des essais en laboratoire qui permettent de déterminer les caractéristiques en place.

VI.2. OBJECTIFS DE LA GEOTECHNIQUE:

Les objectifs d'une étude géotechnique se résument en :

- ➤ De définir les caractéristiques des sols qui serviront d'assise pour le corps de chaussée.
- Détecter des zones d'emprunts de matériaux de construction pour les remblais et le corps de la chaussée.
- Le bénéfice apporté sur les travaux de terrassement.
- L'identification des sources d'emprunt des matériaux et la capacité de ses gisements.
- Préserver l'environnement et les ressources naturelles.

La sécurité en indiquant la stabilité des talus et des remblais

VI.3. RECONNAISSANCE DE SITE:

1) Sondage carotté

Un sondage carotté à foncer en rotation dans le sol un tube muni à sa partie inférieur d'une couronne très résistante qui isole un cylindre de sol, ou carotte, du reste du terrain, et à remonter cette carotte à la surface. L'outil est refroidi par un courant d'eau, de boue, d'air comprimé. Ce moyen de sondage satisfaisantes, et demeure, de ce fait, un moyen de

reconnaissance privilège, notamment pour l'étalonnage de la coupe géologique dans une zone donné.

2) Exploitation sur site:

Les sondages ont été réalisés en forage type rotatif (non destructif) avec injection d'eau clair au moyen des machines de forage géotechnique de fabrication française TEC System Modèle ABYSS, et TERDO de fabrication italienne avec un carottier à couronne diamantée de diamètre 101 mm type k2/T6.

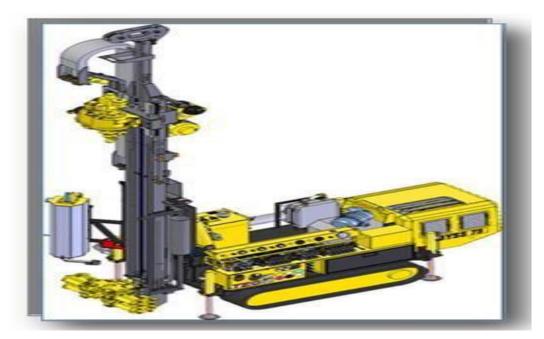


Figure.VI.1. Machine de forage géotechnique.

VI.4. ESSAIS AU LABORATOIRE

Les essais réalisés en laboratoire pour les échantillons prélevés de notre projet sont :

1. Des essais d'identification.

2. Des essais mécaniques

Les essais d'identification:

- Teneur en eaux et masse volumique.
- Analyse granulométrique.

- Limites d'Atterrer.
- > Equivalent de sable.
- Essai au bleu de méthylène (ou à la tache).

3. Les essais mécaniques

- Essai PROCTOR.
- Essai CBR
- Essai Los Angeles

Le calcul de l'épaisseur des chaussées souples nécessitera des prélèvements destinés des essais CBR en laboratoire.

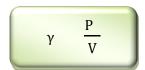
Les essais seront fait à différentes teneurs en eau énergies de compactage, afin

D'apprécier la stabilité du sol aux accidents lors des terrassements, ces essais seront précédés d'essai PROCTOR.

La classification des sols rencontrés sera utile et nécessitera la détermination des limites d'Atterrer.


VI. 4.1. Définitions des Essais D'identification

1. Teneur en eau et masse volumique :


➤ La teneur en eau (w%) : La teneur en eau d'un granulat ou d'un sol est le pourcentage d'eau (en masse) par rapport au matériau sec :

$$\omega \% = \frac{\text{masse de l'eau contenue (Ww)}}{\text{masse de matériau sec (Ws)}} \times 100$$

Masse volumique : masse du sol par unité de volume du sol (t/m3)

On calcule aussi la masse volumique sèche :

a. Principe de l'essai:

Leur volume permet de calculer le poids volumique des grains solides.

On utilise le principe de la poussée d'Archimède .

En effet, on mesure le volume d'eau déplacé hors de l'introduction d'un certain poids de sol sec la connaissance du poids des grains soli.

b. But de l'essai:

le but de cet essai est de déterminé expérimental au laboratoire de certains caractéristique physique des sols.

c. Domaine d'utilisation:

cet essai utilise pour classer les différents types de sols.

d. Analyses granulométriques :

C'est un essai qui a pour objet de déterminer la répartition des grains suivant leur dimension ou grosseur.

Les résultats de l'analyse granulométrique sont donnés sous la forme d'une courbe dite courbe granulométrique, cette analyse se fait en générale par un tamisage Suivant la dimension des particules, les dénominations suivantes ont été adoptées :

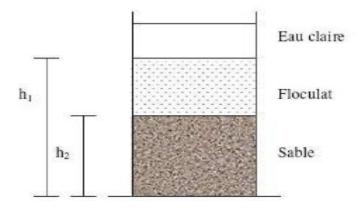


Figure.VI.2. L'essai granulométrique

Dimension D des grains (mm)	dénomination	Type de sols
D > 20	Cailloux	Sols Grenus
20>D>2	Graves	Sols Grenus
2>D>0.2	Gros sable	Sols Grenus
0.2>D>0.02	Sable fin	Sols Grenus
0.02>D>2 μ	Limons	Sols fins
D<2 μ	Argiles	Sols fins

L'analyse granulométrique est réalisée par tamisage pour les particules de dimension supérieure à $80\mu m$ et par sédimentométrie pour les « fines » de dimension inférieure à $80\mu m$

2. Limites d'Atterrer:

Les limites d'Atterberg caractérisent le comportement des sols fins en présence d'eau en pratique on détermine à l'aide de l'appareil de Casa grande.

Les propriétés du sol sont caractérisées par deux seuils de teneur en eau :

La limite de plasticité Wp caractérisant le passage du sol de l'état solide à l'état plastique,

La limite de liquidité W_L Lest caractérisant le passage du sol de l'état plastique à l'état liquide,

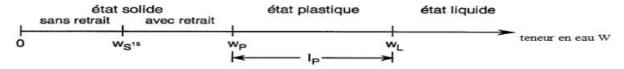


Figure.VI.3. L'essai équivalente sable

On définit alors l'indice de plasticité IP :

IP= w L-

Cet indice est d'autant plus élevé que le matériau est plus « plastique », au Sens commun du terme comme du point de vue de son comportement au cours du terrassement.

La classification décrite ci-après distingue les seuils suivants :

IP< 12 : Faiblement argileux

12≤ IP< 25 : Moyennement argileux

25≤ IP< 40 : argileux

IP≥ 40 : Très argileux

Figure.VI.4. l'appareil de casagrande

3. Équivalent du sable :

Il est utilisé pour des sols contenant peu d'éléments fins et faiblement plastiques. Il S'effectue sur la fraction inférieure à 2 ou 5mm. On place un volume donné de l'échantillon dans une éprouvette graduée dans laquelle on verse un mélange d'eau et de solution floculant destinée à mettre en suspension et à faire gonfler les particules argileuses. Après agitation normalisée, on laisse reposer, puis on mesure la hauteur h2 du sable et la hauteur h1 du sommet du floculant.

On calcule ensuite:

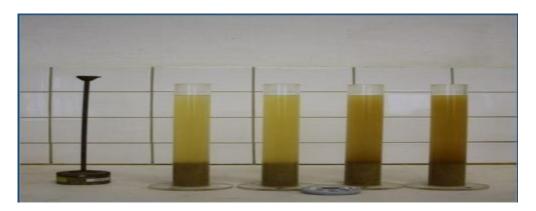
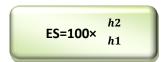



Figure.VI.5. L'essai équivalente sable

On calcule ensuite:

4. Essai au bleu de méthylène (ou à la tache):

C'est un paramètre permettant de caractériser l'argilosité d'un sol mais dont l'application à l'identification des sols remonte seulement à quelques années. Ce paramètre représente la quantité de bleu de méthylène pouvant s'adsorber sur les surfaces externes et internes des particules du sol, ou autrement dit une grandeur directement liée à la surface spécifique du sol. on peut considérer que la valeur de bleu de méthylène VBS (valeur de bleu du sol) exprime globalement la quantité et la qualité (ou activité) de l'argile contenue dans ce sol. D'après le Guide des Terrassements Routiers, six catégories de sols sont définies selon la valeur de VBS :. Catégorie de sols selon la valeur au bleu méthylène.

 $\begin{array}{c|c} \mbox{Valeur de bleu de méthyléne}(\mbox{V}_{BS}) & \mbox{Catégorie de sol} \\ \mbox{V}_{BS} < \mbox{0,1} & \mbox{Sol insensible à l'eau} \\ \mbox{Sol sablo limoneux, sensible à l'eau} \\ \mbox{0,2\leV$_{BS}$<$1,5$} & \mbox{Sol sablo argileux, peu plastiques} \\ \mbox{1,5\leV$_{BS}$<$2,5$} & \mbox{2,5\leV$_{BS}$<6} \\ \mbox{6} & \mbox{Sol limoneux de plasticité moyenne.} \\ \mbox{Sol agileux} \\ \mbox{VBS} > 6 & \mbox{Sol très argileux.} \\ \mbox{} \end{array}$

Tableau.VI.1. Catégorie de sols selon la valeur au bleu méthylène.

VI.4.2 Définitions des Essais Mécaniques:

1. Essai PROCTOR:

d'obtenir s'effectue à l'aide d'un damage normalisé connu sous le nom de **l'essai Proctor** L'essai PROCTOR est un essai routier, il consiste à étudier le comportement d'un sol sous l'influence de compactage et une teneur en eau, il a donc pour but de déterminer une teneur en eau optimale Les remblais posent à l'ingénieur routier un certain nombre de problèmes, d'où on peut citer :

- La stabilité des talus
- La résistance des talus à l'érosion.
- Le tassement.
- Et le compactage.

Le « compactage » est le procédé le plus économique toujours utilisé dans la construction des remblais pour améliorer la densité sèche du sol (gd).

Le « compactage » est une réduction pratiquement instantanée du volume du sol dû à la réduction des vides d'air. Il ne y'a aucune expulsion d'eau ce qui différencie le compactage de la consolidation.

L'étude du compactage afin une densité sèche maximale lors d'un compactage d'un sol, cette teneur en eau ainsi obtenue est appelée « optimum PROCTOR ».

L'essai Proctor s'effectue généralement pour deux compactages d'intensités différentes :

- L'essai **Proctor normal** rend assez bien compte des énergies de compactage pratiquées pour les remblais.
- L'essai **Proctor modifié**, le compactage est beaucoup plus poussé et correspond aux énergies mises en œuvre pour les couches de forme et les couches de chaussée.

	Proctor normal	Proctor modifié
Poids de la dame (kg)	2.495	4.54
Hauteur de la chute (cm)	30.5	45.7
Nombre de couches	3	5
Nombre coups de dame/couche	55	55

figure.VI.6. Essai PROCTOR

2. Essai C.B.R (California Bearing Ratio):

Cet essai a pour but d'évaluer la portance du sol en estimant sa résistance au poinçonnement, afin de pouvoir dimensionner la chaussée et orienter les travaux de terrassements. L'essai consiste à soumettre des échantillons d'un même sol au poinçonnement, les échantillons sont compactés dans des moules à la teneur en eau optimum (PROCTOR

modifié) avec trois (3) énergies de compactage 25 c/c ; 55 c/c ; 10 c/c et imbibé pendant quatre (4) jours. Il ne concerne que les sols cohérents.

ICBR	Portance du sol		
<3	Mauvaise		
3 à 8	Médiocre		
8 à 30	Bonne		
>30	Très bonne		

Tableau.VI.2. spécification CBR.

Figure.VI.7. l'essai C.B.R

3. Essai Los Angeles:

L'essai los Angeles est un essai très fiable est de très courte durée, il nous permet d'évaluer la qualité du matériau.

- Principe de l'essai: L'essai consiste à mesurer la quantité d'éléments inférieurs à 1,6 mm produite en soumettant le matériau aux chocs de boulets normalisés dans la machine Los Angles.
- ➤ But de l'essai: L'essai a pour but de déterminer la résistance à la fragmentation par choc et la résistance obtenue par frottement des granulats.

Domaine d'application : l'essai s'applique aux granulats d'origine naturelle ou artificielle utilises dans le domaine des travaux publics (assises de chaussées y compris les couches de roulements).

Figure. VI.8. l'essai los Angeles

Avec : m : masse initial des granulats avant l'essai m' : masse des granulats après l'essai, lavage au tamis 1.6mm et séchage.

Tableau.VI.3. spécification de los Angeles.

LA	Appréciation
<15	Très bon à bon
15 à 25	Bon à moyen
25 à 30	Moyen à faible
>30	Médiocre

VI.5. CONDITION D'UTILISATION DES SOLS EN REMBLAIS :

Les remblais doivent être constitués de matériaux provenant de déblais ou d'emprunts éventuels.

Les matériaux de remblais seront exempts de :

- ✓ Pierre de dimension > 80mm.
- ✓ Matériaux plastique IP > 20% ou organique.
- ✓ Matériaux gélifs.
- ✓ On évite les sols à forte teneur en argile.

Les remblais seront réglés et soigneusement compactés sur la surface pour laquelle seront exécutés. Les matériaux des remblais seront établis par couche de 32 cm d'épaisseur en moyenne avant le compactage. Une couche ne devra pas être mise en place et compactée avant que la couche précédente

NB:n'ait été réceptionnée après vérification de

son compactage.

À défaut du manque du rapport géotechnique complet du projet qui n'a pas été conçu nous n'avons pas pu traiter convenablement la partie géotechnique pour l'application à notre projet.

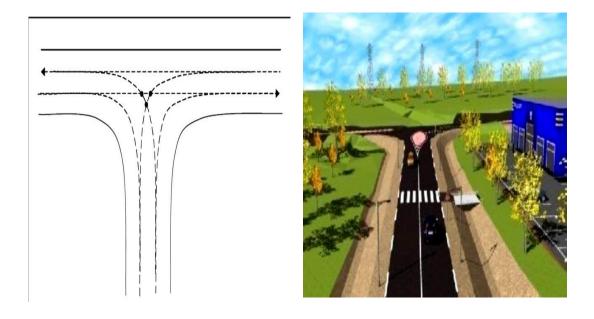
VI.6. CONCLUSION:

L'étude de sol devant recevoir le projet a montré que les faciès forment l'assise de la route ne présentent pas caractères spéciaux nécessitant des précaution spéciales. Dans l'ensemble la portance est bonne, la sensibilité à l'eau n'pas assez importante, et les travaux de terrassement n'exigent pas de moyens extra ordinaires.

CHAPITRE VIO

PROMOTION 2020

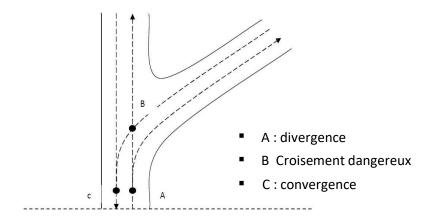
VII.1. INTRODUCTION:


Un carrefour est un lieu d'intersection deux ou plusieurs routes au même niveau. Le bon fonctionnement d'un réseau de voirie, dépend essentiellement de la performance des carrefours car ceux-ci présentent des lieux d'échanges et de conflits où la fluidité de la circulation et la sécurité du trafic sont indispensables. L'analyse des carrefours sera basée sur les données recueillies lors des enquêtes directionnelles, qui doivent fournir les éléments permettant de faire le diagnostic de leur fonctionnement. Le bon fonctionnement d'une route dépend essentiellement de la performance des carrefours car ceux-ci présentent des lieux d'échanges et de conflits où la fluidité de la circulation et la sécurité du trafic sont indispensables

VII.2. TYPE DES CARREFOURS:

Les principaux types des carrefours sont

1. Carrefour à trois branches (en T)


C'est un espace où se réunissent trois branches en formant la lettre (T). Dans ce type de carrefours le courant direct domine, et les autres courants peuvent être aussi importants comme c'est présenté dans la figure ci-dessous

FigureVII.1.Carrefour en T.

2. Carrefour à trois branches (en Y)

C'est un carrefour plan ordinaire à trois branches, comportant une branche secondaire uniquement, et dont l'incidence avec l'axe principal est oblique (s'éloignant de la normal de plus de 20°). Dans ce ,cas le trafic virant dans un angle aigu est nul ou insignifiant La figure ci-dessous montre un exemple des conflits existants sur un carrefour en Y.

FigureVII.2. Carrefour en Y.

3. Carrefour à quatre branches (en croix)

Il s'agit d'un carrefour à quatre branches dont deux branches sont à peu près dans le prolongement des deux autres branches et pour lequel l'angle de ces prolongements est de 75° ou davantage tout en restant inférieur à 105°. La figure ci-dessous donne une idée de l'allure de ce type de carrefour.

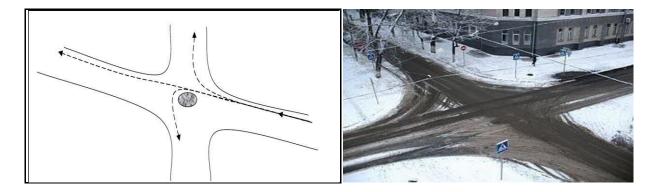
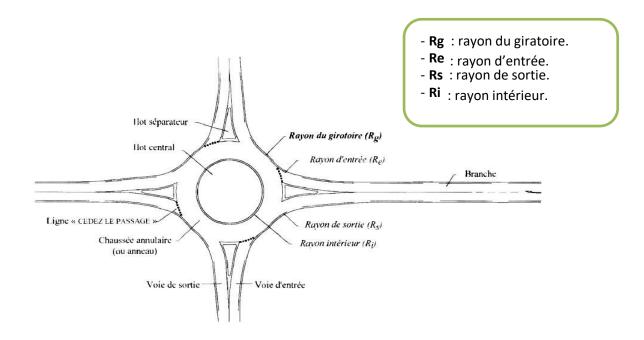


Fig ure VII .3 Carrefour en X

4. Carrefour type giratoire ou carrefour giratoire

Un giratoire est un carrefour dans lequel certains courants empruntent une chaussée annulaire continue, ils ordonnent une circulation à sens unique, disposé autour d'un ilot central.


L'ilot central a un rayant souvent supérieure à douze mètre. La sortie de véhicule doit et plus grande que celle de la rentrée et ça pour facilité la manœuvre pour le conducteur qui va quitté le carrefour et pour gêner les véhicules entrant et ça pour faire ralentir.

On doit définir la géométrie d'ensemble du carrefour en ramenant à des tracés simples et connus, puis dimensionner les divers éléments.

Pour tracer général on prend en considération les principes généraux déjà énoncées :

- Condition de visibilité.
- > Bonne compréhension (l'aménagement doit être clair).
- Cisaillement sous un angle de 90 ±20°.

Dans ce présent chapitre, on va plus traiter l'aménagement et la conception géométrique des carrefours à sens giratoire, dits carrefours giratoires vu qu'on en a trois.

FigureVII.4.Les éléments d'un carrefour à sens giratoire.

VII.3. Eléments de base pour l'aménagement des carrefours

Les données essentielles de base à l'aménagement d'un carrefour sont :

- Les conditions topographiques et la visibilité (plan, profil en long).
- Les conditions d'approche pratiquées par les véhicules sur les déférentes voies.
- L'intensité de la circulation sur les déférents courants.
- La composition du trafic, c'est-à-dire la proposition des véhicules lourds, encombrants en lents, sur les divers courants de circulation.

VII.4. LES AVANTAGES ET LES INCONVENIENTS DU CARREFOUR

GIRATOIRE

1. Avantages

Les avantages de carrefour giratoire:

- ✓ L'adaptation au trafic est automatique, par la priorité donnée aux véhicules déjà insérés.
- ✓ La vitesse est limitée par l'infrastructure, et la sécurité routière est donc améliorée.

- ✓ Il n'y a pas besoin de feux, donc pas besoin d'électrifier le carrefour, ce qui est intéressant en zone très rurale.
- Une forme qui identifie un lieu et qui caractérise de l'espace.
- Diminution des nuisances.
- Faciliter d'insertion d'un grand nombre des branches.
- Economie de régulation et d'exploitation

2. Inconvénients

- Consommation d'emprise importante.
- Entretien de l'îlot central.
- Transport public non prioritaire.
- Absence de prise en charge correcte des piétons.
- Absence de régulation du trafic (non-respect du régime de priorité).

VII.5. DONNEES APPRENDRE POUR L'AMENAGEMENT D'UN

CARREFOUR

- Pour Les choix d'un aménagement de carrefour on doit suivre un certain nombre des données essentielles concernant :
- Les caractéristiques du site d'implantation (le trafic et leur révolution prévisible dans le futur, Environnement, sécurité).
- Les genres et les causes des accidents constatés dans les cas de l'aménagement d'un carrefour existant.
- Les vitesses d'approche à vide pratique.
- Des caractéristiques sections adjacents et des carrefours voisins.
- Condition topographique.
- Le respect de l'homogénéité de tracé.
- > La valeur de débit de circulation sur les différentes branches et l'intensité des mouvements tournant leur évolution prévisible dans la future.

VII.6. PRINCIPES GENERAUX D'AMENAGEMENT D'UN CARREFOUR

 Les cisaillements doivent se produire sous un angle de 90 ± 20 à in d'obtenir de meilleure condition de visibilité et la prédication des vitesses sur l'axe transversal, aussi avoir une largeur traversée minimale.

- Ralentir à l'aide des caractéristiques géométriques les courants non prioritaires.
- Regrouper les points d'accès à la route principale. ☐ Assurer une bonne visibilité de carrefour.
- Soigner tout particulièrement les signalisations horizontales et verticales.

1. La visibilité

Dans l'aménagement d'un carrefour il faut lui assurer les meilleures conditions de visibilité possibles, la vitesse d'approche à vide remplace la vitesse de base à l'approche des carrefours .En cas de visibilité insuffisante il faut prévoir :

- Une signalisation appropriée dont le but est soit d'imposer une réduction de vitesse soit de changer les régimes de priorité.
- Renforcer par des dispositions géométriques convenables (inflexion des tracés en plan, îlot séparateur ou débouché des voies non prioritaires.

2. Triangle de visibilité :

Un triangle de visibilité peut être associé à un con lit entre deux courants. Il a pour sommets :

- ✓ Le point de conflit.
- ✓ Les points limites à partir desquels les conducteurs doivent apercevoir un véhicule adverse.

3. les ilots

Les îlots sont aménagés sur les bras secondaires du carrefour pour séparer les directions de la circulation, ou aussi de limiter les vois de circulation.

4. Ilot séparateur :

Les éléments principaux de dimensionnement sont :

• Décalage entre la tête d'îlot séparateur de la route secondaire et la limite de la chaussée de la route principale : 1m.

- Décalage d'îlot séparateur à gauche de l'axe de la route secondaire : 1m.
- Rayon en tête d'îlot séparateur : 0.5m à 1m.
- Longueur de l'îlot : 15m à 30m.

5. Ilot directionnel:

Les îlots directionnels sont nécessaires pour délimiter les couloirs d'entrées Et de sortie. Leur nez est en saillie et ils doivent être arrondis avec des rayons de 0.5 à 1 m.

6. Les couloirs d'entrée et de sortie :

Longueur de couloirs

Entrée 4m (accotement dérasé 1.5m).

Sortie 5m (accotement dérasé 0.5m).

VII.7. SIGNALISATION DU CARREFOUR

La signalisation du carrefour est composée de quatre éléments complémentaires :

- La signalisation de priorité : On trouve le panneau de route prioritaire Sur la route principale. La signalisation de direction. Le marquage au sol et les plots.
- Les panneaux de prescription : On trouve les panneaux de priorité de passage,
 - Céder passage et Stop sur la route secondaire.

Figure VII.5. Terminologie d'un carrefour giratoire.

VII.8. APPLICATION AU PROJET:

□ Données de base

✓ La nature de trafic qui emprunte les itinéraires.

✓ La vitesse d'approche à vide (**V0**) qui dépend des caractéristiques réelles de l'itinéraire au point considéré et peut être plus élevée que la vitesse de base.

Les conditions topographiques

1. Les caractéristiques géométriques du carrefour

Pour notre projet de l'étude, on fait l'étude de carrefour giratoire de quatre branches

(Selon la forme d'intersection et pour obtient de milliers conditions de visibilité).

Et d'âpre le **SETRA** on adopte les caractéristiques géométriques suivantes :

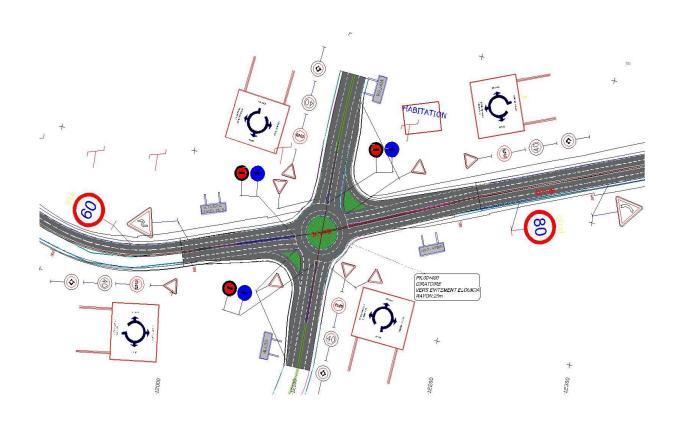
Tableau VII.1. Les caractéristiques géométriques du carrefour.

Géométrie de l'anneau			
Coordonnées du centre	X=	12120.147 m	
	Y=	39070.000 m	
Rayon extérieur		20.000 m	
Rayon intérieur		13.000 m	
Largeur d'anneau		7.000 m	
Surlargeur franchissable		0.000 m	
Distance marquage extérieur		0.250 m	
Distance marquage intérieur		0.250 m	

2. Les îlots séparateurs

Pour la Construction des îlots séparateurs sur les branches des giratoires de rayon **Rg** ≥ **15m.** On adopte les dimensions suivantes

Tableau VII.1. récapitulatif des différents paramètres de construction des


Paramétrage	Notations		Valeurs courantes (enm)
Rayon du giratoire	Rg		20
Hauteur du trianglede construction	Н	H = Rg	20
Base de la tringle de construction	В	B= Rg / 4	5
Départ de l'ilot sur l'axe	D	D= (Rg/50)/2	0.2
Rayon de raccordement	r	R= Rg /50	0.4

3. Condition de raccordement

- Visibilité .
- Insertion des véhicules longs dans le carrefour.

• le carrefour :

carrefour giratoire de la commune El Ouricia à projeter au PK 0+400 (RN09B.RN9)

Figure VII.6. Carrefour giratoire.

Caractéristiques géométriques de l'anneau :

Rayon de giration extérieur Rge (m)	Rayon de giration intérieur Rgi (m)	Largeur de chaussée annulaire (m)
20.00	13.00	7.00

VII.9. CONCLUSION

L'objectif de l'aménagement du carrefour dans un projet permet de garantir la sécurité et la commodité qui spécifie l'endroit de l'intersection reliant :

- > EL OURICIA avec BEJAIA
- > EL OURICIA avec AIN KEBIRA
- ➤ EL OURICIA avec SETIE

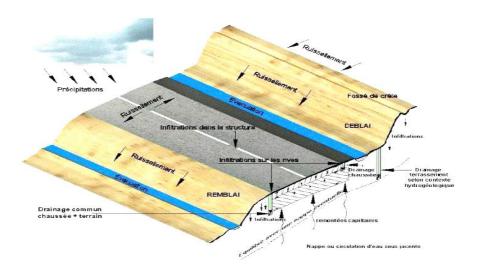
D'une autre part l'aménagement a un but d'esthétique dans ce dédoublement pour obtenir une circulation uniforme.

Carrefour

Remarque:

Le listing du Carrefour est donné par logiciel (covadis10.1), les résultats sont joints en annexe 06.

CHAPITRE VIII ASSAINISSEMENT

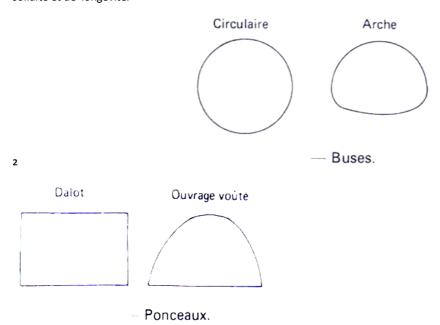

PROMOTION 2020

INTRODUCTION:

Nous avons vu que les eaux ruisselant sur une chassée dont l'accotement est surélevé se rassemblaient sur la rive et s'écoulaient jusqu'aux saignées. L'existence de bordure facilite cet écoulement. Quand la pente de la chaussée est faible (moins de 1%) ou forte (plus de 3%), il et recommandé d'établir un demi caniveau (pavés, béton, briques) de 0.3 a 0.5 m de largeur ,6 a10% de pente traversable. Dans le premier cas, la régularité du fil d'eau maçonné supplée à l'insuffisance de pente ; dans le second, on évite l'érosion de la rive par un courant rapide.

Les saignées conduisant l'eau jusqu'au talus du remblai ou jusqu'à la fosse.

Si l'accotement est dérasé et si la plate-forme n'est pas trop large, les eaux ruissellent uniformément jusqu'à la fosse. Il faut éviter que s'amorcent et se formant sur l'accotement des circuits d'écoulement localisés (ravins) qui faciliteraient l'érosion; c'est une raison de plus pour reprofiler périodiquement et stabiliser si possible les accotements dérases



Dans ce chapitre, on s'attellera sur la détermination du réseau d'assainissement à mettre en œuvre.

Sur ce tracé, la route est traversée par des écoulements naturels importants. De plus, le caractère agricole de cette région et la topographie du terrain, allant d'un relief accidenté à un relief plus vallonné, ce qui conduit à une vitesse des écoulements rapide.

On distingue généralement 5 familles d'ouvrages : les buses circulaires, les dalots*, les buses arches*, les ouvrages à voûte cintrée, et les ouvrages d'art.

Dans la mesure du possible, les produits industrialisés seront à rechercher plutôt que des ouvrages coulés en place plus coûteux. Les ouvrages en béton armé, sous réserve de dispositions constructives soignées, présentent d'excellentes garanties de solidité et de longévité.

Facteurs influençant le choix des ouvrages hydrauliques

Le choix des ouvrages est guidé par le souci permanent de la pérennité de la route, de la sécurité des usagers, du coût d'investissement et des modalités d'entretien ultérieur de l'ouvrage. Les facteurs influençant le choix sont :

• l'importance du débit à évacuer qui fixe la section d'écoulement et le type de l'ouvrage ;

• les caractéristiques hydrauliques de l'ouvrage : coefficient de rugosité (K), coefficient d'entonnement

(Ke) créant une perte de charge à l'entrée, forme de la section d'écoulement ;

- la largeur du lit. Un ouvrage unique adapté au débit à évacuer et à la largeur du lit du cours d'eau est généralement préférable à des ouvrages multiples qui augmentent les pertes de charges et rendent plus difficile le passage des corps flottants ;
- la hauteur disponible entre la cote du projet et le fond du talweg ;
- les charges statiques et dynamiques qui sollicitent l'ouvrage hydraulique ;
- les conditions de fondation des ouvrages ;
- la rapidité et la facilité de mise en œuvre : les produits industrialisés approvisionnés en éléments transportables et montés sur place peuvent constituer une solution intéressante pour réduire les délais d'exécution et dans le cas où l'accès au chantier est difficile ;
- la résistance aux agents chimiques ;
- la résistance au choc : les ouvrages massifs résistent mieux aux chocs et à l'abrasion par le charriage de matériaux solides.

VIII-2- DRAINAGE DES EAUX :

Les méthodes de calcul des débits de ruissellement utilisent généralement un modèle statistique de la relation (pluie- ruissellement " Q = f (I) ". Leur application présente la difficulté d'apprécier les caractéristiques physiques et géographiques du bassin versant temps de parcours; coefficient de ruissellement, ... etc.

VIII-3- OUVRAGE DE DRAINAGE ET D'ASSAINISSEMENT :

Les ouvrages de drainage projetés dans le cadre ce projet $\,$ sont repartis en deux types $\,$.

Les ouvrages de franchissement des écoulements permanents ou transitoires on propose :

Les dalots.

Les passages busés.

Les passages submersibles.

Les passages mixtes.

Les ponts

Les ouvrages de drainage sur la plate forme routière et aux abords, pour collecter les eaux de ruissellement et les évacuer en dehors de l'emprise,

On distingue: - Les fosses trapézoïdales

Les murs de pieds talon

Les dalots:

Ils sont en béton armé et présentent une section rectangulaire ou carrée.

Les dalots sont en générale adoptés pour des débits élevés (dépassent 10m³/s)

Les buses:

Deux types de buses sont couramment utilisés à l'heure actuelle : les buses en béton et les buses en métal.

Si les premières sont fabriquées localement en maints pays, elles sont utilisées exclusivement dans des sections ou l'on dispose d'une épaisseur suffisante de remblais (un minimum de 0,80m de remblai est nécessaire au-dessus de la buse) et peuvent être utilisés avec des hauteurs de remblais élevés.

Les buses en métal ont des diamètres très variables qui peuvent atteindre plusieurs mètres suivent les constructions. Elles doivent faire corps avec le remblai qui doit être parfaitement compacté.la buse en métal nécessite en outre une fondation souple et sera toujours noyée dans le remblai.

Les ponts submersibles :

Ils laissent sous leur tablier un passage suffisant pour permettre l'écoulement d'un certain débit. Lorsque celui-ci est dépassé, le tablier est recouvert par les eaux. Les ouvrages de ce type sont donc surtout employés lorsqu'il existe un débit faible mais non nul pendant une grande partie de l'année, et un débit très élevé, ou de fortes crues pendant une court période.

VIII-4-Données hydrauliques :

Les données pluviométriques nous ont été fournies par le service d'hydrologie de

l'Agence Nationale des Ressources Hydraulique (ANRH).

Les données nécessaires aux calculs sont :

La pluie journalière moyenne P_i = 54mm

Le coefficient de variation de la région considérée $C_v = 0.27$.

L'exposant climatique de la région b = 0.32

L'intensité I= 30mm/h

Les précipitations maximales journalières de fréquence donnée P (%)

Le calcul de la précipitation Pj (%) est obtenu par la formule suivante :

Pj (%) =
$$\frac{Pj}{\sqrt{C_v^2 + 1}}$$
. $e^{u\sqrt{In(C_v^2 + 1)}}$

La pluie de référence pour le calcul de dimensionnement des ouvrages correspond à une durée de pluie t minute et une période de retour de 10 ans, 50 ans, 100 ans. Soit le tableau suivant qui donne les valeurs de variable du gaussien en fonction de la fréquence.

Fréquence	Période de retour (ans)	Variable de GAUSS
50	02	0.00
20	05	0.84
10	10	1.28
02	50	2.05
01	100	2.327

Tableau .VIII.1: variable de gauss.

Remarque:

Les buses seront dimensionnées pour une période de retour 10 ans.

Les ponceaux (dalots) seront dimensionnés pour une période de retour 50 ans.

Les ponts dimensionnées pour une période de retour 100 ans.

XI-5- Calcul hydraulique:

XI-5- 1- Calcul de précipitation :

Pj (%) =
$$\frac{Pj}{\sqrt{C_v^2 + 1}}$$
. $e^{u\sqrt{In(C_v^2 + 1)}}$

Pendant 10 ans

$$u = 1.28$$
 $C_v = 0.27$ $Pj = 54mm$

$$P_{j}(10\%) = \frac{54}{\sqrt{0.27^{2} + 1}} e^{1.28\sqrt{\ln(0.27^{2} + 1)}}$$

$$Pi (10\%) = 67.97 mm.$$

Pendant 50 ans

$$u = 2.05$$
 $C_v = 0.27$ $Pj = 54$

$$P_{j}(2\%) = \frac{54}{\sqrt{0.27^{2} + 1}} e^{2.05\sqrt{\ln(0.27^{2} + 1)}}$$

Pj (02%) = 89.80mm

Pendant 100 ans

$$u = 2.327$$
 $C_V = 0.27$ $Pj = 54$

$$P_{j}(01\%) = \frac{54}{\sqrt{0.27^{2} + 1}} e^{2.327\sqrt{\ln(0.27^{2} + 1)}}$$

Pi (1 %) = 96.65mm.

XI-5- 2- Calcul de l'intensité de l'averse :

L'intensité à l'averse est donnée par la relation suivante :

$$I_t = I. \left(\frac{t_c}{24} \right)^B$$

Avec :

I : l'intensité de l'averse pour une durée de 1h.

$$B = b - 1 = 0.32 - 1 = -0.68$$

$$I = \frac{Pj}{24}$$

Pour Pj (10%) = **67.97mm**

$$I = \frac{67.97}{24} = 2.83$$
mm/h

Pour Pj (02%) = 89.80mm

$$I = \frac{89.80}{24} = 3.74 \text{ mm/h}$$

Pour Pj (01%) = 96.65mm

$$1 = \frac{96.65}{24} = 4.03 \text{ mm/h}$$

XI-5-3- Coefficient de ruissellement (C) :

Le coefficient de ruissellement a été estimé à partir :

- De la pente du bassin versant.
- De l'intensité de pluie.
- De la couverture du bassin versant.
- De la perméabilité du terrain.

Tableau.VIII.2.: coefficients de ruissellemen.

Type de chaussée	С	Valeurs prises
Chaussée revêtement en	0.80 à 0.95	0.95
enrobés		
Accotement : sol	0.15 à 0.40	0.35
légèrement perméable		
Talus	0.10 à 0.30	0.25
Terrain naturel	0.05 à 0.20	0.20

VIII-5- 4-Calculs des débits :

Le débit d'apport est évalué à l'aide de la formule rationnelle suivante:

Qa =K.C.I.A

Avec :

K: coefficient de concentration K = 0.2778.

C: coefficient de ruissellement.

- I : l'intensité de l'averse exprimée mm /h

A: superficie du bassin versant.

Le débit de saturation de l'ouvrage d'assainissement et calculé par la formule de

MANNING STRICKLER: $Q_S = k_{st}$. S. $R_h^{2/3}$. $i^{1/2}$

Avec:

R_h: rayon hydraulique.

i : pente de l'ouvrage d'évacuation.

K_{st}: coefficient de rugosité k_{sr}=30 (fossé en terre).

- R_h = section du profil mouille / périmètre du profil mouille

VIII-6- Dimensionnement des fossés :

Le profil en travers hypothétique de fossés est donné dans la figure ci-dessous avec

- S_m: surface mouillée.
- U : périmètre mouillé.
- R: rayon hydraulique $R = S_m/U$.
- P: pente du talus P = 1/n.

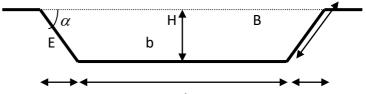


Figure VIII.1: un fosse.

On fixe la base du fossé à (b = 50 cm) et la pente du talus à (1/n = 1/1.5) d'où la possibilité de calcul le rayon hydraulique en fonction de la hauteur h.

VIII-6-1- Calcul de la surface mouillée :

$$S_m = bh + 2 \frac{eh}{2}$$
 $tg \alpha = \frac{h}{e} = \frac{1}{n}$ d'où e = n.h

$$S_m = bh + n.h^2 = h.(b + n.h)$$

$$S_m = h. (b + n. h)$$

Calcul du périmètre mouillé :

$$P_m = b + 2B$$

Avec B =
$$\sqrt{h^2 + e^2}$$
 = $\sqrt{h^2 + n^2 . h^2}$ = h. $\sqrt{1 + n^2}$

$$P_{\rm m} = b + 2 \text{ h. } \sqrt{1 + n^2}$$

Les dimensions du fossé obtenues, en écrivant l'égalité, débit apport Q et dédit de saturation Q.

VIII-6-2- Calcul le rayon hydraulique :

$$R_h = S_m / P_m = \frac{h.(b + n.h)}{b + 2h\sqrt{1 + n^2}}$$

VIII-6-3- Calcul des dimensions des fossés :

Les dimensions des fossés sont obtenues en écrivant l'égalité du débit d'apport et débit d'écoulement au point de saturation.

$$Q_a = Q_s = K.I.C.A = K_{st} \cdot i^{1/2} S_m \cdot R_h^{2/3}$$

D'où
$$Q = F(h)$$
.

La hauteur (h) d'eau dans le fossé correspond au débit d'écoulement au point de saturation. Cette hauteur sera obtenue, en égalisant le débit d'apport au débit de saturation.

 $Q_a = Q_s = F(h)$ et calcul se fera par itération.

$$Q_a = Q_s = K_{st} \cdot i^{1/2} S_m \cdot R_h^{2/3}$$

$$Q_a = Q_s = (K_{st}.i^{1/2}).h. (b + n. h). \left[\frac{h.(b + n.h)}{b + 2h\sqrt{1 + n^2}} \right]^{2/3}$$

VIII-7- Application:

Le débit rapporté par la chaussée, de l'accotement et du talus est pris pour un cas défavorable.

L'intensité à l'averse It:

$$I_{t} = I. \left(\frac{t_{c}}{24} \right)^{B}$$

I = 2.83mm/h pour 10 ans

$$B = b-1 = 0.32 - 1 = -0.68$$

 t_{c} la durée de chute de pluie varient de 10 à 60 minutes si on prends tc =15mn minute= 0.25h

Donc:

$$I_t = I. \left(\frac{t_c}{24} \right)^B = 2.83 \times \left[\frac{0.25}{24} \right]^{-0.68} = 63.06 \text{ mm/h}$$

$I_t = 63.06 \, \text{mm/h}$

La surface de bassin versant : on considère la présence des trois éléments (chaussée, accotement, talus), la section de 100m en calculant le débit rapporté par chaque élément de la route et le débit total. La largeur de talus été prise égale (1m).

Donc:

$$- Q_a = Q_C + Q_A + Q_t$$

$$Q_c = K.I.C_c.A_c$$

$$Q_A = K.I.C_A.A_A$$

$$Q_t = K. I.C_t.A_t$$

Avec:

Q_c: débit rapporté par la chaussée.

Q_A: débit rapporté par l'accotement.

Qt: débit rapporté par le talus.

C_c: coefficient de ruissellement de la chaussée.

C_A: coefficient de ruissellement de l'accotement.

Ct: coefficient de ruissellement du talus.

A_c: surface de la chaussée.

A_{A:} surface de l'accotement.

At: surface du talus.

Calcul de surface :

surface de la chaussée

 $A_c = 7.6 \times 100.10^{-4} = 0,076 \text{ha}$

surface de l'accotement

 $A_A = 1.8 \times 100.10^{-4} = 0,018 \text{ ha}$

- Surface du talus

 $A_t = 20 \times 100.10^{-4} = 0.2 \text{ ha}$ A = 0.294 ha

Calcul des debits :

 $Q_c = 2,778 \times 0,95 \times 63.06 \times 0,076 = 12.64 \times 10^{-3} \text{ m}^3/\text{s}$

 $Q_A=2,778 \times 0,35 \times 63.06 \times 0,018 = 1.10 \times 10^{-3} \text{ m}^3/\text{s}$

 $Q_t = 2,778 \times 0, 25 \times 63.06 \times 0, 2 = 8.75 \times 10^{-3} \text{ m} \frac{3}{\text{s}}$

D'où : $Q_a = Q_A + Q_t + Q_c = 22.49 \times 10^{-3} \text{ m}^3/\text{s}$

On a
$$Q_a$$
 = Q_s = (Kst.i1/2).h. (b + n.h). $\left[-\frac{h.(b+n.h)}{b+2h\sqrt{1+n^2}} \right]^{2/3}$

D'Après le calcul itératif on trouve h = 0.34m

VIII-7-1- Dimensionnement des ouvrages traverses :

Ouvrages d'assainissement :

Les ouvrages d'assainissement utilisés ce sont des aqueducs qui ont pour but d'assurer souterrainement l'écoulement des eaux lorsque leur volume est faible ; si le volume est plus important on construisant alors des ponceaux ou des dalots.

La section transversale des dalots peut avoir diverses formes, dont les plus utilisées sont la forme circulaire et rectangulaire.

Pour assurer l'évacuation des eaux pluviales le projet sera doté de 10 ouvrages d'assainissements (Dalots) :

N°	PK	TAILLE (m)	LONGURUR(m)
1	00+112	1X1.5	20
2	02+228	1.5X1.5	22
3	03+295	1.5X1.5	21
4	04+860	1X1	21
5	04+962	1X1	21

ouvrages d'assainissements (BUSE) :

N°	PK	TAILLE (m)	LONGURUR(m)
1	00+366	Ø1000	20
2	00+806	Ø1000	23
3	00+895	Ø1000	20
4	01+820	Ø1000	20
5	01+236	Ø1000	20
6	01+606	Ø1000	20
7	03+805	Ø1000	20
8	03+282	Ø1000	20
9	05+048	Ø1000	20

Dimensionnement des buses :

Pour dimensionner les buses on prend Qa=Qs

$$Q_s$$
=S K_{st} . $i^{1/2}S_m$. $R_h^{2/3}$

Qa=K.C.I.A

Nous avons:

A=0.2 km²

P= 2%

I (10%) = 2.83mm/h

B = -0, 68

A.N:

$$I_t = I. \left(\frac{t_c}{24} \right)^{b-1}$$

 $t_c = 0.127 imes \sqrt{\frac{A}{P}}$ (Le temps de concentration pour les bassins versant

inférieur a 5 Km²⁾

Q_a = K.C.I.A

 $Q_a = 6.36 \text{m}^3/\text{s}$

$$Q_s=S.K_{ST}.R^{2/3}.I^{1/2}$$

On a:

 S_m : surface mouillée = $\frac{1}{2} \times \pi \times R^2$ (pour une hauteur de remplissage égale à

 0.5Φ)

R_h: rayon hydraulique =R/2

K_{st} =80 (pour les buses)

I : la pente de pose qui vérifié la condition de limitation du vitesse maximale d'écoulement à 4m/s. pour notre cas ; On a I= 2%

A.N

$$Q_s = 80.(R/2)^{2/3}.\frac{\pi}{2}.R^2.(0.02)^{1/2}$$

 $Q_s = Q_a \implies R = 0.60767m = 607.67mm$

Soient des buses de diamètre 1000mm. Longueur de 20

N°	PK	TAILLE (m)	LONGURUR(m)
1	00+366	Ø1000	20
2	00+806	Ø1000	23
3	00+895	Ø1000	20
4	01+820	Ø1000	20
5	01+236	Ø1000	20
6	01+606	Ø1000	20
7	03+805	Ø1000	20
8	03+282	Ø1000	20
9	05+048	Ø1000	20

REMARQUE:

Nous avons choisi des buses à diamètre plus grande pour faciliter l'entretien et le nettoyage des sédiments.

Les ouvrages d'assainissement :

Le système d'assainissement du LA RN9B est constitué essentiellement de :

Réseau de pied de talus en déblai : ce réseau récupère les eaux issues de la chaussée, de l'accotement et du talus. Il est constitué d'un fossé peu profond en béton légèrement armé (voir profil en travers type).

Réseau de crête de talus en déblai : ce réseau se justifie si le terrain naturel constitue par sa pente et son étendu un bassin versant dont l'apport d'eau risque de provoquer l'érosion des talus. Ce réseau est constitué d'un fossé revêtu en béton afin d'éviter les infiltrations dans le talus.

Les passages busés : ce sont des ouvrages permettant le rétablissement des écoulements naturels et le transfert des eaux issues des fossés vers l'exutoire.

PROMOTION 2020

INTRODUCTION:

La signalisation routière joue un rôle important dans la mesure où elle permet à la circulation de se développer dans de très bonnes conditions (vitesse, sécurité).

Elle doit être uniforme, continue et homogène afin de ne pas fatiguer l'attention de l'usager par une utilisation abusive de signaux.

1) L'OBJECTIF DE LA SIGNALISATION :

La signalisation routière a pour objet de :

- Assurer la sécurité de l'usager de la route
- > De faciliter et de rendre plus sûr la circulation routière.
- D'indiquer ou de rappeler diverses prescriptions du code de la route.
- donner des informations relatives à l'usage de la route
- Signaler un danger

2) CRITERES A RESPECTER POUR LES SIGNALISATIONS :

Avant d'entamer la conception de la signalisation de respecter certains critères, afin que celle-ci soit bien vue, lue, et comprise :

- Homogénéité entre la géométrie de la route et la signalisation.
- Respecter les règles d'implantation
- Cohérence entre les signalisations verticales et horizontales.
- Eviter les panneaux publicitaires irréguliers.
- Eviter la multiplication des signaux qui fatiguent l'attention de l'usager

3) CATÉGORIES DE SIGNALISATION:

On distingue:

- La signalisation par panneaux.
- La signalisation par feux
- La signalisation par marquage des chaussées.
- La signalisation par balisage.
- La signalisation par bornage

4) TYPE DE SIGNALISATION:

On distingue deux types de signalisation :

- Signalisation verticale.
- Signalisation horizontale.

« La signalisation prévue dans ce projet est basée sur les normes françaises retenues par l'Arrêté et

L'Instruction interministériels sur la signalisation routière » ainsi que sur les pratiques algériennes

4.1. Signalisation verticale:

La signalisation verticale est désignée par des panneaux, elle sert à transmettre des renseignements sur le trajet empruntés par usagers grâce à son emplacement se forme, sa couleur ou son

type.

Elles peuvent être classées dans quatre classes:

a. Signaux de danger :

Panneaux de forme triangulaire, ils doivent être Placés à 150m en avant de l'obstacle à signaler

(Signalisation avancée).

b. Signaux de position des dangers :

Toujours implantés en pré signalisation, ils sont d'un emploi peu fréquent en milieu urbain

c. Signaux comportant une prescription absolue :

Panneaux de forme circulaire, on trouve :

- L'interdiction.
- · L'obligation.
- La fin de prescription

d. Signaux à simple indication :

Panneaux en général de forme rectangulaire, des fois terminés en pointe de flèche :

- Signaux d'indication.
- Signaux de direction.

- Signaux de localisation.
- Signaux divers.

4.2. Signalisation horizontale

Elle concerne uniquement les marques sur chaussées qui sont employées pour régler la circulation, avertir ou guider les usagers.

Le blanc est la couleur utilisée pour les marquages sur chaussées, et pour certains marquages spéciaux.

La signalisation horizontale se divise en trois types :

a) Marque longitudinal:

≻Lignes continues :

Ces lignes sont utilisées pour indiquer les sections de route où le dépassement est interdit,

notamment parce que la visibilité est insuffisante

▶lignes discontinues :

Ce sont des lignes utilisées pour le marquage, elles se différencient par leur module, c'est-à-dire le rapport de

la longueur des traits à celle de leurs intervalles.

On distingue:

Les lignes axiales ou lignes de délimitation de voies pour lesquelles la longueur des traits est égale au tiers de leurs intervalles.

Les lignes de rive, les lignes de délimitation des voies d'accélération, de décélération ou d'entrecroisement pour lesquelles la longueur des traits est sensiblement égale à celle de leurs intervalles.

Les lignes d'avertissement de lignes continues, les lignes délimitant les bandes d'arrêt d'urgence, par les quelles la longueur des traits est sensiblement triple de celle de leurs intervalles.

Modulation des ligne discontinues :

Elles sont basées sur une longueur parodique de 13 m. leurs caractéristiques sont données par le tableau suivant:

Le tableau ci-après donne les caractéristiques de tous les types de lignes discontinues :

Type de marquage	Type de modulation	Longueur De trait (m)	Intervalle entre 2 traits successifs	Rapport Plein/vide	couleur
Axial	T1	3	10	1/3	Blanc
longitudinal	T'1	1,5	5	1/3	Blanc
	Т3	3	1,33	3	Blanc
	T2	3	3,5	1	Blanc
Rive	T'3	20	6	3	Blanc
	T4	39	13	3	Blanc
transversal	T'2	0,5	0,5	1	Blanc

Tableau IX.1Les caractéristiques des lignes discontinu

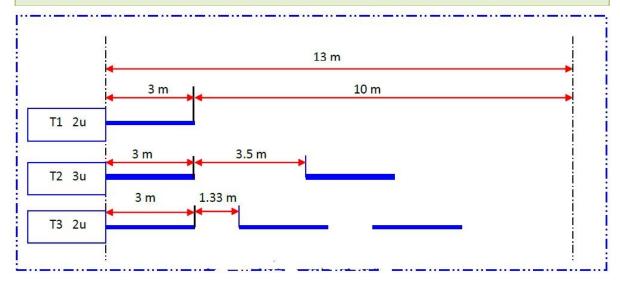


Figure IX.1. Type de modulation référence signalisation routière (art 144).

> Lignes mixtes:

Ce sont des lignes continues doublées par des lignes discontinues du type T1 dans le cas général.

b) Marquages transversales:

≻Lignes transversales continue :

Éventuellement tracées à la limite où les conducteurs devraient marquer un temps

d'arrêt. ➤ Lignes transversales discontinue :

Éventuellement tracées à la limite où les conducteurs devraient céder le passage aux intersections.

C) Autres signalisation:

> Les flèches de rabattement :

Une flèche légèrement incurvée signalant aux usagers qu'ils devaient emprunter la voie située du côté qu'elle indique.

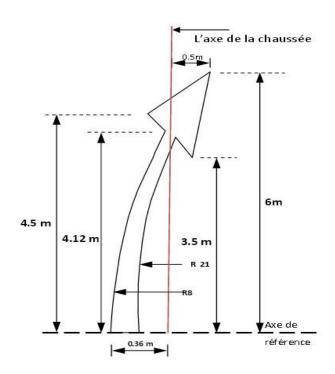


Figure IX.2. Flèche de rabattement

Les flèches de sélection :

Flèches situées au milieu d'une voie signalant aux usagers, notamment à proximité des intersections, qu'ils doivent suivre la direction indiquée.

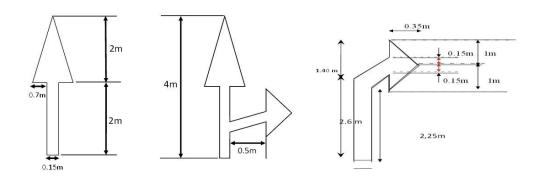


Figure IX.3. Flèche de sélection

❖ Largeur Des Lignes :

La largeur des lignes est définie par rapport à une largeur unité " u" différente selon le type de route :

u = 7,5 cm sur les autoroutes, les routes à

chaussées séparées **u = 6 cm** sur les routes et les

vois urbaines **u = 5 cm** sur toutes les autres routes

Les défirent panneaux utilisés dans notre projet :

2- Signalisation verticale:

La signalisation verticale consiste en la mise en place de panneaux de direction, d'obligation, de potences et portiques

PANNEAU DE PRIORITE

B2 STOP

RICTION

PΑ

B1 CEDEZ LE PASSAGE

60

C5

C11a C11a

PANNEAU DE DIRECTION

PANNEAU DE PRESIGNALISATION

TYPE E5

PANNEAU D'OBLIGATION

TYPE E2

D3 SENS DE GIRATION

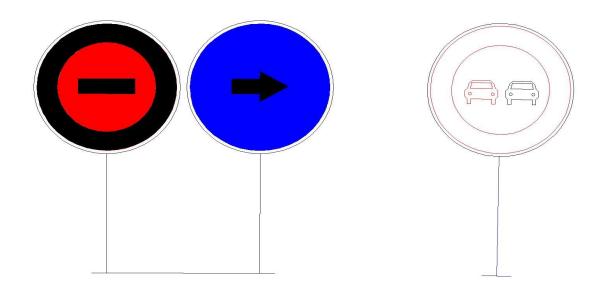


Figure IX.4. Défirent panneaux utilisés dans notre projet

IX.ii.ECLAIRAGE:

IX.ii.1. INTRODUCTION:

L'éclairage public et la signalisation nocturne des routes jouent un rôle indéniable en matière de sécurité. Leurs buts est de permettre aux usagers de la voie circuler la nuit avec une sécurité et confort aussi élevé que possible.

IX.ii.2. CATEGORIES D'ECLAIRAGE:

On distingue quatre catégories d'éclairage public :

- Eclairage général d'une route ou une autoroute, catégorie A.
- Eclairage urbain (voirie artérielle et de distribution), catégorie B.
- Eclairage des voies de cercle, catégorie C.

Eclairage d'un point singulier (carrefour, virage ...) situé sur un itinéraire non éclairé, catégorie D.

IX.ii.3. PARAMETRES DE L'IMPLANTATION DES LUMINAIRES :

- L'espacement (e) entre luminaires : qui varie en fonction de type de voie.
- ➤ La hauteur (h) du luminaire : elle est généralement de l'ordre de 8 à 10 m et par fois 12 m pour les grandes longueurs de chaussées.
- ➤ La largeur (I) de la chaussée.
- Le porte-à-faux (p) du foyer par rapport au support.
- L'inclinaison, ou non, du foyer lumineux, et son surplomb (s) par rapport au bord de la chaussée

Pour le système d'éclairage adopté à notre projet, et pour des raisons économiques uniquement certain points particuliers traité par un éclairage composé par des lampadaires disposé selon un espacement des supports variant entre 20 à 30 m de façon à avoir un niveau d'éclairage équilibré pour les deux sens de notre route.

• Pour la pénétrante :

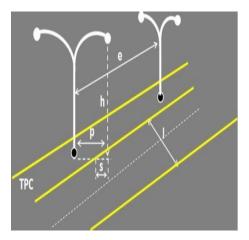


Figure IX.5. éclairage composé

• Pour les bretelles de l'échagenur :

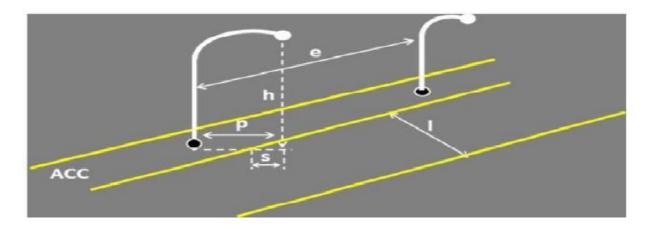


Figure IX.6. éclairage simple.

CHAPITRE X DEVIS QUANTITATIF ET ESTIMATIF

PROMOTION 2020

CHAPITRE X DEVIS

Devis estimatif et quantitatif

N°	Désignation	Unité	Quantité	Prix Unitaire	Montant
				Dinars H.T	Dinars H.T
1	Préparation de terrain				
1.1	Abattage des arbres de di ametre supérieur a 50 cm	Unité	0,00	1000,00	0,00
				TOTAL 01	0,00
2	Travaux de terrassements				
2,1	Décapage de la terre végétale sur une épaisseur de 30 cm y compris la mise en depot y compris scarification de la chaussée existant	M ³	30661	200.00	6132200.00
2,2	Déblais en terrain meuble mis en dépôt	M^3	165688	100.00	16568800.00
2,3	Remblais En Provenance D'emprunt et TVO	M^3	4671.5	550.00	2569325.00
				TOTAL 02	25270325.00
3	Chaussée				
3.1	Couche de Forme (30cm T.V.O)	M ³	27773.57	550.00	15275463.5
3.2	Fondation en GC	M ³	12430.44	1080.00	13424875.2
3.3	Base en (GB) (gama=2,2)	Т	4711.72	4500.00	21202740
3.4	Revêtement en (BB) (gama=2,4)	T	2300.06	5500.00	12650330
3.5	couche d'imprégnation	M²	71039.73	80.00	5683178.4
3.6	couche d'accrochage	M ²	16825.2	150.00	2523780
				TOTAL 03	70760367.1
4	Bordure	MI	2667	750	2000250
	Glissière de sécurité	MI	50	4000	200000
	Séparateur en béton double	MI	3099	6320	19585680
	Ouvrage d'art	M²	405	250000	101250000

CHAPITRE X DEVIS

				TOTAL 04	123035930
5	travaux supplémentaires				
5.1	assainissement	F	4%	7950000	
5.2	Signalisation	F	5%	2807866.6	56
5.5	installation de chantier	F	4%	39469395	
				TOTAL5	50227261.66
				TOTAL(1)=2692	93883.8
				TVA 19%(2)=51:	165837.92
				TOTAL TTC= (1)	+ (2)=320459721.7

CONCLUSION GENERALE

PROMATION 2020

CONCLUSION GENERALE

CONCLUSION GENERALE:

Dans notre approche, nous

avons essayé de respecter toutes les restrictions et normes actuelles que nous ne pouvons ignorer et de prendre en compte le confort et la sécurité des utilisateurs ainsi que l'économie et l'environnement. Ce projet à la fin de l'étude a été pour nous l'occasion d'appliquer les connaissances théoriques acquises au cours de la formation afin de réduire la taille de la route 09B.

Cette étude APD nous a permis de rechercher des solutions à tous les problèmes techniques pouvant survenir lors de l'étude d'un projet routier en groupe comme Sétif, où un tronçon routier nous a été attribué.

Ce fut l'occasion pour nous, d'une part, de profiter de l'expérience des gens sur le terrain, et d'autre part, d'apprendre une méthodologie rationnelle que nous utilisons pour développer un projet de travaux publics.

Plus une opportunité pour nous d'approfondir nos connaissances et une meilleure maîtrise de l'outil informatique dans ce cas AUTO CAD + COVADIS.

REFERANCES BIB LIOGRAPHIE

1.REGLEMENT:

- > B40 : B40 (normes technique d'aménagements des routes) / octobre 1977.
- > ARP : Aménagement de routes principales

2.DOCUMENTS:

- Catalogue de dimensionnement du corps des chaussées neuves
 (C.T.T.P)>(fasicules1.2.3)/novembre 2001.
- Les Cours de Routes (**Dr.** Remadena Mohamed Sadek et **Dr**. Khelifa Tarek)
- ➤ APD de RN **09B** sur **15** KM ➤ Rapport géotechnique de RN **09B**

3.OUTILS INFORMATIQUES:

- ➤ Logiciel Covadis(10.1) ➤ Microsoft EXCEL
- ➤ Autocad 2008 ➤ Microsoft Word

4.AUTRES:

- Site internet (www.google.com / www.fr.wikipidea.org / www.routes.wikia.com)
 - : Généralités sur la Wilaya de setif. Google Earth.
- ➤ MEMOIRE DE MASTER 2 ANNEE, OPTION : VOIES ET OUVRAGE D'ART,

 THEME(ÉTUDE EN APD DEDÉDOUBLEMENT DE LA RN 46 SUR 6 KM

 ENTRE Khaled Muaadh Abdo Ghaleb)
- ➤ MEMOIRE DE MASTER 2 ANNEE, OPTION : VOIES ET OUVRAGE D'ART, THEME (ETUDE DE DEDOUBLEMENT DE LA RN 03 sur 8 kM ENTRE LAOUAR Ramzi
- ➤ MEMOIRE DE MASTER 2 ANNEE, OPTION : VOIES ET OUVRAGE D'ART, THEME(DÉDOUBLEMENT DE LA ROUTE NATIONALE RN92 ENTRE SAIDA ET EL-HESSASNA SUR 18 KM DU PK 91.000 AU PK 109.000 ÉTUDE

DU LOT N2 SUR 5Km DU PK 91+225.000 AU 96+225.000

> Anciens mémoires d'setif

> Anciens thèses ENT

Axe En Plan

	Elts C	aractéristiques		Po	ints de Contac	cts
Nom		Paramètres	Longueur	Abscisse	X	Υ
Droite 1	Gisement	93.9578 g	36.731	0.000	11716.830	39073.550
Droite 2	Gisement	107.2990 g	53.321	36.731	11753.396	39077.031
Droite 3	Gisement	118.9157 g	35.895	90.052	11806.367	39070.931
Droite 4	Gisement	134.1848 g	15.073	125.947	11840.689	39060.422
Droite 5	Gisement	130.4900 g	34.608	141.020	11853.641	39052.711
Droite 6	Gisement	117.6466 g	52.836	175.628	11884.355	39036.762
Droite 7	Gisement	95.9372 g	30.779	228.464	11935.174	39022.304
Droite 8	Gisement	82.1827 g	49.744	259.243	11965.890	39024.266
Droite 9	Gisement	79.3904 g	58.901	308.987	12013.699	39038.007
Droite 10	Gisement	78.0861 g	62.026	367.888	12069.540	39056.744
Droite 11	Gisement	78.7594 g	106.689	429.914	12127.927	39077.676
Droite 12	Gisement	78.6508 g	71.040	536.603	12228.733	39112.616
Droite 13	Gisement	78.8188 g	45.913	607.642	12295.815	39135.995
Droite 14	Gisement	80.1833 g	54.892	653.555	12339.210	39150.990
Droite 15	Gisement	88.5476 g	70.515	708.447	12391.464	39167.803
Droite 16	Gisement	96.1507 g	29.675	778.962	12460.841	39180.419
Droite 17	Gisement	100.0793 g	36.073	808.637	12490.462	39182.213
Droite 18	Gisement	101.4964 g	49.390	844.710	12526.535	39182.168
Droite 19	Gisement	100.7655 g	39.464	894.100	12575.911	39181.007
Droite 20	Gisement	101.1784 g	69.846	933.564	12615.372	39180.532
Droite 21	Gisement	100.4247 g	18.202	1003.410	12685.206	39179.240
Droite 22	Gisement	101.3745 g	27.871	1021.612	12703.408	39179.118
Droite 23	Gisement	99.0239 g	50.797	1049.484	12731.273	39178.516
Droite 24	Gisement	86.4087 g	39.113	1100.281	12782.064	39179.295
Droite 25	Gisement	80.7329 g	53.813	1139.394	12820.289	39187.582
Droite 26	Gisement	83.7591 g	43.392	1193.206	12871.656	39203.621
Droite 27	Gisement	102.7113 g	37.778	1236.598	12913.643	39214.571
Droite 28	Gisement	128.0759 g	28.883	1274.376	12951.387	39212.963
Droite 29	Gisement	133.8076 g	32.151	1303.259	12977.506	39200.634
Droite 30	Gisement	133.0922 g	49.141	1335.410	13005.229	39184.351
Droite 31	Gisement	106.3149 g	44.348	1384.551	13047.880	39159.942
Droite 32	Gisement	82.1904 g	11.482	1428.899	13092.010	39155.550
Droite 33	Gisement	61.9500 g	31.157	1440.381	13103.045	39158.720
Droite 34	Gisement	44.1990 g	36.762	1471.538	13128.801	39176.254
Droite 35	Gisement	71.0486 g	58.859	1508.301	13152.323	39204.506
Droite 36	Gisement	83.6445 g	41.534	1567.159	13205.199	39230.360
Droite 37	Gisement	96.4048 g	39.640	1608.693	13245.370	39240.914
Droite 38	Gisement	110.5119 g	41.973	1648.333	13284.947	39243.151
Droite 39	Gisement	110.0548 g	86.432	1690.306	13326.348	39236.252
Droite 40	Gisement	104.1094 g	60.417	1776.737	13411.704	39222.658
Droite 41	Gisement	97.0192 g	56.041	1837.155	13471.996	39218.760
Droite 42	Gisement	93.5136 g	60.219	1893.196	13527.975	39221.383
Droite 43	Gisement	93.5837 g	67.544	1953.415	13587.882	39227.508
Droite 44	Gisement	93.4168 g	54.748	2020.959	13655.083	39234.304
Droite 45	Gisement	93.3744 g	52.178	2075.706	13709.538	39239.956
Droite 46	Gisement	89.1768 g	54.106	2127.884	13761.434	39245.376
Droite 47	Gisement	84.8773 g	58.477	2181.990	13814.760	39254.531
Droite 48	Gisement	83.0951 g	53.864	2240.468	13871.595	39268.291
Droite 49	Gisement	80.0204 g	35.782	2294.332	13923.571	39282.427
Droite 50	Gisement	76.8946 g	70.147	2330.114	13957.606	39293.473
Droite 51	Gisement	74.6055 g	64.217	2400.260	14023.183	39318.377
Droite 52	Gisement	80.3880 g	35.900	2464.477	14082.358	39343.319
Droite 53	Gisement	79.0301 g	57.273	2500.377	14116.567	39354.204
Droite 54	Gisement	77.2138 g	41.131	2557.649	14170.761	39372.730
Droite 55	Gisement	76.2687 g	59.324	2598.780	14209.285	39387.140
Droite 56	Gisement	76.2544 g	50.335	2658.105	14264.535	39408.745

	Elts C	aractéristiques		Po	ints de Contac	cts
Nom	F	Paramètres	Longueur	Abscisse	X	Υ
Droite 57	Gisement	74.1982 g	84.311	2708.440	14311.409	39427.088
Droite 58	Gisement	73.0993 g	52.570	2792.751	14388.890	39460.331
Droite 59	Gisement	72.3135 g	97.563	2845.321	14436.836	39481.889
Droite 60	Gisement	77.8807 g	34.093	2942.884	14525.318	39522.995
Droite 61	Gisement	91.3359 g	80.463	2976.977	14557.374	39534.603
Droite 62	Gisement	90.2228 g	64.181	3057.441	14637.093	39545.520
Droite 63	Gisement	64.2638 g	39.814	3121.621	14700.518	39555.338
Droite 64	Gisement	51.0249 g	39.340	3161.435	14734.222	39576.532
Droite 65	Gisement	50.2138 g	63.568	3200.775	14762.484	39603.898
Droite 66	Gisement	69.1793 g	65.813	3264.343	14807.584	39648.696
Droite 67	Gisement	94.7240 g	53.695	3330.156	14865.834	39679.328
Droite 68	Gisement	107.5442 g	53.382	3383.851	14919.344	39683.773
Droite 69	Gisement	113.1351 g	59.051	3437.233	14972.352	39677.462
Droite 70	Gisement	114.9372 g	47.981	3496.284	15030.151	39665.364
Droite 71	Gisement	113.4639 g	57.016	3544.265	15076.817	39654.210
Droite 72	Gisement	107.4771 g	41.319	3601.281	15132.562	39642.241
Droite 73	Gisement	85.0668 g	41.214	3642.599	15173.596	39637.399
Droite 74	Gisement	77.4846 g	39.926	3683.813	15213.681	39646.978
Droite 75	Gisement	76.7858 g	49.517	3723.739	15251.136	39660.806
Droite 76	Gisement	79.2006 g	55.749	3773.256	15297.397	39678.465
Droite 77	Gisement	90.2158 g	44.757	3829.005	15350.198	39696.357
Droite 78	Gisement	100.3784 g	39.586	3873.762	15394.427	39703.209
Droite 79	Gisement	113.9164 g	50.428	3913.348	15434.012	39702.973
Droite 80	Gisement	122.0116 g	52.385	3963.777	15483.240	39692.037
Droite 81	Gisement	125.0993 g	51.576	4016.162	15532.525	39674.284
Droite 82	Gisement	122.4153 g	43.695	4067.738	15580.144	39654.472
Droite 83	Gisement	127.3051 g	64.554	4111.432	15621.158	39639.403
Droite 84	Gisement	140.8097 g	55.947	4175.987	15679.865	39612.556
Droite 85	Gisement	145.5511 g	46.167	4231.934	15724.706	39579.099
Droite 86	Gisement	144.4682 g	45.498	4278.101	15759.550	39548.813
Droite 87	Gisement	143.5234 g	48.225	4323.599	15794.393	39519.554
Droite 88	Gisement	143.8587 g	54.647	4371.823	15831.780	39489.094
Droite 89	Gisement	135.3890 g	102.643	4426.470	15873.963	39454.354
Droite 90	Gisement	129.0583 g	51.361	4529.113	15961.151	39400.189
Droite 91	Gisement	129.1347 g	39.993	4580.474	16007.254	39377.551
Droite 92	Gisement	125.2809 g	103.410	4620.467	16043.131	39359.881
Droite 93	Gisement	116.0634 g	38.372	4723.876	16138.494	39319.887
Droite 94	Gisement	105.9580 g	41.530	4762.248	16175.651	39310.307
Droite 95	Gisement	88.0589 g	12.034	4803.778	16216.999	39306.426
Droite 96	Gisement	69.6635 g	44.250	4815.812	16228.822	39308.670
Droite 97	Gisement	65.5407 g	49.814	4860.062	16268.142	39328.967
Droite 98	Gisement	64.6526 g	61.112	4909.876	16310.835	39354.634
Droite 99	Gisement	62.7905 g	42.498	4970.988	16362.766	39386.848
Droite 100	Gisement	62.8007 g	20.443	5013.485	16398.209	39410.297
Droite 101	Gisement	73.4337 g	65.323	5033.928	16415.260	39421.574
Droite 102	Gisement	93.3437 g	80.905	5099.251	16474.977	39448.049
Droite 103	Gisement	95.6701 g	45.596	5180.156	16555.440	39456.493
Droite 104	Gisement	103.6644 g	41.309	5225.752	16600.931	39459.592
		• .		5267.060	16642.171	39457.215
		Longueur totale de	e l'axe 5267.0	60 mètre(s)		

Axe EN Long

	Elts Caract	éristiques		Points de	Contacts				
Nom	Pente /	Rayon	Longueur	Abscisse	Altitude				
Pente 1	Pente	1.99 %	1714.063	0.000	939.438				
Parabole 1	Pente	1.99 %	251.873	1714.063	973.469				
	Rayon	-10000.000 m							
	Sommet Absc.	1912.601 m							
	Sommet Alt.	975.440 m							
	Pente	-0.53 %							
Pente 2	Pente	-0.53 %	1323.321	1965.937	975.298				
Parabole 2	Pente	-0.53 %	128.892	3289.258	968.240				
	Rayon	10000.000 m							
	Sommet Absc.	3342.593 m							
	Sommet Alt.	968.097 m							
	Pente	0.76 %							
Pente 3	Pente	0.76 %	1848.911	3418.149	968.383				
	5267.060 982.3								
	Longueu	ır totale de l'ax	e 5267.060 m	ètre(s)					

Axe travers

Num.	Abscisse	Axe Plan	Axe Long	Z Tn	Z Projet	Gisement	Х	Y	Dév	ore
INUITI.	Abscisse	AXCTIAII	Axe Long	2 111	ZTTOJEL	Oisement	^	•	Gauche	Droite
P1	0.000	Droite 1	Pente 1	936.370	939.438	193.958	11716.830	39073.550	2.50	-2.50
P2	20.000	Droite 1	Pente 1	935.779	939.836	193.958	11736.740	39075.445	2.50	-2.50
P3	40.000	Droite 2	Pente 1	933.502	940.233	207.299	11756.644	39076.657	2.50	-2.50
P4	60.000	Droite 2	Pente 1	933.182	940.630	207.299	11776.512	39074.369	2.50	-2.50
P5	80.000	Droite 2	Pente 1	931.035	941.027	207.299	11796.381	39072.081	2.50	-2.50
P6	100.000	Droite 3	Pente 1	928.692	941.424	218.916	11815.879	39068.018	2.50	-2.50
P7	120.000	Droite 3	Pente 1	927.594	941.821	218.916	11835.003	39062.163	2.50	-2.50
P8	140.000	Droite 4	Pente 1	926.893	942.218	234.185	11852.764	39053.233	2.50	-2.50
P9	160.000	Droite 5	Pente 1	926.477	942.615	230.490	11870.485	39043.964	2.50	-2.50
P10	180.000	Droite 6	Pente 1	926.303	943.012	217.647	11888.560	39035.566	2.50	-2.50
P11	200.000	Droite 6	Pente 1	927.022	943.409	217.647	11907.796	39030.093	2.50	-2.50
P12	220.000	Droite 6	Pente 1	927.633	943.806	217.647	11927.033	39024.620	2.50	-2.50
P13	240.000	Droite 7	Pente 1	928.468	944.203	195.937	11946.686	39023.039	2.50	-2.50
P14	260.000	Droite 8	Pente 1	929.813	944.600	182.183	11966.618	39024.476	2.50	-2.50
P15	280.000	Droite 8	Pente 1	931.360	944.998	182.183	11985.840	39030.000	2.50	-2.50
P16	300.000	Droite 8	Pente 1	932.863	945.395	182.183	12005.061	39035.525	2.50	-2.50
P17	320.000	Droite 9	Pente 1	932.524	945.792	179.390	12003.001	39033.523	2.50	-2.50
P18	340.000	Droite 9	Pente 1	933.738	946.189	179.390	12024.140	39047.873	2.50	-2.50
P19	360.000	Droite 9	Pente 1	933.206	946.586	179.390	12043.101	39054.235	2.50	-2.50
P20	380.000	Droite 10	Pente 1	933.107	946.983	178.086	12080.941	39060.832	2.50	-2.50
P21	400.000	Droite 10	Pente 1	933.641	947.380	178.086	12099.768	39067.581	2.50	-2.50
P22	420.000	Droite 10	Pente 1	934.167	947.777	178.086	12118.595	39074.330	2.50	-2.50
P23	440.000	Droite 11	Pente 1	935.014	948.174	178.759	12137.457	39080.979	2.50	-2.50
P24	460.000	Droite 11	Pente 1	936.119	948.571	178.759	12156.354	39080.979	2.50	-2.50
P25	480.000	Droite 11	Pente 1	937.225	948.968	178.759	12175.251	39094.079	2.50	-2.50
P26	500.000	Droite 11	Pente 1	938.216	949.365	178.759	12194.148	39100.629	2.50	-2.50
P27	520.000	Droite 11	Pente 1	939.112	949.762	178.759	12213.046	39107.178	2.50	-2.50
P28	540.000	Droite 12	Pente 1	939.660	950.159	178.651	12231.941	39113.734	2.50	-2.50
P29	560.000	Droite 12	Pente 1	940.624	950.557	178.651	12250.827	39120.316	2.50	-2.50
P30	580.000	Droite 12	Pente 1	941.523	950.954	178.651	12269.713	39126.898	2.50	-2.50
P31	600.000	Droite 12	Pente 1	942.232	951.351	178.651	12288.598	39133.480	2.50	-2.50
P32	620.000	Droite 13	Pente 1	942.837	951.748	178.819	12307.495	39140.031	2.50	-2.50
P33	640.000	Droite 13	Pente 1	944.554	952.145	178.819	12326.398	39146.563	2.50	-2.50
P34	660.000	Droite 13	Pente 1	944.053	952.542	180.183	12325.395	39152.964	2.50	-2.50
P35	680.000	Droite 14	Pente 1	944.882	952.939	180.183	12364.384	39159.090	2.50	-2.50
P36	700.000	Droite 14	Pente 1	945.847	953.336	180.183	12383.423	39165.215	2.50	-2.50
P37	720.000	Droite 15	Pente 1	945.528	953.733	188.548	12402.830	39169.870	2.50	-2.50
P38	740.000	Droite 15	Pente 1	946.861	954.130	188.548	12422.508	39173.448	2.50	-2.50
P39	760.000	Droite 15	Pente 1	945.839	954.527	188.548	12442.185	39177.027	2.50	-2.50
P40	780.000	Droite 16	Pente 1	943.660	954.924	196.151	12461.877	39180.482	2.50	-2.50
P41	800.000		Pente 1	943.134	955.321	196.151	12481.840	39181.691	2.50	-2.50
P42	820.000	Droite 17	Pente 1	942.767	955.719	200.079	12501.825	39182.198	2.50	-2.50
P43	840.000	Droite 17	Pente 1	942.774	956.116	200.079	12521.825	39182.174	2.50	-2.50
P44	860.000	Droite 18	Pente 1	946.469	956.513	200.079	12521.823	39181.808	2.50	-2.50
P45	880.000	Droite 18	Pente 1	944.393	956.910	201.496	12561.815	39181.338	2.50	-2.50
P46	900.000	Droite 19	Pente 1	944.057	957.307	200.766	12581.811	39180.936	2.50	-2.50
P47	920.000	Droite 19	Pente 1	946.320	957.704	200.766	12601.809	39180.930	2.50	-2.50
P48	940.000	Droite 19	Pente 1	942.791	958.101	200.766	12621.807	39180.413	2.50	-2.50
P49	960.000	Droite 20	Pente 1	942.791	958.498	201.178	12641.804	39180.413	2.50	-2.50
P50	980.000	Droite 20	Pente 1	942.057	958.895	201.178	12661.800	39179.673	2.50	-2.50
P50	1000.000	Droite 20	Pente 1	941.945	959.292	201.178	12681.797	39179.303	2.50	-2.50
P52	1020.000	Droite 20	Pente 1	941.541	959.292	201.176	12701.796	39179.303	2.50	-2.50
P53	1040.000	Droite 21	Pente 1	941.595	960.086	200.423	12701.790	39179.129	2.50	-2.50
P54	1040.000	Droite 23	Pente 1	943.840	960.483	199.024	12741.788	39178.678	2.50	-2.50
P55	1080.000	Droite 23	Pente 1	945.922	960.483	199.024	12741.786	39178.984	2.50	-2.50
P56	1100.000	Droite 23	Pente 1	943.176	961.278	199.024	12781.783	39179.291	2.50	-2.50
P57	1120.000	Droite 23	Pente 1	943.176	961.675	186.409	12801.763	39183.473	2.50	-2.50
P57	1140.000	Droite 25	Pente 1	943.159	962.072	180.733	12820.868	39183.473	2.50	-2.50
P58		Droite 25				1			2.50	
P59	1160.000	DIGITE 72	Pente 1	946.605	962.469	180.733	12839.959	39193.724	2.50	-2.50

Num.	Abscisse	Axe Plan	Axe Long	Z Tn	Z Projet	Gisement	X	Υ	Dév	vers .
									Gauche	Droite
P60	1180.000	Droite 25	Pente 1	946.877	962.866	180.733	12859.050	39199.685	2.50	-2.50
P61	1200.000	Droite 26	Pente 1	945.492	963.263	183.759	12878.230	39205.335	2.50	-2.50
P62	1220.000	Droite 26	Pente 1	946.431	963.660	183.759	12897.582	39210.382	2.50	-2.50
P63	1240.000	Droite 27	Pente 1	946.396	964.057	202.711	12917.042	39214.426	2.50	-2.50
P64	1260.000	Droite 27	Pente 1	946.992	964.454	202.711	12937.024	39213.575	2.50	-2.50
P65	1280.000	Droite 28	Pente 1	948.830	964.851	228.076	12956.473	39210.562	2.50	-2.50
P66	1300.000 1320.000	Droite 28 Droite 29	Pente 1	949.826	965.248	228.076	12974.559	39202.025	2.50	-2.50
P67	1340.000		Pente 1	949.628	965.645	233.808	12991.942	39192.155	2.50 2.50	-2.50
P68 P69	1340.000	Droite 30 Droite 30	Pente 1 Pente 1	951.584 953.444	966.043 966.440	233.092 233.092	13009.213 13026.571	39182.071 39172.137	2.50	-2.50 -2.50
P70	1380.000	Droite 30	Pente 1	953.376	966.837	233.092	13043.930	39162.203	2.50	-2.50
P71	1400.000	Droite 31	Pente 1	956.513	967.234	206.315	13063.253	39158.412	2.50	-2.50
P72	1420.000	Droite 31	Pente 1	960.218	967.631	206.315	13083.154	39156.431	2.50	-2.50
P73	1440.000	Droite 32	Pente 1	956.332	968.028	182.190	13102.679	39158.615	2.50	-2.50
P74	1460.000	Droite 33	Pente 1	958.564	968.425	161.950	13119.263	39169.761	2.50	-2.50
P75	1480.000	Droite 34	Pente 1	962.301	968.822	144.199	13134.215	39182.757	2.50	-2.50
P76	1500.000	Droite 34	Pente 1	961.707	969.219	144.199	13147.012	39198.127	2.50	-2.50
P77	1520.000	Droite 35	Pente 1	962.222	969.616	171.049	13162.833	39209.645	2.50	-2.50
P78	1540.000	Droite 35	Pente 1	963.271	970.013	171.049	13180.800	39218.430	2.50	-2.50
P79	1560.000	Droite 35	Pente 1	964.054	970.410	171.049	13198.767	39227.215	2.50	-2.50
P80	1580.000	Droite 36	Pente 1	965.100	970.807	183.645	13217.618	39233.623	2.50	-2.50
P81	1600.000	Droite 36	Pente 1	965.395	971.204	183.645	13236.962	39238.705	2.50	-2.50
P82	1620.000	Droite 37	Pente 1	965.612	971.602	196.405	13256.659	39241.552	2.50	-2.50
P83	1640.000	Droite 37	Pente 1	965.930	971.999	196.405	13276.627	39242.681	2.50	-2.50
P84	1660.000	Droite 38	Pente 1	966.848	972.396	210.512	13296.455	39241.233	2.50	-2.50
P85	1680.000	Droite 38	Pente 1	967.412	972.793	210.512	13316.183	39237.946	2.50	-2.50
P86	1700.000	Droite 39	Pente 1	968.224	973.190	210.055	13335.922	39234.727	2.50	-2.50
P87	1720.000	Droite 39	Parabole 1	969.126	973.585	210.055	13355.673	39231.581	2.50	-2.50
P88	1740.000	Droite 39	Parabole 1	970.029	973.950	210.055	13375.424	39228.436	2.50	-2.50
P89	1760.000	Droite 39	Parabole 1	970.932	974.276	210.055	13395.175	39225.290	2.50	-2.50
P90	1780.000	Droite 40	Parabole 1	972.606	974.561	204.109	13414.960	39222.447	2.50	-2.50
P91	1800.000	Droite 40	Parabole 1	973.529	974.806	204.109	13434.918	39221.157	2.50	-2.50
P92	1820.000	Droite 40	Parabole 1	974.437	975.011	204.109	13454.877	39219.867	2.50	-2.50
P93	1840.000	Droite 41	Parabole 1	974.325	975.176	197.019	13474.838	39218.893	2.50	-2.50
P94 P95	1860.000 1880.000	Droite 41 Droite 41	Parabole 1	974.468 974.740	975.302 975.387	197.019 197.019	13494.816 13514.794	39219.830 39220.766	2.50 2.50	-2.50 -2.50
P95	1900.000	Droite 41	Parabole 1 Parabole 1	974.740	975.432	197.019	13514.794	39222.075	2.50	-2.50 -2.50
P97	1920.000	Droite 42	Parabole 1	974.532	975.437	193.514	13554.641	39224.110	2.50	-2.50
P98	1940.000	Droite 42	Parabole 1	974.237	975.402	193.514	13574.537	39226.144	2.50	-2.50
P99	1960.000	Droite 43	Parabole 1	974.064	975.328	193.584	13594.434	39228.171	2.50	-2.50
P100	1980.000	Droite 43	Pente 2	974.013	975.223	193.584	13614.332	39230.183	2.50	-2.50
P101	2000.000	Droite 43	Pente 2	973.963	975.116	193.584	13634.231	39232.196	2.50	-2.50
P102	2020.000		Pente 2	973.916	975.009	193.584	13654.129	39234.208	2.50	-2.50
P103		Droite 44	Pente 2	973.959	974.903	193.417	13674.023	39236.270	2.50	-2.50
P104	2060.000		Pente 2	973.999	974.796	193.417	13693.916	39238.334	2.50	-2.50
P105	2080.000		Pente 2	973.537	974.689	193.374	13713.809	39240.402	2.50	-2.50
P106	2100.000		Pente 2	972.657	974.583	193.374	13733.701	39242.479	2.50	-2.50
P107	2120.000		Pente 2	971.776	974.476	193.374	13753.592	39244.557	2.50	-2.50
P108	2140.000		Pente 2	971.248	974.369	189.177	13773.375	39247.426	2.50	-2.50
P109	2160.000	Droite 46	Pente 2	970.962	974.263	189.177	13793.087	39250.810	2.50	-2.50
P110	2180.000		Pente 2	970.235	974.156	189.177	13812.798	39254.194	2.50	-2.50
P111	2200.000		Pente 2	967.893	974.049	184.877	13832.264	39258.769	2.50	-2.50
P112	2220.000		Pente 2	967.019	973.943	184.877	13851.702	39263.475	2.50	-2.50
P113	2240.000	Droite 47	Pente 2	966.161	973.836	184.877	13871.141	39268.181	2.50	-2.50
P114	2260.000		Pente 2	965.547	973.729	183.095	13890.443	39273.417	2.50	-2.50
P115	2280.000		Pente 2	964.916	973.623	183.095	13909.742	39278.666	2.50	-2.50
P116	2300.000		Pente 2	964.538	973.516	180.020	13928.963	39284.177	2.50	-2.50
P117	2320.000		Pente 2	964.543	973.409	180.020	13947.986	39290.351	2.50	-2.50
P118	2340.000		Pente 2	964.852	973.303	176.895	13966.848	39296.983	2.50	-2.50
P119	2360.000	Droite 50	Pente 2	965.020	973.196	176.895	13985.545	39304.084	2.50	-2.50
P120	2380.000		Pente 2	965.189	973.089	176.895	14004.242	39311.184	2.50	-2.50
P121	2400.000		Pente 2	965.652	972.983	176.895	14022.939	39318.285	2.50	-2.50
P122	2420.000	Droite 51	Pente 2	966.349	972.876	174.605	14041.373	39326.044	2.50	-2.50

Num.	Abscisse	Axe Plan	Axe Long	Z Tn	Z Projet	Gisement	Х	Υ	Dév	rers
					,				Gauche	Droite
P123	2440.000	Droite 51	Pente 2	967.074	972.769	174.605	14059.802	39333.812	2.50	-2.50
P124	2460.000	Droite 51	Pente 2	968.030	972.663	174.605	14078.232	39341.580	2.50	-2.50
P125	2480.000	Droite 52	Pente 2	969.404	972.556	180.388	14097.150	39348.026	2.50	-2.50
P126	2500.000	Droite 52	Pente 2	969.317	972.449	180.388	14116.208	39354.090	2.50	-2.50
P127	2520.000	Droite 53	Pente 2	970.103	972.343	179.030	14135.136	39360.552	2.50	-2.50
P128	2540.000	Droite 53	Pente 2	971.245	972.236	179.030	14154.060	39367.021	2.50	-2.50
P129	2560.000	Droite 54	Pente 2	972.187	972.129	177.214	14172.963	39373.554	2.50	-2.50
P130	2580.000	Droite 54	Pente 2	972.986	972.023	177.214	14191.695	39380.560	2.50	-2.50
P131	2600.000	Droite 55	Pente 2	972.910	971.916	176.269	14210.421	39387.584	2.50	-2.50
P132	2620.000	Droite 55	Pente 2	973.886	971.809	176.269	14229.048	39394.868	2.50	-2.50
P133	2640.000	Droite 55	Pente 2	974.862	971.703	176.269	14247.674	39402.152	2.50	-2.50
P134	2660.000	Droite 56	Pente 2	975.658	971.596	176.254	14266.300	39409.436	2.50	-2.50
P135	2680.000	Droite 56	Pente 2	976.192	971.489	176.254	14284.925	39416.724	2.50	-2.50
P136	2700.000	Droite 56	Pente 2	977.146	971.383	176.254	14303.550	39424.012	2.50	-2.50
P137	2720.000	Droite 57	Pente 2	977.162	971.276	174.198	14322.033	39431.646	2.50	-2.50
P138	2740.000	Droite 57	Pente 2	976.669	971.169	174.198	14340.413	39439.532	2.50	-2.50
P139	2760.000	Droite 57	Pente 2	976.269	971.063	174.198	14358.792	39447.417	2.50	-2.50
P140	2780.000	Droite 57	Pente 2	975.939	970.956	174.198	14377.172	39455.303	2.50	-2.50
P141	2800.000	Droite 58	Pente 2	975.464	970.849	173.099	14395.502	39463.304	2.50	-2.50
P142	2820.000	Droite 58	Pente 2	975.303	970.742	173.099	14413.743	39471.505	2.50	-2.50
P143	2840.000	Droite 58	Pente 2	975.403	970.636	173.099	14431.983	39479.707	2.50	-2.50
P144	2860.000	Droite 59	Pente 2	975.482	970.529	172.314	14450.149	39488.074	2.50	-2.50
P145	2880.000	Droite 59	Pente 2	975.527	970.422	172.314	14468.287	39496.500	2.50	-2.50
P146	2900.000	Droite 59	Pente 2	975.800	970.316	172.314	14486.425	39504.927	2.50	-2.50
P147	2920.000	Droite 59	Pente 2	976.117	970.209	172.314	14504.564	39513.353	2.50	-2.50
P148	2940.000	Droite 59	Pente 2	976.649	970.102	172.314	14522.702	39521.779	2.50	-2.50
P149 P150	2960.000 2980.000	Droite 60 Droite 61	Pente 2	976.989 977.267	969.996 969.889	177.881 191.336	14541.411 14560.368	39528.822 39535.013	2.50 2.50	-2.50 -2.50
P150	3000.000	Droite 61	Pente 2 Pente 2	977.022	969.782	191.336	14580.183	39535.013	2.50	-2.50
P152	3020.000	Droite 61	Pente 2	976.409	969.676	191.336	14599.998	39540.440	2.50	-2.50
P153	3040.000	Droite 61	Pente 2	975.913	969.569	191.336	14619.813	39543.154	2.50	-2.50
P154	3060.000	Droite 62	Pente 2	975.482	969.462	190.223	14639.622	39545.912	2.50	-2.50
P155	3080.000	Droite 62	Pente 2	975.161	969.356	190.223	14659.387	39548.971	2.50	-2.50
P156	3100.000	Droite 62	Pente 2	974.637	969.249	190.223	14679.151	39552.031	2.50	-2.50
P157	3120.000	Droite 62	Pente 2	974.055	969.142	190.223	14698.916	39555.090	2.50	-2.50
P158	3140.000	Droite 63	Pente 2	973.284	969.036	164.264	14716.076	39565.122	2.50	-2.50
P159	3160.000	Droite 63	Pente 2	972.381	968.929	164.264	14733.007	39575.768	2.50	-2.50
P160	3180.000	Droite 64	Pente 2	971.772	968.822	151.025	14747.559	39589.446	2.50	-2.50
P161	3200.000	Droite 64	Pente 2	971.934	968.716	151.025	14761.927	39603.359	2.50	-2.50
P162	3220.000	Droite 65	Pente 2	971.519	968.609	150.214	14776.124	39617.447	2.50	-2.50
P163	3240.000	Droite 65	Pente 2	970.470	968.502	150.214	14790.313	39631.541	2.50	-2.50
P164	3260.000	Droite 65	Pente 2	969.420	968.396	150.214	14804.503	39645.636	2.50	-2.50
P165	3280.000	Droite 66	Pente 2	968.571	968.289	169.179	14821.442	39655.984	2.50	-2.50
P166	3300.000	Droite 66	Parabole 2	967.706	968.188	169.179	14839.143	39665.293	2.50	-2.50
P167	3320.000	Droite 66	Parabole 2	967.222	968.123	169.179	14856.845	39674.601	2.50	-2.50
P168	3340.000		Parabole 2	967.854	968.098	194.724	14875.644	39680.143	2.50	-2.50
P169	3360.000		Parabole 2	967.964	968.113	194.724	14895.575	39681.799	2.50	-2.50
P170	3380.000		Parabole 2	968.181	968.167	194.724	14915.507	39683.454	2.50	-2.50
P171	3400.000		Parabole 2	968.383	968.262	207.544	14935.380	39681.864	2.50	-2.50
P172	3420.000		Pente 3	968.719	968.397	207.544	14955.240	39679.499	2.50	-2.50
P173	3440.000		Pente 3	969.148	968.548	213.135	14975.060	39676.895	2.50	-2.50
P174	3460.000		Pente 3	970.169	968.699	213.135	14994.636	39672.798	2.50	-2.50
P175	3480.000		Pente 3	971.186	968.850	213.135	15014.212	39668.701	2.50	-2.50
P176	3500.000		Pente 3	971.715	969.001	214.937	15033.765	39664.501	2.50	-2.50
P177	3520.000		Pente 3	972.029	969.152	214.937	15053.217	39659.851	2.50	-2.50
P178	3540.000		Pente 3	971.995	969.304	214.937	15072.669	39655.201	2.50	-2.50
P179	3560.000		Pente 3	972.521	969.455	213.464	15092.201	39650.906	2.50	-2.50
P180	3580.000		Pente 3	972.941	969.606	213.464	15111.756	39646.708	2.50	-2.50
P181	3600.000		Pente 3	973.327	969.757	213.464	15131.310	39642.510	2.50	-2.50
P182	3620.000		Pente 3	973.116	969.908	207.477	15151.153	39640.047	2.50	-2.50
P183 P184	3640.000 3660.000		Pente 3 Pente 3	973.188 974.257	970.059 970.210	207.477 185.067	15171.015 15190.520	39637.704 39641.444	2.50 2.50	-2.50 -2.50
P184	3680.000		Pente 3	974.257	970.210	185.067	15190.520	39646.092	2.50	-2.50
F 100	3000.000	טוטונפ וט	i ente 3	310.302	310.301	100.007	10209.973	39040.092	2.50	-2.50

Num.	Abscisse	Axe Plan	Axe Long	Z Tn	Z Projet	Gisement	Х	Y	Dév	vers
					,				Gauche	Droite
P186	3700.000	Droite 74	Pente 3	975.800	970.512	177.485	15228.866	39652.585	2.50	-2.50
P187	3720.000	Droite 74	Pente 3	975.684	970.664	177.485	15247.628	39659.511	2.50	-2.50
P188	3740.000	Droite 75	Pente 3	976.855	970.815	176.786	15266.328	39666.605	2.50	-2.50
P189	3760.000	Droite 75	Pente 3	977.500	970.966	176.786	15285.013	39673.738	2.50	-2.50
P190	3780.000	Droite 76	Pente 3	978.057	971.117	179.201	15303.785	39680.629	2.50	-2.50
P191	3800.000	Droite 76	Pente 3	977.971	971.268	179.201	15322.727	39687.048	2.50	-2.50
P192	3820.000	Droite 76	Pente 3	977.763	971.419	179.201	15341.669	39693.467	2.50	-2.50
P193	3840.000	Droite 77	Pente 3	977.616	971.570	190.216	15361.063	39698.040	2.50	-2.50
P194	3860.000	Droite 77	Pente 3	977.908	971.721	190.216	15380.827	39701.102	2.50	-2.50
P195	3880.000	Droite 78	Pente 3	978.002	971.872	200.378	15400.665	39703.172	2.50	-2.50
P196	3900.000	Droite 78	Pente 3	978.641	972.024	200.378	15420.664	39703.053	2.50	-2.50
P197	3920.000	Droite 79	Pente 3	978.757	972.175	213.916	15440.506	39701.531	2.50	-2.50
P198	3940.000	Droite 79	Pente 3	979.940	972.326	213.916	15460.030	39697.194	2.50	-2.50
P199	3960.000	Droite 79	Pente 3	980.939	972.477	213.916	15479.554	39692.856	2.50	-2.50
P200	3980.000	Droite 80	Pente 3	982.047	972.628	222.012	15498.504	39686.539	2.50	-2.50
P201	4000.000	Droite 80	Pente 3	982.579	972.779	222.012	15517.320	39679.761	2.50	-2.50
P202	4020.000	Droite 81	Pente 3	983.185	972.930	225.099	15536.069	39672.809	2.50	-2.50
P203	4040.000	Droite 81	Pente 3	983.279	973.081	225.099	15554.535	39665.127	2.50	-2.50
P204	4060.000	Droite 81	Pente 3	983.370	973.232	225.099	15573.000	39657.444	2.50	-2.50
P205	4080.000	Droite 82	Pente 3	983.854	973.384	222.415	15591.655	39650.243	2.50	-2.50
P206	4100.000	Droite 82	Pente 3	984.531	973.535	222.415	15610.428	39643.346	2.50	-2.50
P207	4120.000	Droite 83	Pente 3	985.399	973.686	227.305	15628.950	39635.840	2.50	-2.50
P208	4140.000	Droite 83 Droite 83	Pente 3	986.288	973.837	227.305	15647.139	39627.522	2.50	-2.50
P209 P210	4160.000 4180.000	Droite 84	Pente 3	987.177 987.706	973.988 974.139	227.305 240.810	15665.327 15683.082	39619.205 39610.156	2.50 2.50	-2.50 -2.50
P210	4200.000	Droite 84	Pente 3	988.776	974.139	240.810			2.50	-2.50
P211	4220.000	Droite 84	Pente 3 Pente 3	989.423	974.290	240.810	15699.112 15715.141	39598.196 39586.235	2.50	-2.50
P213	4240.000	Droite 85	Pente 3	990.013	974.441	245.551	15730.794	39573.807	2.50	-2.50
P213	4260.000	Droite 85	Pente 3	991.421	974.744	245.551	15745.889	39560.687	2.50	-2.50
P215	4280.000	Droite 86	Pente 3	992.842	974.895	244.468	15761.005	39547.591	2.50	-2.50
P216	4300.000	Droite 86	Pente 3	993.665	975.046	244.468	15776.321	39534.730	2.50	-2.50
P217	4320.000	Droite 86	Pente 3	994.678	975.197	244.468	15791.637	39521.868	2.50	-2.50
P218	4340.000	Droite 87	Pente 3	995.695	975.348	243.523	15807.108	39509.195	2.50	-2.50
P219	4360.000	Droite 87	Pente 3	996.828	975.499	243.523	15822.614	39496.562	2.50	-2.50
P220	4380.000	Droite 88	Pente 3	997.349	975.650	243.859	15838.092	39483.896	2.50	-2.50
P221	4400.000	Droite 88	Pente 3	998.384	975.801	243.859	15853.530	39471.181	2.50	-2.50
P222	4420.000	Droite 88	Pente 3	999.292	975.952	243.859	15868.969	39458.467	2.50	-2.50
P223	4440.000	Droite 89	Pente 3	998.572	976.104	235.389	15885.456	39447.214	2.50	-2.50
P224	4460.000	Droite 89	Pente 3	998.592	976.255	235.389	15902.445	39436.660	2.50	-2.50
P225	4480.000	Droite 89	Pente 3	998.597	976.406	235.389	15919.433	39426.106	2.50	-2.50
P226	4500.000	Droite 89	Pente 3	998.774	976.557	235.389	15936.422	39415.552	2.50	-2.50
P227	4520.000	Droite 89	Pente 3	998.610	976.708	235.389	15953.410	39404.998	2.50	-2.50
P228	4540.000	Droite 90	Pente 3	998.163	976.859	229.058	15970.924	39395.391	2.50	-2.50
P229	4560.000		Pente 3	997.641	977.010	229.058	15988.876	39386.576	2.50	-2.50
P230	4580.000		Pente 3	997.287	977.161	229.058	16006.829	39377.760	2.50	-2.50
P231	4600.000		Pente 3	996.949	977.312	229.135	16024.771	39368.924	2.50	-2.50
P232	4620.000		Pente 3	996.562	977.464	229.135	16042.713	39360.087	2.50	-2.50
P233	4640.000		Pente 3	996.417	977.615	225.281	16061.145	39352.327	2.50	-2.50
P234	4660.000		Pente 3	996.318	977.766	225.281	16079.588	39344.591	2.50	-2.50
P235	4680.000		Pente 3	996.180	977.917	225.281	16098.032	39336.856	2.50	-2.50
P236	4700.000		Pente 3	995.316	978.068	225.281	16116.476	39329.121	2.50	-2.50
P237	4720.000		Pente 3	994.452	978.219	225.281	16134.919	39321.386	2.50	-2.50
P238	4740.000		Pente 3	994.594	978.370	216.063	16154.107	39315.862	2.50	-2.50
P239	4760.000		Pente 3	993.910	978.521	216.063	16173.474	39310.868	2.50	-2.50
P240	4780.000		Pente 3	992.461	978.672	205.958	16193.325	39308.648	2.50	-2.50
P241	4800.000		Pente 3	990.523	978.824	205.958	16213.237	39306.779	2.50	-2.50
P242	4820.000		Pente 3	990.818	978.975	169.663	16232.543	39310.591	2.50	-2.50
P243 P244	4840.000 4860.000		Pente 3 Pente 3	989.584 986.679	979.126 979.277	169.663 169.663	16250.315 16268.087	39319.765	2.50 2.50	-2.50 -2.50
P244 P245	4880.000		Pente 3	985.912	979.277	165.541	16285.230	39328.939 39339.240	2.50	-2.50
P245 P246	4900.000		Pente 3	985.387	979.428	165.541	16302.371	39339.240	2.50	-2.50
P247	4920.000		Pente 3	983.634	979.730	164.653	16319.438	39359.970	2.50	-2.50
P248	4940.000		Pente 3	982.810	979.881	164.653	16336.434	39370.513	2.50	-2.50
1 440	-0-TU.UUU	21010 00	. 01100	002.010	0.0001	107.000	10000.404	00010.010	2.00	2.00

Num.	Abscisse	Axe Plan	Axe Long	Z Tn	Z Projet	Gisement	X	Υ	Dév	rers
									Gauche	Droite
P249	4960.000	Droite 98	Pente 3	981.986	980.032	164.653	16353.429	39381.056	2.50	-2.50
P250	4980.000	Droite 99	Pente 3	982.188	980.184	162.791	16370.282	39391.821	2.50	-2.50
P251	5000.000	Droite 99	Pente 3	980.335	980.335	162.791	16386.962	39402.856	2.50	-2.50
P252	5020.000	Droite 100	Pente 3	979.268	980.486	162.801	16403.643	39413.891	2.50	-2.50
P253	5040.000	Droite 101	Pente 3	978.513	980.637	173.434	16420.811	39424.035	2.50	-2.50
P254	5060.000	Droite 101	Pente 3	977.670	980.788	173.434	16439.095	39432.141	2.50	-2.50
P255	5080.000	Droite 101	Pente 3	976.748	980.939	173.434	16457.378	39440.247	2.50	-2.50
P256	5100.000	Droite 102	Pente 3	975.209	981.090	193.344	16475.722	39448.127	2.50	-2.50
P257	5120.000	Droite 102	Pente 3	973.787	981.241	193.344	16495.613	39450.215	2.50	-2.50
P258	5140.000	Droite 102	Pente 3	972.365	981.392	193.344	16515.504	39452.302	2.50	-2.50
P259	5160.000	Droite 102	Pente 3	972.293	981.544	193.344	16535.395	39454.389	2.50	-2.50
P260	5180.000	Droite 102	Pente 3	972.517	981.695	193.344	16555.285	39456.477	2.50	-2.50
P261	5200.000	Droite 103	Pente 3	971.328	981.846	195.670	16575.239	39457.842	2.50	-2.50
P262	5220.000	Droite 103	Pente 3	970.034	981.997	195.670	16595.192	39459.201	2.50	-2.50
P263	5240.000	Droite 104	Pente 3	968.790	982.148	203.664	16615.155	39458.772	2.50	-2.50
P264	5260.000	Droite 104	Pente 3	967.524	982.299	203.664	16635.122	39457.622	2.50	-2.50
P265	5267.060	Droite 104	Pente 3	967.139	982.352	203.664	16642.171	39457.215	2.50	-2.50

ANNEXE 04 Récapitulatif des Cubatures des Matériaux (compensé)

Matériau	Volume
	Cumulé
BETON	2300.06
BITUMINEUX	
GB	4711.72
GNT	12430.44
T.V	27773.57

BB = 2300.06

GB = 4711.72

GNT = 12430.44

Cubatures Déblai Remblai (compensé)

Num.	Abscisse	Longueur	Surfa	aces	Volumes	Partiels	Volumes	Cumulés
			Déblai	Remblai	Déblai	Remblai	Déblai	Remblai
P1	0.000	10.00	0.00	20.64	0.032	206.360	0	206
P2	20.000	20.00	0.00	27.95	0.000	559.049	0	765
P3	40.000	20.00	0.00	56.00	0.000	1121.118	0	1887
P4	60.000	20.00	0.00	86.75	0.000	1735.035	0	3622
P5	80.000	20.00	0.00	152.21	0.000	3044.262	0	6666
P6	100.000	20.00	0.00	228.92	0.000	4804.225	0	11470
P7	120.000	20.00	0.00	303.24	0.000	6585.299	0	18055
P8	140.000	20.00	0.00	379.52	0.000	7712.195	0	25768
P9	160.000	20.00	0.00	390.41	0.000	7808.294	0	33576
P10	180.000	20.00	0.00	408.71	0.000	8844.828	0	42421
P11	200.000	20.00	0.00	392.83	0.000	7856.660	0	50277
P12	220.000	20.00	0.00	377.76	0.000	8587.308	0	58865
P13	240.000	20.00	0.00	364.31	0.000	7286.209	0	66151
P14	260.000	20.00	0.00	326.99	0.000	7034.909	0	73186
P15	280.000	20.00	0.00	282.31	0.000	5646.129	0	78832
P16	300.000	20.00	0.00	244.40	0.000	4907.679	0	83740
P17	320.000	20.00	0.00	251.35	0.000	5026.925	0	88766
P18 P19	340.000	20.00	0.00	235.95 253.55	0.000	4718.978	0	93485 98538
	360.000	20.00	0.00		0.000	5052.129	0	
P20	380.000	20.00	0.00	265.44	0.000	5308.857	0	103846
P21 P22	400.000 420.000	20.00	0.00	260.97 253.96	0.000	5219.340 5095.456	0	109066 114161
P23	440.000	20.00	0.00	239.31	0.000	4786.263	0	118948
P24	460.000	20.00	0.00	219.98	0.000	4399.689	0	123347
P25	480.000	20.00	0.00	201.57	0.000	4031.487	0	127379
P26	500.000	20.00	0.00	188.96	0.000	3779.132	0	131158
P27	520.000	20.00	0.00	178.94	0.000	3578.830	0	134737
P28	540.000	20.00	0.00	171.33	0.000	3425.233	0	138162
P29	560.000	20.00	0.00	158.77	0.000	3175.380	0	141337
P30	580.000	20.00	0.00	147.92	0.000	2958.471	0	144296
P31	600.000	20.00	0.00	142.47	0.000	2850.996	0	147147
P32	620.000	20.00	0.00	128.97	0.000	2579.419	0	149726
P33	640.000	20.00	0.00	107.43	0.000	2148.513	0	151875
P34	660.000	20.00	0.00	118.99	0.000	2388.551	0	154263
P35	680.000	20.00	0.00	110.58	0.000	2211.600	0	156475
P36	700.000	20.00	0.00	100.45	0.000	2049.744	0	158525
P37	720.000	20.00	0.00	102.02	0.000	2040.313	0	160565
P38	740.000	20.00	0.00	92.32	0.000	1846.497	0	162411
P39	760.000	20.00	0.00	120.73	0.000	2414.531	0	164826
P40	780.000	20.00	0.00	167.82	0.000	3434.124	0	168260
P41	800.000	20.00	0.00	197.83	0.000	4013.448	0	172273
P42	820.000	20.00	0.00	226.94	0.000	4538.743	0	176812
P43	840.000	20.00	0.00	216.34	0.000	4348.189	0	181160
P44	860.000	20.00	0.00	136.65	0.000	2733.048	0	183893
P45	880.000	20.00	0.00	168.50	0.000	3369.993	0	187263
P46	900.000	20.00	0.00	183.87	0.000	3670.509	0	190934
P47	920.000	20.00	0.00	148.67	0.000	2973.364	0	193907
P48 P49	940.000 960.000	20.00	0.00	194.25 219.96	0.000	3888.193	0	197796 202195
P49 P50	980.000	20.00	0.00	219.96	0.000	4399.180 5950.664	0	202195
P51	1000.000	20.00	0.00	360.99	0.000	7189.381	0	215335
P52	1020.000	20.00	0.00	403.25	0.000	8114.038	0	223449
P53	1040.000	20.00	0.00	415.04	0.000	8344.079	0	231793
P54	1060.000	20.00	0.00	334.50	0.000	6690.050	0	238483
P55	1080.000	20.00	0.00	248.50	0.000	4969.956	0	243453
P56	1100.000	20.00	0.00	271.73	0.000	5614.017	0	249067
P57	1120.000	20.00	0.00	286.73	0.000	5734.681	0	254802
P58	1140.000	20.00	0.00	284.99	0.000	5756.452	0	260558
	1160.000	20.00	0.00	251.71	0.000	5034.199	0	265592

Num.	Abscisse	Longueur	Surfa	aces	Volumes	Partiels	Volumes	Cumulés
		J	Déblai	Remblai	Déblai	Remblai	Déblai	Remblai
P60	1180.000	20.00	0.00	244.40	0.000	4888.073	0	270480
P61	1200.000	20.00	0.00	298.67	0.000	6044.030	0	276524
P62	1220.000	20.00	0.00	326.08	0.000	6521.582	0	283046
P63	1240.000	20.00	0.00	345.90	0.000	7589.433	0	290635
P64	1260.000	20.00	0.00	339.83	0.000	6796.650	0	297432
P65	1280.000	20.00	0.00	282.98	0.000	6251.776	0	303684
P66	1300.000	20.00	0.00	248.79	0.000	5076.310	0	308760
P67 P68	1320.000	20.00	0.00	244.02 238.23	0.000	4880.339	0	313640 318392
P69	1340.000 1360.000	20.00 20.00	0.00	189.87	0.000	4752.079 3797.472	0	322190
P70	1380.000	20.00	0.00	159.68	0.000	3312.812	0	325503
P71	1400.000	20.00	0.00	125.12	0.000	2502.388	0	328005
P72	1420.000	20.00	0.00	91.47	0.000	1893.708	0	329899
P73	1440.000	20.00	0.00	154.84	0.000	3210.227	0	333109
P74	1460.000	20.00	0.00	111.59	0.000	2231.825	0	335341
P75	1480.000	20.00	0.00	83.50	0.000	1705.195	0	337046
P76	1500.000	20.00	0.00	95.18	0.000	2006.585	0	339053
P77	1520.000	20.00	0.00	98.52	0.000	1970.444	0	341023
P78	1540.000	20.00	0.00	84.53	0.000	1690.522	0	342714
P79	1560.000	20.00	0.00	74.71	0.000	1525.228	0	344239
P80	1580.000	20.00	0.00	59.09	0.000	1181.870	0	345421
P81	1600.000	20.00	0.00	67.01	0.000	1366.813	0	346788
P82 P83	1620.000 1640.000	20.00 20.00	0.00	70.49 70.36	0.000	1409.820 1441.746	0	348197 349639
P84	1660.000	20.00	0.00	63.20	0.000	1263.910	0	350903
P85	1680.000	20.00	0.00	61.64	0.000	1232.801	0	352136
P86	1700.000	20.00	0.00	56.76	0.000	1134.264	0	353270
P87	1720.000	20.00	0.00	48.15	0.000	963.093	0	354233
P88	1740.000	20.00	0.00	39.25	0.000	784.914	0	355018
P89	1760.000	20.00	0.00	29.98	0.000	599.521	0	355618
P90	1780.000	20.00	0.00	15.72	0.000	313.795	0	355931
P91	1800.000	20.00	0.00	6.82	0.000	136.320	0	356068
P92	1820.000	20.00	2.31	0.03	46.121	0.617	46	356068
P93	1840.000	20.00	0.60	1.25	12.248	25.232	58	356094
P94	1860.000	20.00	0.00	1.50	0.012	30.036	58	356124
P95 P96	1880.000 1900.000	20.00	0.20 0.65	0.25	3.981 12.978	5.032 1.522	62 75	356129 356130
P97	1900.000	20.00	0.00	0.08 2.49	0.000	49.846	75	356180
P98	1940.000	20.00	0.00	4.94	0.000	98.865	75	356279
P99	1960.000	20.00	0.00	5.99	0.000	119.892	75	356399
P100	1980.000	20.00	0.00	5.33	0.000	106.532	75	356505
P101	2000.000	20.00	0.00	4.62	0.000	92.416	75	356598
P102	2020.000	20.00	0.00	3.90	0.000	77.932	75	356676
P103	2040.000	20.00	0.00	2.16	0.000	43.212	75	356719
P104	2060.000	20.00	0.11	1.19	2.204	23.711	78	356743
P105	2080.000	20.00	0.00	7.75	0.000	155.079	78	356898
P106	2100.000	20.00	0.00	16.78	0.000	335.639	78	357233
P107	2120.000	20.00	0.00	27.09	0.000	539.486	78	357773
P108 P109	2140.000 2160.000	20.00	0.00	33.88 36.39	0.000	677.523 727.739	78 78	358450 359178
P109	2180.000	20.00	0.00	40.68	0.000	810.552	78	359178
P111	2200.000	20.00	0.00	71.97	0.000	1439.461	78	361428
P112	2220.000	20.00	0.00	87.52	0.000	1750.408	78	363178
P113	2240.000	20.00	0.00	104.83	0.000	2087.293	78	365266
P114	2260.000	20.00	0.00	129.88	0.000	2597.558	78	367863
P115	2280.000	20.00	0.00	149.69	0.000	2993.710	78	370857
P116	2300.000	20.00	0.00	153.00	0.000	3066.454	78	373923
P117	2320.000	20.00	0.00	141.57	0.000	2831.474	78	376755
P118	2340.000	20.00	0.00	134.45	0.000	2691.577	78	379447
P119	2360.000	20.00	0.00	126.60	0.000	2532.060	78	381979
P120	2380.000	20.00	0.00	115.81	0.000	2316.224	78	384295
P121	2400.000	20.00	0.00	102.08	0.000	2033.658	78	386328
P122	2420.000	20.00	0.00	86.73	0.000	1734.682	78	388063

Num.	Abscisse	Longueur	Surfa	aces	Volumes	Partiels	Volumes	Cumulés
			Déblai	Remblai	Déblai	Remblai	Déblai	Remblai
P123	2440.000	20.00	0.00	71.48	0.000	1429.668	78	389493
P124	2460.000	20.00	0.00	53.59	0.000	1083.367	78	390576
P125	2480.000	20.00	0.00	30.75	0.000	614.945	78	391191
P126	2500.000	20.00	0.00	28.04	0.000	560.090	78	391751
P127	2520.000	20.00	0.00	17.55	0.000	351.078	78	392102
P128	2540.000	20.00	0.00	3.91	0.000	78.192	78	392181
P129	2560.000	20.00	6.55	0.48	130.403	9.558	208	392190
P130	2580.000	20.00	16.11	0.02	322.218	0.398	530	392190
P131	2600.000	20.00	20.64	0.02	412.420	0.410	943	392191
P132	2620.000	20.00	34.31	0.02	686.275	0.411	1629	392191
P133 P134	2640.000	20.00	48.22	0.02	964.365	0.389	2593	392192
P134	2660.000 2680.000	20.00	61.29	0.02	1225.779 1469.210	0.389 0.402	3819 5288	392192 392192
P135	2700.000	20.00	73.46 91.22	0.02 0.02	1816.708	0.402	7105	392192
P137	2720.000	20.00	92.33	0.02	1846.621	0.408	8952	392193
P138	2740.000	20.00	87.02	0.02	1740.438	0.409	10692	392194
P139	2760.000	20.00	82.84	0.02	1656.897	0.409	12349	392194
P140	2780.000	20.00	79.24	0.02	1584.866	0.410	13934	392195
P141	2800.000	20.00	72.46	0.02	1446.376	0.412	15380	392195
P142	2820.000	20.00	69.51	0.02	1390.134	0.410	16770	392195
P143	2840.000	20.00	73.70	0.02	1472.003	0.400	18242	392196
P144	2860.000	20.00	76.24	0.02	1524.816	0.399	19767	392196
P145	2880.000	20.00	78.96	0.02	1579.124	0.399	21346	392197
P146	2900.000	20.00	84.93	0.02	1698.689	0.399	23045	392197
P147	2920.000	20.00	92.16	0.02	1843.181	0.406	24888	392197
P148	2940.000	20.00	104.50	0.02	2115.266	0.423	27003	392198
P149	2960.000	20.00	113.50	0.02	2269.967	0.400	29273	392198
P150	2980.000	20.00	121.05	0.02	2500.078	0.463	31773	392199
P151	3000.000	20.00	120.58	0.02	2411.579	0.401	34185	392199
P152	3020.000	20.00	110.35	0.02	2206.970	0.412	36392	392199
P153	3040.000	20.00	102.63	0.02	2052.523	0.408	38444	392200
P154	3060.000	20.00	95.90	0.02	1913.295	0.409	40358	392200
P155	3080.000	20.00	91.96	0.02	1839.112	0.402	42197	392201
P156	3100.000	20.00	85.06	0.02	1701.186	0.397	43898	392201
P157	3120.000	20.00	73.74	0.02	1531.978	0.485	45430	392202
P158	3140.000	20.00	65.90	0.02	1318.078	0.409	46748	392202
P159	3160.000	20.00	54.94	0.02	1113.857	0.452	47862	392202
P160	3180.000	20.00	52.00	0.02	1039.916	0.409	48902	392203
P161	3200.000	20.00	51.52	0.02	1028.924	0.407	49931	392203
P162	3220.000	20.00	48.11	0.02	962.266	0.407	50893	392204
P163 P164	3240.000 3260.000	20.00 20.00	34.05 20.80	0.02 0.02	680.904 427.226	0.413 0.464	51574 52001	392204 392204
P164	3280.000		44.44			0.405	50000	392204
P166	3300.000	20.00	11.41 2.61	0.02	228.283 52.233	0.405	52230 52282	392206
P167	3320.000	20.00	0.05	2.00	0.946	40.000	52283	392246
P168	3340.000	20.00	4.65	0.03	93.621	0.667	52376	392246
P169	3360.000	20.00	5.56	0.03	111.218	0.600	52488	392247
P170	3380.000	20.00	6.47	0.03	129.387	0.640	52617	392247
P171	3400.000	20.00	9.27	0.02	185.487	0.424	52802	392248
P172	3420.000	20.00	11.57	0.02	231.391	0.397	53034	392248
P173	3440.000	20.00	15.21	0.02	306.201	0.419	53340	392249
P174	3460.000	20.00	25.12	0.02	502.483	0.404	53842	392249
P175	3480.000	20.00	35.21	0.02	704.114	0.405	54547	392249
P176	3500.000	20.00	43.87	0.02	880.476	0.411	55427	392250
P177	3520.000	20.00	47.16	0.02	943.131	0.410	56370	392250
P178	3540.000	20.00	46.19	0.02	921.306	0.418	57291	392251
P179	3560.000	20.00	47.79	0.02	955.711	0.417	58247	392251
P180	3580.000	20.00	50.97	0.02	1019.457	0.417	59267	392252
P181	3600.000	20.00	54.40	0.02	1089.166	0.429	60356	392252
P182	3620.000	20.00	51.51	0.02	1030.148	0.472	61386	392252
P183	3640.000	20.00	56.45	0.02	1174.427	0.567	62560	392253
P184	3660.000	20.00	74.44	0.02	1488.860	0.459	64049	392253
P185	3680.000	20.00	84.61	0.02	1705.839	0.460	65755	392254

Num.	Abscisse	Longueur	Sur	faces	Volumes I	Partiels	Volumes	Cumulés
			Déblai	Remblai	Déblai	Remblai	Déblai	Remblai
P186	3700.000	20.00	83.75	0.02	1675.091	0.429	67430	392254
P187	3720.000	20.00	84.97	0.02	1696.574	0.462	69127	392255
P188	3740.000	20.00	98.02	0.02	1960.452	0.463	71087	392255
P189	3760.000	20.00	108.38	0.02	2167.510	0.474	73255	392256
P190	3780.000	20.00	118.25	0.02	2380.126	0.495	75635	392256
P191	3800.000	20.00	114.06	0.02	2281.235	0.481	77916	392257
P192	3820.000	20.00	107.14	0.02	2203.978	0.476	80120	392257
P193	3840.000	20.00	96.56	0.02	1931.174	0.419	82051	392258
P194	3860.000	20.00	93.58	0.03	1871.629	0.515	83923	392258
P195	3880.000	20.00	93.70	0.02	1911.026	0.454 0.428	85834 87921	392259
P196 P197	3900.000 3920.000	20.00	104.37 112.85	0.02 0.02	2087.458 2336.750	0.428	90258	392259 392259
P198	3940.000	20.00	136.06	0.02	2721.159	0.400	92979	392260
P199	3960.000	20.00	160.21	0.02	3286.437	0.460	96266	392260
P200	3980.000	20.00	172.01	0.02	3440.263	0.415	99706	392261
P201	4000.000	20.00	177.77	0.02	3555.461	0.415	103261	392261
P202	4020.000	20.00	183.61	0.02	3709.995	0.438	106971	392262
P203	4040.000	20.00	184.35	0.02	3687.020	0.411	110658	392262
P204	4060.000	20.00	182.60	0.02	3647.327	0.423	114306	392262
P205	4080.000	20.00	187.22	0.02	3744.394	0.429	118050	392263
P206	4100.000	20.00	203.56	0.02	4071.106	0.428	122121	392263
P207	4120.000	20.00	223.19	0.02	4546.060	0.462	126667	392264
P208	4140.000	20.00	235.47	0.00	4709.439	0.000	131377	392264
P209	4160.000	20.00	148.26	0.00	2965.167	0.000	134342	392264
P210	4180.000	20.00	18.86	0.00	389.077	0.000	134731	392264
P211	4200.000	20.00	138.81	0.00	2776.276	0.000	137507	392264
P212	4220.000	20.00	251.51	0.00	5030.194	0.000	142537	392264
P213	4240.000	20.00	319.61	0.01	6527.875	0.233	149065	392264
P214	4260.000	20.00	354.18	0.01	7083.614	0.216	156149	392264
P215	4280.000	20.00	384.68	0.02	7659.498	0.441	163808	392265
P216	4300.000	20.00	418.86	0.02	8377.208	0.436	172186	392265
P217	4320.000	20.00	458.79	0.02	9135.679	0.430	181321	392266
P218	4340.000	20.00	491.32	0.02	9826.308	0.426	191148	392266
P219	4360.000	20.00	517.00	0.02	10340.040	0.434	201488	392266
P220	4380.000	20.00	541.20	0.02	10847.781	0.438	212335	392267
P221	4400.000	20.00	565.49	0.02	11309.784	0.442	223645	392267
P222	4420.000	20.00	563.69	0.02	11775.844	0.485	235421	392268
P223	4440.000	20.00	536.53	0.02	10730.658	0.397	246152	392268
P224	4460.000	20.00	520.19	0.02	10403.822	0.397	256556	392269
P225	4480.000	20.00	506.92	0.02	10138.355	0.397	266694	392269
P226	4500.000	20.00	494.58	0.02	9891.551	0.381	276586	392269 392270
P227 P228	4520.000 4540.000	20.00 20.00	469.29 445.45	0.02 0.02	9601.105 8909.050	0.425 0.382	286187 295096	392270
P229	4540.000	20.00	431.24	0.02	8624.891	0.362	303721	392270
P230	4580.000	20.00	416.16	0.02	8326.236	0.373	312047	392271
P231	4600.000	20.00	408.60	0.02	8172.000	0.376	320219	392271
P232	4620.000	20.00	401.88	0.02	8112.238	0.442	328331	392272
P233	4640.000	20.00	398.77	0.02	7975.415	0.411	336306	392272
P234	4660.000	20.00	398.73	0.02	7974.658	0.405	344281	392273
P235	4680.000	20.00	393.49	0.02	7869.848	0.417	352151	392273
P236	4700.000	20.00	372.05	0.02	7441.001	0.420	359592	392273
P237	4720.000	20.00	358.67	0.02	7436.987	0.496	367029	392274
P238	4740.000	20.00	349.93	0.02	6998.608	0.423	374028	392274
P239	4760.000	20.00	324.87	0.02	6750.613	0.522	380778	392275
P240	4780.000	20.00	283.49	0.02	5669.710	0.419	386448	392275
P241	4800.000	20.00	244.15	0.02	5213.561	0.542	391661	392276
P242	4820.000	20.00	237.13	0.02	5060.112	0.555	396722	392276
P243	4840.000	20.00	190.88	0.02	3817.623	0.444	400539	392277
P244	4860.000	20.00	142.76	0.02	2863.952	0.464	403403	392277
P245	4880.000	20.00	113.12	0.02	2262.359	0.445	405665	392278
P246	4900.000	20.00	94.29	0.02	1881.994	0.453	407547	392278
P247	4920.000	20.00	68.32	0.02	1366.417	0.452	408914	392279

Num.	Abscisse	Longueur	Surfaces		Volumes	Partiels	Volumes Cumulés		
			Déblai	Remblai	Déblai	Remblai	Déblai	Remblai	
P249	4960.000	20.00	37.45	0.02	749.096	0.459	410706	392279	
P250	4980.000	20.00	34.16	0.02	681.363	0.418	411387	392280	
P251	5000.000	20.00	9.31	0.03	186.150	0.528	411573	392280	
P252	5020.000	20.00	0.02	4.47	0.421	89.473	411574	392370	
P253	5040.000	20.00	0.00	13.96	0.000	279.588	411574	392649	
P254	5060.000	20.00	0.00	28.43	0.000	568.623	411574	393218	
P255	5080.000	20.00	0.00	44.17	0.000	883.458	411574	394102	
P256	5100.000	20.00	0.00	71.91	0.000	1495.516	411574	395597	
P257	5120.000	20.00	0.00	95.57	0.000	1911.377	411574	397508	
P258	5140.000	20.00	0.00	122.86	0.000	2457.286	411574	399966	
P259	5160.000	20.00	0.00	139.66	0.000	2793.122	411574	402759	
P260	5180.000	20.00	0.00	146.64	0.000	2955.259	411574	405714	
P261	5200.000	20.00	0.00	186.91	0.000	3738.119	411574	409452	
P262	5220.000	20.00	0.00	231.60	0.000	4811.283	411574	414264	
P263	5240.000	20.00	0.00	282.97	0.000	5659.474	411574	419923	
P264	5260.000	13.53	0.00	332.38	0.000	4497.166	411574	424420	
P265	5267.060	3.53	0.00	352.02	0.000	1242.716	411574	425663	

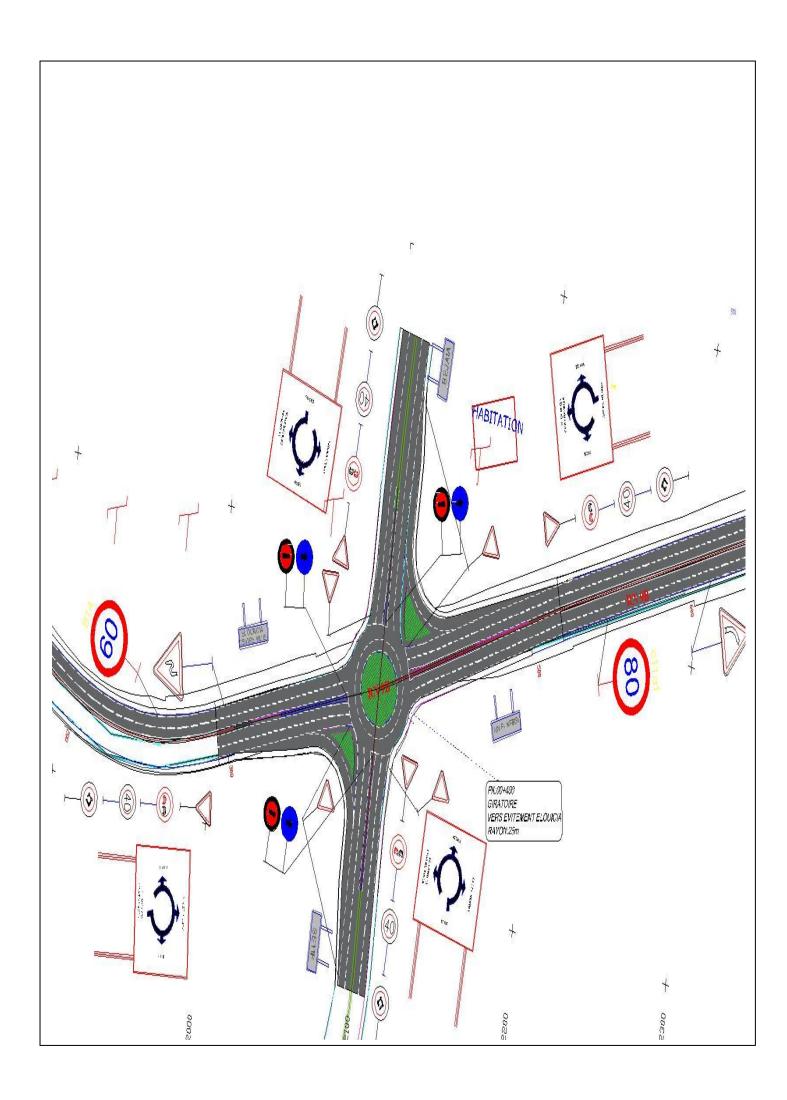
ANNEXE 06 CARREFOUR GIRATOIRE

Nom du fichier traité : C:\Users\Hp\Desktop\idir\PROJET\8 - Copie.dwg Listing effectué le : 08/08/2020 à 11:09:03 Carrefour giratoire : Giratoire

Attention : Les valeurs indiquées en italique ne respectent pas les normes du SETRA.

Géométrie de l'anneau								
Coordonnées du centre	X=	12120.147 m						
	Y=	39070.000 m						
Rayon extérieur		20.000 m						
Rayon intérieur		13.000 m						
Largeur d'anneau		7.000 m						
Surlargeur franchissable		0.000 m						
Distance marquage extérieur		0.250 m						
Distance marquage intérieur		0.250 m						

Géométrie de la branche 'Bran	che2' (1)							
Point de référence	X=	12120.147 m	Angle			78.593 gr		
	Y=	39070.000 m						
Triangle de construction			llot central					
Hauteur		20.000 m	Rayon de raccord			0.400 m		
Base		5.000 m	Distance de l'annea	au		1.000 m		
Déport		0.450 m	Distance de marqu	age		0.250 m		
Caractéristiques des voies			Entrée			Sortie		
Rayon de raccord sur anneau			15.000 m			20.000 m		
Largeur voie sur anneau			8.000 m			8.000 m		
Largeur voie courante	7.500 m 7			7.500 m				
Rayon de raccord sur voie cou	ırante		80.000 m			80.000 m		
Terre-plein			0.000 m			0.000 m		
Distance départ passage piéto	n		4.000 m			4.000 m		
Largeur passage piéton			4.000 m			4.000 m		
Branche(s) en conflit								
Pas de conflit								
Tableau des déflexions Rayon		Centre : X	Ce	entre : Y	Observations			
Branche4 37.819 m		12140.142 m	3912	2.342 m				
Branche1 38.291 m		12128.633 m	3904	7.507 m				
Branche3 18.371 m		12123.999 m	3906	8.534 m				
Branche2 16.665 m		12122.417 m	3907	0.826 m				


Géométrie de la branche 'Branche4' (2)							
Point de référence	X=	12120.147 m	Angle			378.086 gr	
	Y=	39070.000 m					
Triangle de construction			llot central				
Hauteur		20.000 m	Rayon de raccord			0.400 m	
Base		5.000 m	Distance de l'annea	au		1.000 m	
Déport		0.450 m	Distance de marqu	age		0.250 m	
Caractéristiques des voies	Entrée			Sortie			
Rayon de raccord sur anneau	15.000 m 20			20.000 m			
Largeur voie sur anneau			4.000 m			4.500 m	
Largeur voie courante	3.500 m 3.5			3.500 m			
Rayon de raccord sur voie couran	te		80.000 m			80.000 m	
Terre-plein			0.000 m 0.			0.000 m	
Distance départ passage piéton			4.000 m			4.000 m	
Largeur passage piéton			4.000 m 4.00			4.000 m	
Branche(s) en conflit							
Pas de conflit							
Tableau des déflexions		Rayon	Centre : X	Ce	entre : Y	Observations	
Branche1 25.158 m		12082.693 m	3909	1.139 m			
Branche3 28.025 n		28.025 m	12133.168 m	3907	4.495 m		
Branche2		18.272 m	12122.176 m	3907	3.479 m		
Branche4		16.505 m	12119.425 m	3907	2.136 m		

Géométrie de la branche 'Branche	e1' (3)					
Point de référence	X=	12120.147 m	Angle			278.086 gr
	Y=	39070.000 m				
Triangle de construction			llot central			
Hauteur		20.000 m	Rayon de raccord			0.400 m
Base		5.000 m	Distance de l'annea	au		1.000 m
Déport		0.450 m	Distance de marqu	age		0.250 m
Caractéristiques des voies		Entrée			Sortie	
Rayon de raccord sur anneau			15.000 m 20.000			
Largeur voie sur anneau				8.000 m		
Largeur voie courante				7.500 m		
Rayon de raccord sur voie couran	te		80.000 m 80			80.000 m
Terre-plein			0.000 m			0.000 m
Distance départ passage piéton			4.000 m			4.000 m
Largeur passage piéton			4.000 m 4.0			4.000 m
Branche(s) en conflit						
Pas de conflit						
Tableau des déflexions		Rayon	Centre : X	Ce	entre : Y	Observations
Branche3 -472.619 m		12106.203 m		1.992 m		
Branche2 39.139 m		12111.359 m	3909	3.286 m		
Branche4 18.389		18.389 m	12116.272 m		1.458 m	
Branche1 16.665			12117.885 m	3906	9.157 m	

Géométrie de la branche 'Branche							
Point de référence	X=	12120.147 m	Angle			178.086 gr	
	Y=	39070.000 m					
Triangle de construction			llot central				
Hauteur		20.000 m	Rayon de raccord			0.400 m	
Base		5.000 m	Distance de l'annea	au		1.000 m	
Déport		0.450 m	Distance de marqua	age		0.250 m	
Caractéristiques des voies			Entrée			Sortie	
Rayon de raccord sur anneau		15.000 m		20.000 m			
Largeur voie sur anneau			4.000 m			4.500 m	
Largeur voie courante	3.500 m 3.500			3.500 m			
Rayon de raccord sur voie couran	te		80.000 m 80.00			80.000 m	
Terre-plein			0.000 m 0.00			0.000 m	
Distance départ passage piéton			4.000 m 4.000 m			4.000 m	
Largeur passage piéton			4.000 m 4.			4.000 m	
Branche(s) en conflit							
Pas de conflit							
Tableau des déflexions		Rayon	Centre : X	Centre : Y		Observations	
Branche2 24.829 m		12157.258 m	39048	.844 m			
Branche4 28.023 m		12107.128 m	39065	.506 m			
Branche1 18.255 m		12118.141 m	39066	.529 m			
Branche3 16.505 m		12120.869 m	39067	.864 m			

<u>Carrefours</u>:

• carrefour giratoire de la commune El Ouricia à projeter au PK 0+400

