
Democratic and Popular Algerian Republic

Ministry of the Superior Teaching and the Scientific Research

Mohamed Khider University – Biskra

Faculty of Exact Sciences, Natural Sciences and Life

Department of Computer Science

Dissertation

Presented to obtain the academic master’s degree in Computer Science

Option:IVA

By

KHELIL HATHEM

Title

Digital pathology image analysis with
deep learning

Defended on Sept 2020, in front of the jury composed of:

Dr. President University M.K. Biskra

Dr. Dr.Zerari Abd El Moumene Advisor University M.K. Biskra

Dr. Examiner University M.K. Biskra

2020

http://hatemkhelil1@gmail.com

Acknowledgements

Firstly, thank you, God, for guiding me through this path, giving me such wonderful

family, friends, and mentors to complete this dissertation.

This dissertation could not have been possible without the blessings and support of

many people in my life. I sincerely appreciate and gratefully acknowledge their help and

backing. I would like to express an appreciation particularity to the following.

I would like to express my sincere gratitude to my supervisor Dr.Abd El Mouméne

Zerari for the continuous support of my dissertation, for his patience, motivation, and

his continuous positive energy from the very first day. His guidance and observations

always helped me throughout the research.My cordial thanks extend to my dissetation

committee members who accepted to evaluate this modest work.

My deepest gratitude goes to my family members who always encouraged me to do my

best. Their assistance, along with their continuous motivation kept me going. I am

forever thankful to my parents for being such understanding and supportive figures in

my life. I can never thank them enough for their endless support and encouragement

especially in difficult times.

Hathem KHELIL

i

Contents

Acknowledgements i

Contents ii

List of Figures v

List of Tables vii

Abbreviations viii

Introduction 1

1 WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 4

1.1 Introduction . 4

1.2 Digital pathology . 5

1.3 The roots of digital pathology . 5

1.4 Whole-slide imaging . 6

1.4.1 Routine Histopathology . 8

1.4.2 Telepathology and Data Transmission 8

1.4.3 Education . 8

1.4.4 Pathology Archiving . 9

1.5 Histopathology . 9

1.6 Histopathological image analysis . 11

1.6.1 Segmentation and Detection Tasks 12

1.6.1.1 Nuclei segmentation . 12

1.6.1.2 Epithelium Segmentation 12

1.6.1.3 Tubule segmentation . 13

1.6.1.4 Lymphocyte detection . 13

1.6.1.5 Mitosis detection . 13

1.6.1.6 Invasive ductal carcinoma detection 13

1.6.2 Tissue-Based Classification Task 14

1.7 Problems specific to histopathological image analysis 14

1.7.1 Enormous density of data . 15

1.7.2 Different levels of information . 15

1.7.3 WSI as orderless texture-like image 16

1.7.4 Color variation and artifacts . 16

1.8 Requirement of design Computer-aided diagnosis systems for histopathology 18

ii

Contents iii

1.9 Conclusion . 19

2 MACHINE LEARNING 20

2.1 Introduction . 20

2.2 Machine learning concept . 21

2.3 Types of machine learning algorithms . 22

2.3.1 Supervised learning . 22

2.3.2 Unsupervised learning . 23

2.3.3 Reinforcement learning . 23

2.3.4 Deep learning . 23

2.4 Artificial neural networks . 24

2.5 Convolutional Neural Networks . 26

2.5.1 Convolutional layer . 28

2.5.2 Pooling layer . 29

2.5.3 Fully-connected layers . 30

2.6 Network parameters and required memory for CNN 31

2.7 Training a network . 32

2.7.1 Loss function . 33

2.7.2 Gradient descent . 33

2.8 Advanced Training Techniques . 34

2.8.1 Regularization . 35

2.8.2 Batch Normalization . 36

2.9 Popular CNN Architectures . 36

2.9.1 LeNet . 36

2.9.2 AlexNet . 37

2.9.3 VGGNet . 38

2.9.4 GoogLeNet . 38

2.9.5 Residual Network (ResNet) . 39

2.9.6 Densely Connected Network (DenseNet) 39

2.9.7 FractalNet . 39

2.10 Deep learning for digital pathology image analysis 40

2.11 Conclusion . 43

3 DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 44

3.1 Introduction . 44

3.2 Motivation and problem statement . 45

3.3 Lymphoma . 46

3.3.1 Chronic Lymphocytic Leukemia 49

3.3.2 Follicular Lymphoma . 49

3.3.3 Mantle Cell Lymphoma . 49

3.4 Construction of a DL architecture . 50

3.4.1 Casting . 50

3.4.2 Patch generation . 50

3.4.3 Training model . 50

3.4.4 Testing model . 51

3.5 System design . 51

Contents iv

3.5.1 Data Preparation . 52

3.5.1.1 Collect data . 52

3.5.1.2 Preprocessing . 52

3.5.1.3 Splitting Dataset . 55

3.5.2 Training . 57

3.5.3 Testing . 58

3.6 Conclusion . 59

4 DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICA-
TION MODEL 60

4.1 Introduction . 60

4.2 Environments and developing tools . 60

4.3 Developing the back-end . 63

4.3.1 Data Preparation . 63

4.3.2 Building NHL-CNN . 65

4.3.2.1 Import libraries and modules 65

4.3.2.2 NHL-CNN parameter initialization 66

4.3.2.3 Loading the datasets . 67

4.3.2.4 Creating the model . 68

4.3.2.5 Compiling the model . 70

4.3.2.6 Training the model . 71

4.3.2.7 Visualizing loss and accuracy during training 72

4.3.2.8 Predictions on the trained model 73

4.4 Developing the front-end . 76

4.5 Empirical evaluation and results . 77

4.5.1 NHL-CNN architecture . 77

4.5.1.1 Tuning the batch size . 78

4.5.2 Visualize the performance of NHL-CNN 81

4.5.3 Evaluate model on test data . 84

4.5.3.1 Class prediction of an entire image 85

4.6 Conclusion . 88

Conclusion 89

Bibliography 92

List of Figures

1.1 Evolution of Digital pathology over time [1] 6

1.2 Digital Pathology environment [2] . 7

1.3 An illustration of how digital slides are stored in a pyramid structure [2] . 7

1.4 Metastatic region in a lymph node tissue section; (a) : Examples of H&E
staining, (b): IHC staining [3] . 10

1.5 Segmentation and detection tasks addressed [4] 11

1.6 Lymphoma subtypes . 14

1.7 Multiple magnification levels of the same histopathological image. Right
images show the magnified region indicated by red box on the left images.
Left most image clearly shows papillary structure, and rightmost image
clearly shows nucleus of each cell [5]. 16

1.8 Artifacts in WSIs. Top: tumor region is outlined with red marker. The
arrow indicates a tear possibly formed during the tissue preparation pro-
cess. Left bottom: blurred image. Right bottom: folded tissue section
[5]. 17

1.9 Color variation of histopathological images. Both of these two images
show lymphocytes [5]. 17

2.1 Relationship between AI, ML and DL [6] 20

2.2 Machine learning model development and application model for medical
image classification tasks [7] . 22

2.3 Schematic of a multi-layer perceptron . 24

2.4 Basic model of a neuron . 25

2.5 Convolution operation [8] . 26

2.6 CNN with two convolution layers each followed by a pooling layer and
one fully connected layer [9] . 27

2.7 Activation function values . 29

2.8 Max Pooling Operation . 30

2.9 General architecture and training process of Convolutional neural net-
work. A CNN is composed of a stacking of several building blocks: con-
volution layers, pooling layers (e.g., max pooling), and fully connected
(FC) layers [10] . 32

2.10 Gradient descent and iterative updating of learnable parameters to min-
imize loss, [10] . 34

2.11 Dropout concept, (a): A densely connected neural net with two hid-
den layers, (b): An example of a smaller network produced by applying
dropout (right); Crossed units have been deactivated by dropout [11] . . . 35

2.12 Architecture of LeNet model . 37

2.13 Architecture of AlexNet [11] . 37

v

List of Figures vi

2.14 Basic building block of VGG network [11] 38

2.15 Inception layer with dimension reduction [11] 38

2.16 Basic diagram of Residual block [11] . 39

2.17 A 4-layer Dense block [11] . 40

2.18 Detailed FractalNet module on the left and FractalNet on the right [12] . 40

3.1 Diagram of vessels and organs in the lymphatic system 46

3.2 Stages of development, activation and differentiation of B cells related to
different Lymphomas [13] . 47

3.3 Biopsy operation . 48

3.4 Histological images, of with 20 magnification and 1388 1040 pixels, for
subtypes of NHL. (a): CLL, (b): MCL, and (c), extracted from curated
dataset NIA . 48

3.5 CNN framework for NHL classification model (NHL-CNN) 51

3.6 Examples of NHL images from NIA curated dataset 53

3.7 Preprocessing operations . 53

3.8 Some extract image patches, from an image of each class (CLL, FL, MCL) 55

3.9 Data sampling strategies. (a): The whole dataset is split in two distinct
subsets for training and testing purposes. Training dataset is subdivided
to perform cross-validation, (b): k-fold cross-validation. The training
dataset is divided in k subsets of equal size. Training is performed se-
quentially, considering at each iteration a specific subset as validation set
[14] . 56

3.10 Splitting Patches-Dataset . 57

4.1 Data folder structures . 64

4.2 Architecture of the front-end pages . 76

4.3 Home page . 76

4.4 NHL classification page . 77

4.5 NHL-CNN configuration . 78

4.6 NHL-CNN architecture . 79

4.7 The loss on the training dataset over training epochs with batch sizes:
1024, 512 and 64 . 80

4.8 The accuracy on the training dataset over training epochs with batch
sizes: 1024, 512 and 64 . 80

4.9 The loss on the validation dataset over training epochs with batch sizes:
1024, 512 and 64 . 81

4.10 The accuracy on the validation dataset over training epochs with batch
sizes: 1024, 512 and 64 . 81

4.11 The accuracy on the training dataset over training epochs 82

4.12 The accuracy on the validation dataset over training epochs 82

4.13 The loss on the training dataset over training epochs 82

4.14 The loss on the validation dataset over training epochs 83

List of Tables

2.1 Summary of works focused on Deep learning for digital pathology image
analysis . 42

3.1 Total samples dataset and patches-dataset 54

3.2 The used parameters and hyperparameters in convolution neural network 58

4.1 Developing tools for front-end . 61

4.2 Developing tools for Back-end . 62

4.3 Split with a ratio . 63

4.4 Description of the used libraries and modules 66

4.5 Hyper-parameter description . 67

4.6 Function descriptions for loading datasets 69

4.7 Layer descriptions of NHL-CNN model . 70

4.8 Function description for the model compiling 71

4.9 Function descriptions for the model training 71

4.10 Function descriptions for evaluated model 73

4.11 Patch-based method evaluation . 84

4.12 Several examples of correctly and incorrectly classified image patches . . . 85

4.13 Patch-based method testing performance and comparison 85

4.14 Voting scheme and class predictions of entire CLL’s images 87

4.15 Voting scheme and class predictions of entire FL’s images 88

4.16 Voting scheme and class predictions of entire MCL’s images 88

vii

Abbreviations

ACC: Accuracy

ANN: Artificial Neural Network

AI: Artificial Intelligence

CAD:Computer-Aided Diagnosis

CLL: Chronic Lymphocytic Leukemia

CNN: Convolutional Neural Network

DP: Digital Pathology

DL: Deep Learning

F1: F1-score

FL: Follicular Lymphoma

H&E: Hematoxylin and Eosin

HL: Hodgkin Lymphomas

IDC: Invasive Ductal Carcinoma

MCL: Mantle Cell Lymphoma

MLP: Multilayer Perceptron’s

NIA: National Intelligence Authority

NHL: Non-Hodgkin Lymphomas

NHL-CNN: Deep learning CNN for classifying the NHL subtypes

PR: PRecision

R-Net: Recurrent U-Net

ReLU: Rectified Linear Units

RE: REcall

SGD: Stochastics Gradient Descent

WHO: World Health Organization

WSI: Whole Slide Image

viii

Introduction

Digital Pathology (DP) includes the process of digitizing histopathology slides using

whole-slide scanners as well as the analysis of these digitized whole-slide images (WSI)

using computational approaches. Such scanners were introduced two decades ago (around

1999), but the roots of digital pathology can be traced back to the 1960s, when Pre-

witt and Mendelsohn [15] devised a method to scan simple images from a microscopic

field of a common blood smear. However, over the past two decades, technological ad-

vances have enabled efficient digitization of whole-slide images, subsequently helping to

streamline pathology workflows across pathology labs worldwide [1].

The advantages of these developments are many: remote diagnostics, immediate avail-

ability of archival cases, easier consultations with expert pathologists, and perhaps the

most significant benefit, the possibility for computerized or computer-aided diagnos-

tics (CAD) [16]. These systems have the potential to aid pathologists in their clinical

decisions associating image information with diseases features [17].

The application of CAD for histopathology can be classified into three main groups [3]:

the first is the detection, segmentation and quantification of important tissue structures,

the second is the classification of histopathology imagery based on grade or lesion type

and the last is the disease diagnosis and prognosis.

In this master’s project, we are interested in the design of a CAD system for the classi-

fication of Non-Hodgkin Lymphomas (NHL) subtypes on whole slide images.

Lymphoma is a clonal malignancy of lymphocytes, either T cells or B cells. However, 85%

of cases are derived from B lymphocytes [18]. Lymphoid malignancies are diagnosed in

280,000 people annually worldwide and include at least 38 entities according to the World

Health Organization (WHO) Classification of Lymphoid Malignancies [19]. There are

1

Introduction 2

at least 38 subtypes of Lymphoma cancer [20] which are generally classified as Hodgkin

Lymphomas (HL) and Non-Hodgkin Lymphomas (NHL).

NHL is one of the common malignant tumors with the fastest growth rate [21]. The

Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL) and Mantle Cell

Lymphoma (MCL) are the major types of NHL [22].

To differentiate these diseases, a pathologist analyses tissue samples stained with Hematoxylin-

Eosin (H&E) for recognizing important regions for diagnoses, such as nuclei and glan-

dular structures, and their features. However, the distinction between them represents

a major challenge for pathologists [23]; owing to the wide range of clinical presentations

and histopathological features. Even the expert pathologist, sometimes, finds difficul-

ties to differentiate these lymphomas subtypes of H&E. These challenges have made it

necessary to adapt modern machine learning methods, such as Deep Learning (DL) [24]

to solve clinically relevant tasks in diagnostic pathology.

Deep learning has various closely related definitions or high-level descriptions, one of

which is :” a class of machine learning techniques, where many layers of information

processing stages in hierarchical supervised architectures are exploited for unsupervised

feature learning and for pattern analysis/classification” [25]. The essence of deep learning

is to compute hierarchical features or representations of the observational data, where

the higher-level features or factors are defined from lower-level ones [11].

Convolutional neural networks (CNNs) are a type of discriminative deep architecture

consisting of a convolutional layer and pooling layer which subsamples the output of the

convolutional layer and reduces the data rate of the layer below. These layers are often

stacked layers [24].

The emergence of deep learning, in particular, CNN, has also energized the medical imag-

ing field [9], [26], [27] and enabled development of diagnostic tools displaying remarkable

accuracy [14]- [28]. This motivates the use of CNNs for classifying NHL subtypes on

whole slide images.

In this setting, the aim of this work is to provide an overview of the DP tasks, and

how DL methods have the potential for being the unifying approach for the many tasks

in DP, by presenting a specific application for Non-Hodgkin Lymphomas diagnostic,

which corresponds to 70% of Lymphomas cases and represents a major challenge for

Introduction 3

pathologists due to its intrinsic complexity [29]. In addition, the distinction between its

subtypes (CLL, FL and MCL) are essential for disease monitoring, identification of its

stage and orientation towards appropriate treatments for the patient.

In this context, the dissertation is structured as follows:

The first chapter (1) offers a brief overview of DP domain and the variety of image

analysis tasks in this domain, including detection and counting, segmentation, and tissue

classification.

The second chapter (2) provides an understanding of the principles of machine learning,

artificial neural networks and recent advances in convolutional neural networks, focusing

on the applications of convolutional neural networks in the DP field.

The chapter (3) presents definitions and details about Lymphoma and its different sub-

types considered in this study. A new deep neural network framework for classifying

NHL subtypes on whole slide images is also described in this chapter.

The chapter (4) describes the detailed design and tool used in this project, and how to

implement the deep learning system for classifying NHL subtypes. Empirical evaluation

and results are also presented in this chapter.

In conclusion, we summarize and review our ideas and results by giving possible im-

provements and some perspectives.

Chapter 1

WHOLE SLIDE IMAGING IN

DIGITAL PATHOLOGY

1.1 Introduction

In clinical medicine, histopathology refers to the microscopic examination of stained

tissue biopsies in order to study disease. Histopathology is the gold standard for tissue

diagnosis and thereby confirms clinical suspicions enabling treatment to proceed and

provide data to inform treatment of neoplasic diseases and the patient’s prognosis.

Digital pathology (DP) is the conversion of the light microscope image of a slide into

a set of digitized files that allow the reproduction of the original slide on a computer

workstation; it is also called virtual microscopy or whole slide imaging. Digitization

also allows for the manipulation of the image and or its data to derive information

of diagnostic, prognostic or therapeutic benefit, which would otherwise not normally be

readily available. The field of digital pathology has exploded and is currently regarded as

one of the most promising avenues of diagnostic medicine in order to achieve even better,

faster and cheaper diagnosis, prognosis and prediction of cancer and other important

diseases.

This chapter introduces the digital analysis of scanned tissue slides and outlines the

current state of the technical and workflow aspects of digitizing glass slides as well as

their characteristics. In addition, it provides examples of areas in which these tools are

4

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 5

currently utilized to generate data in preclinical and clinical workflows that go beyond

the conventional histopathological data provided by manual pathology review.

1.2 Digital pathology

Digital Pathology (DP) is the process by which histology slides are digitized to pro-

duce high-resolution images. It is becoming increasingly common due to the growing

availability of whole slide digital scanners [1]. It incorporates the acquisition, manage-

ment, sharing and interpretation of pathology information, including slides and data, in

a digital environment.

Digital pathology is the technique of analyzing high-resolution digitally scanned his-

tology images, which may then take advantage of computational tools and algorithms

[16]. In the first step, the whole histology glass slide is scanned with the help of a

high-resolution image scanner. This image information is then shared with a distant

pathologist using a high-speed Internet connection. Whole-slide imaging systems scan

the slides at 20x, 40x, and even 100x with high precision. Whole-slide scanned im-

ages are remotely consulted for a second opinion, which saves time, cost, and physical

transportation of slides and prevents slide damage.

The role of computer-based imaging is very important and helps pathologists in making

a decision. Therefore, digital pathology is an intersection of pathology and computers

that is capable of replacing the conventional microscope-based diagnosis in the near

future [30].

1.3 The roots of digital pathology

The origin of analyzing images with objective tools is almost as old as microscopy itself

[31]. It started with measuring and counting when Leeuwenhoek developed a system to

measure microscopic objects in the 17th century.

Although there were many incremental advances throughout the centuries, image anal-

ysis remained largely unchanged until the advent of digital imaging and computerized

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 6

analysis in the second half of the last century. From the 1970s on, new tools were

developed that allowed for easier measurement of cellular or tissue components.

In 1980, video cameras became widely available, leading to further improvement of

available systems [2].

Around the year 2000, digital slide scanners became commercially available, and whole-

slide imaging(WSI) started to become increasingly common [1]. The rapid progress of

WSI technology, along with advances in software applications and high-speed network-

ing, have made it possible to fully integrate digital pathology into pathology workflows.

Digital pathology enables pathologists to engage, evaluate, and collaborate rapidly and

remotely, with transparency and consistency, thus improving efficiency and productiv-

ity. The future of digital pathology could eventually encompass enhanced translational

research, computer aided diagnosis (CAD) and personalized medicine.

Figure 1.1: Evolution of Digital pathology over time [1]

1.4 Whole-slide imaging

In the last decade, digital imaging in pathology has been significantly impacted by the

development and application of whole slide imaging (WSI) technology. The automated

WSI scanner is a robotic microscope capable of digitizing an entire glass slide, using

software to merge or stitch individually captured images into a composite digital image.

The critical components of an automated WSI device (system) include the hardware

(scanner composed of an optical microscope and digital camera connected to a com-

puter), software (responsible for image creation and management, viewing of images,

and image analysis where applicable), and network connectivity. Whole slide imaging

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 7

technology has evolved to the point where digital slide scanners are currently capable

of automatically producing high-resolution digital images within a relatively short time

[32].

The virtual image may represent an entire glass slide or a user-selected area of the glass

slide, and is often referred to as a whole slide image or digitized slide. Upon retrieval

of the digital file, the captured image of the slide can be viewed on a computer monitor

without the use of an actual microscope. The software interface used to view digital

slides simulates the operation of light microscopy (see Figure 2.13) . Several types of

WSI scanners have been developed by vendors, all capable of producing automated,

high-speed, high-resolution whole slide digital images [33].

Figure 1.2: Digital Pathology environment [2]

Whole slide digital images are giga-pixel images that are generally stored in a multires-

olution pyramid structure [2]. These files contain multiple down sampled versions of the

original image (see Figure 2.14). Each image in the pyramid is stored as a series of tiles,

to facilitate rapid retrieval of subregions of the image.

Figure 1.3: An illustration of how digital slides are stored in a pyramid structure [2]

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 8

Whole slide imaging technology has several advantages over conventional microscopy

[16] such as:

1.4.1 Routine Histopathology

Pathology as a practice vitally relies on the accurate interpretation of microscopic im-

ages in order to correctly diagnose patients and guide therapeutic decision making. With

the advent of whole slide imaging (WSI), pathologists have begun to transfer the act

of viewing glass slides from the microscope to the computer monitor. The advantage

of digital pathology is using digital scanners and computer software to process, analyze

and share digital images of tissues electronically with doctors or entire teams of doctors

around the world. Once the image of the tissue is captured, it can be used indefinite

amount of times for diagnostics, sharing, and educational purposes. The goal of pathol-

ogy digitalization is not to replace pathologists with computers, but to use computers

for menial and time-consuming tasks. This way, pathologists will have more time to

spend on making better diagnosis, and for a lab this means more time for improving

planning and sample tracking.

1.4.2 Telepathology and Data Transmission

One of the earliest uses of digital pathology was the rapid transmission of pathologic

data between pathologists and other pathologists, clinicians, or collaborators. Initially,

this involved the transmission of static images between pathologists, but in recent years,

digital pathology has been enhanced through the use of whole-slide imaging.

1.4.3 Education

Digital pathology is today widely used for educational purposes in telepathology and

teleconsultation as well as in research projects. Digital pathology allows to share and

annotate slides in a much easier way and to download annotated lecture sets generates

new opportunities for e-learning and knowledge sharing in pathology.

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 9

1.4.4 Pathology Archiving

Manually filing glass slides requires physical space to store the slides with the risk that

they can be misfiled, broken, or fade over time. A digital archive may provide a long-

term storage solution, allowing for only tissue blocks to be physically stored. In addition,

the digital archive can include associated metadata, allowing for retrieval of both the

image file and metadata together and for the retrieval of images using metadata-based

searches.

1.5 Histopathology

Histopathology refers to the examination of tissue in order to study the manifestations

of disease [34]. The name Histopathology is derived from the Greek word for tissue =

Histos, disease = Pathos and Logos = the study of.

In order to produce a translucent slice of tissue which can be observed under a light

microscope, a series of preparation phases must be performed. Prior to tissue processing,

a biopsy is obtained from the patient, which is transported to a pathology laboratory in

sealed containers to preserve the tissue.

The procedure for preparation of tissue sections consists of the following steps [3]]:

- Collecting the tissue removed from the body for diagnosis.

- Applying a fixative to preserve the tissue.

- Embedding the tissue in paraffin.

- Cutting the tissue into thin (3-5 µm) sections and mounting it on glass slides,

- Treating the tissue with multiple contrasting stains to highlight different tissue struc-

tures and cellular features.

These steps are usually performed by a pathology lab technician who then sends the

specimen to a pathologist for interpretation.

Staining is one of the most important steps in tissue preparation. This is because most

cells are colorless and transparent. Therefore, histological sections have to be stained

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 10

to highlight important features of the tissue as well as to enhance the tissue contrast.

Microscopical evaluation of such stained tissue sections provides invaluable information

to the pathologists for diagnosing and characterizing various pathological conditions.

Hematoxylin and Eosin (H&E) staining is the most commonly used staining technique

in histopathology. Hematoxylin stains cell nuclei blue, and the counter-stain eosin stains

cytoplasmic and non-nuclear components in different shades of pink. H&E staining is

non-specific, meaning that it stains most of the cells in much the same way. Specific

staining techniques are those that selectively stain particular chemical groupings or

molecules within cells or tissues. Immunohistochemistry (IHC), as an example, makes it

possible to visualize the distribution and localization of specific cellular components

within a cell or tissue. Figure 1.4 shows examples of H&E and IHC staining of a

metastatic region in a lymph node tissue section. the tumor area can be well detected by

the use of IHC [3]. Histopathological analysis of breast tissue specimens almost always

starts with a careful examination of H&E stained specimens.

Figure 1.4: Metastatic region in a lymph node tissue section; (a) : Examples of H&E
staining, (b): IHC staining [3]

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 11

1.6 Histopathological image analysis

DP is becoming increasingly common due to the growing availability of whole slide

digital scanners.These digitized slides afford the possibility of applying image analysis

techniques to DP for applications in detection, segmentation, and classification [4].

The figure 2.16 presents a list of the segmentation and detection tasks addressed. These

tasks have been chosen as they represent the ensemble of critical components necessary

for most of the pertinent pathology tasks (e.g., disease grading, mitotic counting) and

thus span the current challenges in the DP image analysis space [1].

Figure 1.5: Segmentation and detection tasks addressed [4]

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 12

1.6.1 Segmentation and Detection Tasks

The term ”segmentation” represents a process in which an image is spatially parsed into

constituent parts that have some significance or utility. Segmentation can be applied

to a histology image to delineate an accurate boundary for histologic primitives (i.e.,

nuclei, epithelium, tubules, and Invasive ductal carcinoma) so that precise morphological

features can be extracted [27].

Detection tasks (i.e., lymphocyte and mitosis detection) are different from segmentation

tasks in that the goal is typically to simply identify the center of the primitive of interest

and not explicitly extract the primitive contour or boundary. Segmentation typically

tends to be more challenging than detection, especially in the cases where the primitives

of interest have multiple possible manifestations (e.g., mitotic cycles). Thus, a single

monolithic classifier or model may not be able to capture the full range of diversity

in presentation (i.e., the constellation of visual queues and features used to identify a

particular histologic primitive) [35].

1.6.1.1 Nuclei segmentation

Nuclei segmentation is a very import problem in the field of digital pathology for several

reasons (Figure 2.16.(a)) . First, nuclei morphology is a key component in most cancer

grading shame, Second, and efficient nuclei segmentation techniques can significantly

reduce the human effort for cell level analysis [Irshad, 2014]. However, segmentation of

nuclei is a complicated task : tissue type, staining differences and cell type convey them

different visual characteristics, which makes it very difficult to design traditional image

segmentation algorithms that work satisfactorily for all of these different cases [27].

1.6.1.2 Epithelium Segmentation

Most of cases, the regions of cancer are manifested in the epithelium area, therefore

epithelium and stoma regions are very important for identifying the cancer cancerous

cells. It is very hard to predict the overall survival and outcome of breast cancer patients

based on the histological pattern within Stroma region. Epithelium segmentation can

help to identify the cancerous region where most of the cancer cells manifests (Figure

2.16.(b)) [36]

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 13

1.6.1.3 Tubule segmentation

The aggressiveness of cancer can be determine based on the morphology of tubule from

the pathological images. The tubule region (Figure 2.16.(c)) become massively disorga-

nized in the later stage of cancer [37].

1.6.1.4 Lymphocyte detection

Lymphocytes, a subtype of white blood cells, are an important part of the immune

system. Lymphocytic infiltration is the process by which the density of lymphocytes

greatly increases at sites of disease or foreign bodies, indicating an immune response.

A stronger immune response has been highly correlated to better outcomes in many

forms of cancer, such as breast and ovarian. As a result, identifying and quantifying the

density and location of lymphocytes has gained a lot of interest recently, particularly in

the context of identifying which cancer patients to place on immunotherapy.

The main challenges and applications of lymphocyte detection (Figure 2.16.(d)): first, in

general lymphocytes looks like a blue tint from the absorption of hematoxylin. Second,

the appearance and other morphology is very similar in hue to nuclei. The applications

of Lymphocyte detection are to identify cancer patient to place on immunotherapy and

many more [4].

1.6.1.5 Mitosis detection

The cell growth rate can be determined with counting of mitotic events from the patho-

logical images which is an important aspect to determine the aggressiveness of cancer

diagnosis. Presently, the manually counting process is applied in pathological practice

that is extremely difficult and time consuming. Therefore, automatic mitosis detection

(Figure 2.16.(e))approach has efficient application in pathological practice [4].

1.6.1.6 Invasive ductal carcinoma detection

One of the very common type of breast cancer is Invasive ductal carcinoma (IDC) and

most of the times pathologist focus on regions to identify of IDC cancer. A common

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 14

preprocessing step called automatic aggressiveness grading method is used to define the

exact region of IDC from whole slides images (Figure 2.16.(f)) [28].

1.6.2 Tissue-Based Classification Task

Another set of use cases for digital pathology is tissue level classification, for example,

Lymphoma subtype identification. Lymphoma is cancer that begins in infection-fighting

cells of the immune system, called lymphocytes. Where, in some cases even the expert

pathologist sometimes phases difficulties to differential Lymphoma subtypes. where its

subtypes identification In the field of pathology.

As opposed to explicitly identifying individual tissue-based primitives (e.g., mitoses,

nuclei) and trying to identify primitive specific features to make predictions regarding

tissue class, an alternative strategy is to directly learn the set of features representative

of the tissue class via machine learning methods. The machine learning classifier could

thus be trained to self-discover the nuanced disease patterns within each class, however

it is generally based on explicit primitive identification and a comprehension of the

(potentially unknown) domain specific relationships of the primitives.

Figure 1.6: Lymphoma subtypes

1.7 Problems specific to histopathological image analysis

Histopathological image has some specific characteristics, which need computational

methods to treat them. According to [5], they can be summarized as follow:

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 15

1.7.1 Enormous density of data

One of the principal challenges in analysis of digital histopathology data is the enormous

density of data that the algorithms have to contend with, compared with radiological

and other imaging modalities. For instance, the largest radiological datasets obtained on

a routine basis are high-resolution chest CT scans comprising approximately 512 × 512

× 512 spatial elements or approximately 134 million voxels. A single core of prostate

biopsy tissue digitized at 40× resolution is approximately 15,000 × 15,000 elements

or approximately 225 million pixels. To put this in context, a single prostate biopsy

procedure can comprise anywhere between 12 and 20 biopsy samples or approximately

2.5 - 4 billion pixels of data generated per patient study [38].

Images with large size often need to be resized into smaller size which is enough for

sufficient distinction, as increase in the size of the input image results in the increase

in the parameter to be estimated, the required computational power, and memory.

However, resizing the entire WSI, which contains many cells, to a smaller size such as

256 × 256 would lead to the loss of information at cellular level, resulting in marked

decrease of the identification accuracy. Therefore, the entire WSI is commonly divided

into partial regions of about 256 × 256 pixels (”patches”), and each patch is analyzed

independently, such as detection of regions of interest [5].

1.7.2 Different levels of information

Tissues are usually composed of cells, and different tissues show distinct cellular fea-

tures. Information regarding cell shape is well captured in high-power field microscopic

images, but structural information such as a glandular structure made of many cells are

better captured in a lower-power field. The images are taken at multiple magnifications

would each contain important information Figure 1.7. Pathologists diagnose diseases

by acquiring different kinds of information from the cellular level to the tissue level by

changing magnifications of a microscope. Even in image analysis, researches utilizing

images at different magnifications exist [5]. However, it is difficult to handle the im-

ages at its original resolution directly, images are often resized to correspond to various

magnifications and used as input for analysis. Regarding diagnosis, the most informa-

tive magnification is still controversial [39], but improvement in accuracy is sometimes

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 16

achieved by inputting both high and low magnification images simultaneously, proba-

bly depending on the types of diseases and tissues, and the used algorithm in analysis

operation [40].

Figure 1.7: Multiple magnification levels of the same histopathological image. Right
images show the magnified region indicated by red box on the left images. Left most
image clearly shows papillary structure, and rightmost image clearly shows nucleus of

each cell [5].

1.7.3 WSI as orderless texture-like image

Pathological images show repetitive pattern of minimum components (usually cells).

Therefore, it is rather closer to texture than object. The analysis of these images need

methods which utilize texture structure more intensively, such as gray level co-occurrence

matrix [41].

1.7.4 Color variation and artifacts

WSIs are created through multiple processes as it is introduced in previous section;

pathology specimens are sliced and placed on a slide glass, stained with Hematoxylin

and Eosin, and then scanned. At each step undesirable effects, which are unrelated to

the underlying biological factors, could be introduced. For example when tissue slices

are being placed onto the slides, they may be bent and wrinkled; dust may contaminate

the slides during scanning; blur attributable to different thickness of tissue sections may

occur Figure 1.8; and sometimes tissue regions are marked by color markers [5].

Another serious artifact is color variation as shown in Figure 2.9. The sources of variation

include different lots or manufacturers of reagents, thickness of tissue sections, staining

conditions and scanner models.

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 17

Figure 1.8: Artifacts in WSIs. Top: tumor region is outlined with red marker. The
arrow indicates a tear possibly formed during the tissue preparation process. Left

bottom: blurred image. Right bottom: folded tissue section [5].

Figure 1.9: Color variation of histopathological images. Both of these two images
show lymphocytes [5].

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 18

To address this issue, various methods have been proposed so far including conversion to

gray scale, color augmentation , and color normalization [42]. Conversion to grayscale

is the easiest way, but it ignores the important information regarding the color repre-

sentation used routinely by pathologists. In contrast, color normalization tries to adjust

the color values of an image on a pixel-by-pixel basis so that the color distribution of

the source image matches to that of a reference image. However, as the components

and composition ratios of cells or tissues in target and reference images differ in general,

preprocessing such as nuclear detection using a dedicated algorithm to adjust the com-

ponent is often required. For this reason, color normalization seems to be suitable when

WSIs analyzed in the tasks contain, at least partially, similar compositions of cells or

tissues.

1.8 Requirement of design Computer-aided diagnosis sys-

tems for histopathology

Computer-aided detection (CADe) and computer-aided diagnosis (CADx) refer to com-

puterized procedures which assist doctors in the interpretation of medical images. CADe

and CADx are similarly represented as CAD. Application of CAD for histopathology

can be broadly categorized into three major groups [3]:

- Detection, segmentation, and quantification of important tissue structures, for exam-

ples: detection and segmentation of nuclei to analyze nuclear morphology as one

of the hallmarks of cancerous conditions, segmentation of glandular structures and

analysis of the morphology of the gland as the key criterion for cancer grading (e.g.

colon cancer), and detection of cancer metastases in lymph node sections.

- Classification of histopathology imagery based on grade or lesion type, in this case,

CAD may produce objective and accurate classification results to aid the decision

of the pathologist. Examples applications are: Gleason scoring for prostate cancer,

classification of breast proliferative lesions into benign, ductal carcinoma in-situ

(DCIS), and invasive cancer.

Chapter 1. WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY 19

- Disease diagnosis and prognosis based on the assessment of subtle sub-visual changes

in the patterns of important structures in histopathological images that are invis-

ible to or hard to recognize for human vision. This can potentially lead to early

diagnosis and prognosis of a disease and can, in turn, facilitate the subsequent

clinical management of patients.

The requirement to design CAD systems for histopathology that can be used in clinical

practice necessitates the development of robust and high throughput algorithms that

can operate at the WSI level. The underlying fundamental method that sits at the

core of most CAD methodologies is machine learning. The ability of machine learn-

ing algorithms to discover and identify patterns and relationships between them from

complex dataset has made them very popular for the development of computerized and

computer-aided diagnostic systems.

1.9 Conclusion

Throughout this chapter, we focused on the definition of digital pathology field, whole

slide imaging technology and the development of computer- aided or computerized diag-

nosis tools that can operate at the WSI level hence enabling the systems to be utilized

in a practical clinical setting.

In the next chapter, we will introduce machine learning approaches as an alernative

approaches overcoming the development challenges of the computerized and computer-

aided diagnostic systems and that can provide state-of-the-art performance in different

modalities in the field of Bio-medical imagining including Digital Pathology Image Anal-

ysis .

Chapter 2

MACHINE LEARNING

2.1 Introduction

Artificial Intelligence (AI) is part of the interdisciplinary information sciences area that

develops and implements methods and systems that manifest cognitive behaviour [43],

[44]. Since the 1950s, a small subset of Artificial Intelligence (AI), often called Machine

Learning (ML), has revolutionized several fields in the last few decades. Deep Learning

(DL)is a specific approach of ML, which deals with the training of deep neural networks.

The relationship between AI, ML and DL is visualized in Figure 2.1.

Figure 2.1: Relationship between AI, ML and DL [6]

In this chapter, we will present an understanding of the principles of machine learning,

artificial neural networks and recent advances in convolutional neural networks, focusing

on the applications of deep learning approaches in the DP tasks.

20

Chapter 2. MACHINE LEARNING 21

2.2 Machine learning concept

Machine learning is an application of artificial intelligence (AI) that provides systems

the ability to automatically learn and improve from experience without being explicitly

programmed. Machine learning focuses on the development of computer programs that

can access data and use it learn for themselves.

Machine learning models are provided experiences in the form of training data, and are

tuned to produce accurate predictions for the training data by an optimization algorithm.

The main goal of the models are to be able to generalize their learned expertise, and

deliver correct predictions for new, unseen data. A model’s generalization ability is

typically estimated during training using a separate dataset, the validation set, and

used as feedback for further tuning of the model. After several iterations of training and

tuning, the final model is evaluated on a test set, used to simulate how the model will

perform when faced with new, unseen data [45].

In recent years, machine learning has become more and more popular in research and

has been incorporated in a large number of applications, including multimedia concept

retrieval, medical image classification, video recommendation, social network analysis,

text mining, and so forth [46]. For example, if a machine learning algorithm is applied

for medical image classification tasks (Figure 2.1). Then it uses a set of input images

(e.g., tumor images) and to some knowledge about these data (e.g., benign or malignant

tumors), as training data, to identify the image features that, when used, will result in

the correct classification of the image (that is,depicting benign or malignant tumor) as

compared with the supplied labels for these input images (Figure 2.2.a).

Two types of image features can be extracted for image content representation; namely

global features and local features, through information retrieval techniques. Global

features (e.g., intensity, color and texture) describe an image as a whole. While, local

features (e.g., Edges shapes) aim to detect key-points or interest regions in an image

and describe them. Next, the desired features are selected and the noise is removed.

These steps are used in every experiment of machine learning.

If the algorithm system optimizes its parameters such that its performance improves;

that is, more test cases are diagnosed correctly, then it is considered to be learning that

Chapter 2. MACHINE LEARNING 22

task and can make a prediction. In this step, the learned model is applied to new images

to assist radiologists in identifying the tumor type (Figure 2.2.b).

Figure 2.2: Machine learning model development and application model for medical
image classification tasks [7]

The efficiency of machine-learning algorithms highly relied on the goodness of the repre-

sentation of the input data. A bad data representation often leads to lower performance

compared to a good data representation. Therefore, feature engineering has been an im-

portant research direction in machine learning for a long time, which focuses on building

features from raw data and has led to lots of research studies. Furthermore, feature en-

gineering is often very domain specific and requires significant human effort [47].

2.3 Types of machine learning algorithms

Depending on the nature of data and the objective of the study, machine learning al-

gorithms can be broadly divided into: supervised learning, unsupervised learning, rein-

forcement learning and deep learning [26].

2.3.1 Supervised learning

Supervised learning is a learning technique that requires training with labeled data

which has inputs and desired outputs. Given a database of training examples with

Chapter 2. MACHINE LEARNING 23

a specific target label (property) in the form {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi

denotes the feature vector of the ith example and yi is its label, the goal is to construct

a model g : X → Y that can accurately predict the label Y for future instances of

data X. When this target property is a continuous real value, the task is referred to

as regression. Otherwise, when the target property is a finite set of discrete values, the

task is referred to as classification.The common used techniques, in this category, are

neural networks, k-nearest neighbors, support vector machines, decision trees and the

naive Bayes algorithm [7].

2.3.2 Unsupervised learning

Unsupervised learning aims to discover implicit relationships in a given unlabeled train-

ing dataset. The most common unsupervised learning is clustering which automatically

partitions the data into groups of similar items called clusters. K-means is one of the

most used technique, in this category [48].

2.3.3 Reinforcement learning

Reinforcement learning enables learning from feedback received through interactions

with an external environment. It is frequently used for robotics, gaming and navigation.

For example, an agent interacts with its environment and learns its behavior based on

the feedback it receives from its environment. Reward feedback known as reinforcement

signal is required for the agent to learn its behavior. The agent must learn to act so as

to maximize the total expected reward [45].

2.3.4 Deep learning

Deep learning is the advance phase of machine learning which mainly uses neural net-

works for learning and prediction of data. It is a group of different algorithms, which

are used to design complex generalize system that can take any type of problems and

give predictions. They use the deep graph with numerous processing layer, made up of

many linear and nonlinear conversion [11].

Chapter 2. MACHINE LEARNING 24

The main common characteristic of deep learning methods is their focus on feature

learning; automatically learning representations of data. This is the primary difference

between deep learning approaches and more ”classical” machine learning. Discovering

features and performing a task is merged into one problem, and there fore both improved

during the same training process [11] , [24] for general overviews field.

2.4 Artificial neural networks

Artificial neural networks (ANN) are brain inspired networks used in machine learning

applications. They are composed of neurons. Each neuron is connected to other neurons

through adaptive weights. The multi-layer perceptron (MLP) is a form of an ANN which

the neurons are arranged in layers (see Figure 2.3). There are special layers for the input

and output of the neural network. The input layer basically is a set of features connected

by weights to the neurons in the first layer, and the output layer contains the output

activations for the network, which gives the classification. The layers between the input

and output layer are called hidden layers

Figure 2.3: Schematic of a multi-layer perceptron

A neuron k (see Figure 2.4), in ANN, is a unit that computes the dot product of the

inputs X(x1, x2, ..., xm) and their connection weights W (ω1, ω2, ω3, ..., ωkm) and applies

an activation function ϕ(.) to generate the output yk, in the form:

yk = ϕ(vk) + bk (2.1)

Chapter 2. MACHINE LEARNING 25

vk is the linear combination of input signals, it is represented by:

vk =
∑m

i=1ωkixi (2.2)

bk is a bias which is added with a linear combiner of outputs vk,

Figure 2.4: Basic model of a neuron

By layering the neurons and connecting them from an input layer to an output layer,

the overall network represents a function f : x→ y that maps the input signals that go

into the input layer (layer 1) to an output signal that leaves the output layer (layer n).

The goal of f is to approximate a target function f∗ , e.g., a classifier y = f∗(x) that

maps an input x to a category y.

Learning is about finding the weights for the network that makes it solve a specific task

in some optimal sense and is achieved by general-purpose learning procedures such as

the backpropagation algorithm [49].

In the training process, the set of parameters (the weights, biases and thresholds) in all

of the artificial neurons are adjusted in such a way that the output of f approximates

the output of f∗ with the best possible accuracy.

Training a neural network with backpropagation [49] is composed of two simple steps

the feedforward and the backpropagation step. In the feedforward step a training case is

classified using the current neural network. In the backpropagation step a classification

Chapter 2. MACHINE LEARNING 26

error is computed and propagated back through the neural network. The weights are up-

dated based on the error, learning rate and gradient of the activation. Backpropagation

is the method used to achieve gradient descent in neural networks.

2.5 Convolutional Neural Networks

The convolutional neural network (CNN) is a specialized type of neural network model

designed for working with two-dimensional image data, although they can be used with

one-dimensional and three-dimensional data. Central to the convolutional neural net-

work is the convolutional layer that gives the network its name. This layer performs an

operation called a ”convolution”.

In the context of a convolutional neural network, a convolution is a linear operation that

involves the multiplication of a set of weights with the input, much like a traditional

neural network.

The convolution operation can be visualized with the example in Figure 2.5. The kernel

w slides across the input feature map I. At each location, the product between each

element of the kernel and the input element it overlaps with is computed and the results

are summed to obtain the output at the current location. The result is called the output

feature map K.

Figure 2.5: Convolution operation [8]

The following parameters can be adjusted in a convolutional layer [50]:

- the kernel size, also called filter size in neural networks;

- the step size, which is the distance between two consecutive positions of the kernel;

Chapter 2. MACHINE LEARNING 27

- zero padding, which is the number of zeros concatenated at the beginning and end of

an axis.

The resulting effects of those parameter changes on the output are discussed in detail

in [8]. There are numerous variants of CNN architectures in the literature. However,

their basic components are very similar. The general structure of the deep convolutional

neural network was introduced by LeCun [25]. His deep convolutional neural network

architecture called LeNet is basically what is still being used today. It is an architecture

composed of three types of layers, namely convolutional, pooling, and fully-connected

layers Figure 2.6. The convolution layers interchanged with pooling layers [9].

Figure 2.6: CNN with two convolution layers each followed by a pooling layer and
one fully connected layer [9]

Chapter 2. MACHINE LEARNING 28

2.5.1 Convolutional layer

The convolutional layer aims to learn feature representations of the inputs.As shown in

Figure 2.6, convolution layer is composed of several convolution kernels which are used to

compute different feature maps. Specifically, each neuron of a feature map is connected

to a region of neighbouring neurons in the previous layer. Such a neighbourhood is

referred to as the neuron’s receptive field in the previous layer. The new feature map

can be obtained by first convolving the input with a learned kernel and then applying

an element-wise nonlinear activation function on the convolved results.

Note that, to generate each feature map, the kernel is shared by all spatial locations of

the input. The complete feature maps are obtained by using several different kernels.

Mathematically, the feature value at location (i, j) in the kth feature map of lth layer,

zli,j,k, is calculated by:

zli,j,k = ωlT

k x
l
i,j + blk (2.3)

where ωlT

k and blk are the weight vector and bias term of the kth filter of the lth layer

respectively, and xli,j is the input patch centered at location (i, j) of the lth layer. Note

that the kernel ωlT

k that generates the feature map zl:,:,k is shared. Such a weight sharing

mechanism has several advantages such as it can reduce the model complexity and make

the network easier to train.

The activation function introduces nonlinearities to CNN, which are desirable for multi-

layer networks to detect nonlinear features. Let a(·) denote the nonlinear activation

function. The activation value ali,j,k of convolutional feature zli,j,k can be computed as:

ali,j,k = a(zli,j,k) (2.4)

Typical activation functions are sigmoid (sig), tanh and rectified linear unit ReLu [51]

see Figure 2.7, where x is the feature value zli,j,k at location (i, j) in the kth feature map

of lth layer.

Chapter 2. MACHINE LEARNING 29

sig(x) =
1

1 + e−x
(2.5)

tanh(x) =
e2x − 1

e2x + 1
(2.6)

ReLu(x) = max(0, x) (2.7)

Figure 2.7: Activation function values

2.5.2 Pooling layer

The pooling layer aims to achieve shift-invariance by reducing the resolution of the fea-

ture maps. It is usually placed between two convolutional layers. Each feature map of

a pooling layer is connected to its corresponding feature map of the preceding convo-

lutional layer. Denoting the pooling function as pool(·), for each feature map al:,:,k we

have:

yli,j,k = pool(alm,n,k) ∀(m,n) ∈ Rij (2.8)

Chapter 2. MACHINE LEARNING 30

Where Rij is a local neighbourhood around location (i, j). One of the most popular

pooling operations is called max pooling [52], which returns the maximum input within

a local neighbourhood Rij . Figure 2.8 shows the operation of max pooling.

Figure 2.8: Max Pooling Operation

2.5.3 Fully-connected layers

After several convolutional and pooling layers, there may be one or more fully-connected

layers which aim to perform high-level reasoning [53]. They take all neurons in the

previous layer and connect them to every single neuron of current layer to generate

global semantic information.

The last layer of CNNs is an output layer, or classification Layer, for classification

tasks. This is the fully connected layer, which computes the score of each class from the

extracted features from a convolutional layer in the preceding steps.

The final layer feature maps are represented as vectors with scalar values,which are

passed to the fully connected layers that outputs a vector of K dimensions, where K is

the number of classes that the network will be able to predict. This vector contains the

probabilities for each class of any image patch being classified.

There are no strict rules on the number of layers which are incorporated in the network

model [51]. However, in most cases, two to four layers have been observed in different

architectures including LeNet [6], AlexNet [54], and VGG Net [55].

Chapter 2. MACHINE LEARNING 31

2.6 Network parameters and required memory for CNN

The number of computational parameters is an important metric to measure the com-

plexity of a deep learning model [11]. The size of the output feature maps can be

formulated as follows:

M =
N − F
S

+ 1 (2.9)

Where N refers to the dimensions of the input feature maps, F refers to the dimensions

of the filters or the receptive field, M refers to the dimensions of output feature maps,

and S stands for the stride length. Padding is typically applied during the convolution

operations to ensure the input and output feature map have the same dimensions. The

amount of padding depends on the size of the kernel. The number of rows and columns,

for padding, is determined by :

P =
F − 1

2
(2.10)

Here P is the amount of padding and F refers to the dimension of the kernels. Several

criteria are considered for comparing the models. However, in most of the cases, the

number of network parameters and the total amount of memory are considered. The

number of parameters (Parml) of lth layer is calculated based on the following equation:

Parml = (F × F × FMl−1)× FMl (2.11)

If bias is added with the weights, then the above equation can be written as follows:

Parml = (F × (F + 1)× FMl−1)× FMl (2.12)

Here the total number of parameters of lth layer can be represented with Pl, FMl is for

the total number of output feature maps, and FMl−1 is the total number of input feature

maps or channels. Thus, the amount of memory (Meml) needs for the operations of the

lth layer can be expressed as:

Meml = (Nl ×Nl × FMl) (2.13)

Chapter 2. MACHINE LEARNING 32

2.7 Training a network

Training a network is a process of finding kernels in convolution layers and weights in

fully connected layers, which minimize differences between output predictions and given

ground truth labels on a training dataset.

Backpropagation algorithm is the method commonly used for training neural networks

where loss function and gradient descent optimization algorithm play essential roles. A

model performance under particular kernels and weights is calculated by a loss function

through forward propagation on a training dataset, and learnable parameters, namely

kernels and weights, are updated according to the loss value through an optimization

algorithm called backpropagation and gradient descent, among others (Figure 2.9).

Figure 2.9: General architecture and training process of Convolutional neural net-
work. A CNN is composed of a stacking of several building blocks: convolution layers,

pooling layers (e.g., max pooling), and fully connected (FC) layers [10]

Chapter 2. MACHINE LEARNING 33

2.7.1 Loss function

A loss function, also referred to as a cost function, measures the compatibility between

output predictions of the network through forward propagation and given ground truth

labels.

Softmax loss is a commonly used loss function which is essentially a combination of

multinomial logistic loss and softmax. Given a training set {(x(i), y(i)); i ∈ 1, ..., N, y(i) ∈

1, ...,K}, where x(i) is the ith input image patch, and y(i) is its target class label among

the K classes. The prediction of jth class for ith input is transformed with the softmax

function:

p
(i)
j =

ez
(i)
j∑k

l=1 e
z
(i)
l

(2.14)

where z
(i)
j is usually the activations of a densely connected layer, so z

(i)
j can be written

as:

z
(i)
j = wT

j + bj (2.15)

Softmax turns the predictions into non-negative values and normalizes them to get a

probability distribution over classes [51]. Such probabilistic predictions are used to

compute the multinomial logistic loss, i.e., the softmax loss, as follows:

ρsoftmax = − 1

N
(

N∑
i=1

k∑
j=1

1
{
yi = j

}
log p

(i)
j (2.16)

2.7.2 Gradient descent

Gradient descent is commonly used as an optimization algorithm that iteratively updates

the learnable parameters, i.e., kernels and weights, of the network so as to minimize the

loss.

The gradient of the loss function provides us the direction in which the function has the

steepest rate of increase, and each learnable parameter is updated in the negative direc-

tion of the gradient with an arbitrary step size determined based on a hyperparameter

called learning rate [10](Figure 2.10).

Chapter 2. MACHINE LEARNING 34

Figure 2.10: Gradient descent and iterative updating of learnable parameters to
minimize loss, [10]

The gradient is, mathematically, a partial derivative of the loss with respect to each

learnable parameter, and a single update of a parameter is formulated as follows:

w = w − αδL
δw

(2.17)

Where w stands for each learnable parameter, α stands for a learning rate, and L stands

for a loss function. It is of note that, in practice, alearning rate is one of the most

important hyperparameters to be set before the training starts.

In practice, for reasons such as memory limitations, the gradients of the loss function

with regard to the parameters are computed by using a subset of the training dataset

called mini-batch, and applied to the parameter updates. This method is called mini-

batch gradient descent, also frequently referred to as stochastic gradient descent (SGD),

and a mini-batch size is also a hyperparameter. In addition, many improvements on the

gradient descent algorithm have been proposed and widely used [56] , such as SGD with

momentum, RMSprop, and Adam.

2.8 Advanced Training Techniques

The advanced training techniques or components which need to be considered care-

fully for efficient training of DL approach. There are different advanced techniques to

apply for training a deep learning model better [11], such as regularization and batch

normalization.

Chapter 2. MACHINE LEARNING 35

2.8.1 Regularization

Overfitting is an unneglectable problem in deep CNNs, it refers to a situation where a

model learns statistical regularities specific to the training set, i.e., ends up memorizing

the irrelevant noise instead of learning the signal, and, therefore, performs less well on

a subsequent new dataset. Overfitting can be effectively reduced by regularization.

There are different regularization approaches that have been proposed in the past few

years for deep CNN. The simplest but efficient approach called “dropout” was proposed

by Hinton in 2012 [57]. In Dropout a randomly selected subset of activations is set to

zero within a layer [11]. The dropout concept is shown in Figure 2.11.

Figure 2.11: Dropout concept, (a): A densely connected neural net with two hidden
layers, (b): An example of a smaller network produced by applying dropout (right);

Crossed units have been deactivated by dropout [11]

Chapter 2. MACHINE LEARNING 36

2.8.2 Batch Normalization

Data normalization is usually the first step of data preprocessing. Global data normal-

ization transforms all the data to have zero-mean and unit variance. However, as the

data flows through a deep network, the distribution of input to internal layers will be

changed, which will lose the learning capacity and accuracy of the network. Ioffe et al in

[58] propose an efficient method called Batch Normalization (BN) to partially alleviate

this phenomenon. It accomplishes the so-called covariate shift problem by a normaliza-

tion step that fixes the means and variances of layer inputs where the estimations of

mean and variance are computed after each mini-batch rather than the entire training

set [51].

2.9 Popular CNN Architectures

In general, the architectures of most deep convolutional neural networks consist of stacks

of several layers and max-pooling layers followed by a fully connected and SoftMax layers

at the end. A detail description of popular [11].

Some examples of such models are LeNet [25], AlexNet [54], and VGG Net [55]. Other

alternatives and more efficient advanced architectures have been proposed including

GoogLeNet [59], Residual Networks [60], DenseNet [61] and FractalNet [12]. The ba-

sic building components (convolution and pooling) are almost the same across these

architectures. However, some topological differences are observed in the modern deep

learning architectures [11].

Of the many DCNN architectures, AlexNet [54], VGG Net [55], GoogLeNet [59], DenseNet

[61] and FractalNet [12] are generally considered the most popular architectures be-

cause of their state-of-the-art performance on different benchmarks for object recognition

tasks. Among all of these structures FractalNet [12].

2.9.1 LeNet

LeNet was introduced by Yan LeCun for digit recognition. The basic configuration of

LeNet-5 is (see Figure2.12): 2 convolutions (conv) layers, 2 sub-sampling layers, 2 fully

Chapter 2. MACHINE LEARNING 37

connected layers, and an output layer with the Gaussian connection. The total number

of weights and Multiply and Accumulates (MACs) are 431k and 2.3M respectively.

Figure 2.12: Architecture of LeNet model

2.9.2 AlexNet

The architecture of AlexNet [54] is shown in Figure 2.13. The first convolutional layer

performs convolution (conv) max-pooling (MXP) with Local Response Normalization

(LRN) where 96 different receptive filters are used that are 11 × 11 in size. The max

pooling operations are performed with 3 × 3 filters with a stride size of 2. The same

operations are performed in the second layer with 5 × 5 filters. 3 × 3 filters are used

in the third, fourth, and fifth convolutional layers with 384, 384, and 296 feature maps

respectively. Two fully connected (FC) layers are used with dropout followed by a

Softmax layer at the end. The AlexNet was the first to show deep learning was effective

in computer vision tasks.

Figure 2.13: Architecture of AlexNet [11]

Chapter 2. MACHINE LEARNING 38

2.9.3 VGGNet

The VGG architecture [55] consists of two convolutional layers both of which use the

ReLU activation function. Following the activation function is a single max pooling

layer and several fully connected layers also using a ReLU activation function. The final

layer of the model is a Softmax layer for classification.

Figure 2.14: Basic building block of VGG network [11]

2.9.4 GoogLeNet

GoogLeNet improved the state of the art recognition accuracy using a stack of Incep-

tion layers (seen in Figure 2.15) that had variable receptive fields, which were created

by different kernel sizes. These kernels allowed for dimensionality reduction before com-

putationally expensive layers.

GoogLeNet consisted of 22 layers in total, which was far greater than any network before

it. However, the number of network parameters GoogLeNet used was much lower than

its predecessor AlexNet or VGG.

Figure 2.15: Inception layer with dimension reduction [11]

Chapter 2. MACHINE LEARNING 39

2.9.5 Residual Network (ResNet)

ResNet is developed with many different numbers of layers; 34, 50,101, 152,and even

1202. The popular ResNet50 contained 49 convolution layers and 1 fully connected

layer at the end of the network. The basic block diagram of the ResNet architecture

is shown in Figure 2.16. ResNet is a traditional feedforward network with a residual

connection

Figure 2.16: Basic diagram of Residual block [11]

2.9.6 Densely Connected Network (DenseNet)

DenseNet consists of densely connected CNN layers, the outputs of each layer are con-

nected with all successor layers in a dense block. Therefore, it is formed with dense

connectivity between the layers rewarding it the name “DenseNet”. This concept is

efficient for feature reuse, which dramatically reduces network parameters. DenseNet

consists of several dense blocks and transition blocks, which are placed between two

adjacent dense blocks. The conceptual diagram of a dense block is shown in Figure 2.17.

2.9.7 FractalNet

The architecture of FractalNet is an advanced and alternative architecture of ResNet

model, which is efficient for designing large models with nominal depth, but shorter

Chapter 2. MACHINE LEARNING 40

Figure 2.17: A 4-layer Dense block [11]

paths for the propagation of gradient during training. This concept is based on drop-

path which is another regularization approach for making large networks. As a result,

this concept helps to enforce speed versus accuracy tradeoffs. The basic block diagram

of FractalNet is shown in Figure 2.18.

Figure 2.18: Detailed FractalNet module on the left and FractalNet on the right [12]

2.10 Deep learning for digital pathology image analysis

Deep learning is now one of the most active fields in machine learning and has been shown

to improve performance in image and speech recognition [57], [46], natural language

understanding [62], [63], and most recently, in computational biology [64], [27], [65],

[66].

The potential of deep learning in high-throughput biology is clear [64]: in principle,

it allows to better exploit the availability of increasingly large and high-dimensional

data sets by training complex networks with multiple layers that capture their internal

Chapter 2. MACHINE LEARNING 41

structure. The learned networks discover high-level features, improve performance over

traditional models, increase interpretability and provide additional understanding about

the structure of the biological data.

Most methods in literature, for the analysis of histological images, are based on DL net-

works (e.g., AlexNet [54], ResNet [67], that automatically learn features that optimally

represent the data for the problem at hand. In this context, we can cite some works

which are summarized in Table 2.1.

In [4], a largest comprehensive study of DL approaches in DP, is presented, in this work

AlexNet was adopted for solving different Digital Pathology Image Analysis (DPIA)

problems that are evaluated on different publicly available benchmark datasets 1. re-

lated to seven different tasks in digital pathology. The tasks include Lymphoma classi-

fication, Invasive Ductal Carcinoma (IDC) detection, Nuclei segmentation, Epithelium

segmentation, Tubule segmentation, Lymphocyte detection, and Mitosis detection. Two

performance metrics (accuracy, F-score) are used to evaluated the performances of each

scenario. They have achieved 0.83, 0.84 and 0.83 testing F-score for nuclei, epithelium

and tubule segmentation respectively, 0.90, 0.53 and 0.7648 testing F-score for lympho-

cyte, mitosis and invasive ductal carcinoma detection respectively, and 96.59 testing

accuracy for Lymphoma classification.

The AlexNet model was also adopted in [68], in order to discriminate between benign and

malignant breast cancer tumors. This approach outperformed the previously reported

results obtained by other machine learning models trained with hand-crafted textural

descriptors on the BreaKHis dataset [69].

Three different configurations of ResNet were used by the authors in [70] for the multi-

classification of breast cancer obtaining a remarkable performance on the images pro-

vided for the ICIAR 2018 BACH Challenge [71].

In [72] a deep learning approach is proposed for two different use cases: the detec-

tion of invasive ductal carcinoma in breast histological images and the classification of

lymphoma subtypes. Both use cases have been addressed by adopting a residual convolu-

tional neural network. The performances of each scenario have been evaluated on public

1http://www.andrewjanowczyk.com/use-case-7-Lymphoma-sub-type-classification/

Chapter 2. MACHINE LEARNING 42

datasets2. They have obtained 97.67 testing accuracy for Lymphoma classification and

81.45 testing F-score for invasive ductal carcinoma detection.

In [65], the authors are interested in the distinction between follicular lymphoma (FL),

the second most common subtype of lymphoma, and benign follicular hyperplasia (FH).

They proposed a stochastic Bayesian neural network (BNN) to classify morphological

changes occurring in FL or FH lymph nodes on H&E digital slides. In [66], a Seman-

tic Segmentation model of Histopathological Slides called EU-Net is proposed for the

classification of Cutaneous Lymphoma and Eczema.

References DL networks Addressed tasks

[4] AlexNet Lymphoma classification
Invasive Ductal Carcinoma (IDC) detection
Nuclei segmentation
Epithelium segmentation
Tubule segmentation
Lymphocyte detection
Mitosis detection

[68] AlexNet benign and malignant breast cancer tumors
discrimination

[70] ResNet Detection of invasive ductal carcinoma in
breast histological images
Classification of lymphoma subtypes

[65] ResNet follicular lymphoma (FL), and benign follicular
hyperplasia (FH) distinction

[66] EU-Net Classification of Cutaneous
Lymphoma and Eczema

Table 2.1: Summary of works focused on Deep learning for digital pathology image
analysis

2http://www.andrewjanowczyk.com/use-case-7-Lymphoma-sub-type-classification/

Chapter 2. MACHINE LEARNING 43

2.11 Conclusion

In this chapter, we have provided details of background study on deep learning convolu-

tional neural networks and outlined the basic concepts of Convolutional Neural Networks

and the advanced techniques to apply for training a deep learning model better. In ad-

dition, we have presented survey of the application of DL approaches in DP tasks.

From this study, we can conclude that:

- The choice of a DL network and the training strategy to apply for a given task, depends

on the type of pathological analysis to be performed.

- For a specific task, the performance of the different approaches depends on the adopted

network and the developed training strategy.

- Some work have adopted the same network architecture on the same dataset with

different training strategies, for a specific task, but they got completely different

results

In the next chapter, we will use the concepts of DL with a CNN algorithm to build non-

Hodgkin lymphomas model that can accurately classify the subtypes of non-Hodgkin

lymphomas, on whole-slide images, which correspond to 70% of lymphomas cases and

represent a major challenge for pathologists due to its intrinsic complexity.

Chapter 3

DEEP NEURAL NETWORK

FOR NON-HODGKIN

LYMPHOMAS

CLASSIFICATION

3.1 Introduction

A precise classification on pathological images is an important line of research, as for

the subtypes of Non-Hodgkin’s Lymphomas (NHL). In this chapter, we explore how DL

can be used to accurately classify subtypes of NHL concerning chronic lymphocytic

leukemia (CLL), follicular Lymphoma (FL) and mantle cell Lymphoma (MCL), on

whole slide images, which is the subject of our master’s project.

At the beginning of this chapter, we describe the problematic and the objectives of

our master’s project, and then we give an overview on Lymphoma’s cancer, and the

general form of construction of a DL architecture. Finally, we present the design of our

classification system.

44

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 45

3.2 Motivation and problem statement

Lymphoma is a type of cancer affecting the lymphatic system classified into at least 38

subtypes [20]. These subtypes are divided into Hodgkin Lymphomas (HL) and Non-

Hodgkin Lymphomas (NHL) in accordance with their morphological, immunophenotyp-

ical, genetical and clinical features. Global records of 2012 show that 199 thousand

NHL-related deaths and 254 deaths resulting from HL occurred during that year [21].

Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL) and Mantle Cell

Lymphoma (MCL) are part of the NHL class. This class corresponds to 70% of Lym-

phomas cases and due to its wide range of clinical presentations and histopathological

features, its classification and segmentation still represent a major challenge for pathol-

ogists [23].

In addition, the analyzing histopathological images, in particular, WSIs related of these

NHL subtypes is, however, complicated by several factors. Firstly, histological stains

show a large variability in their color and intensity. Such variations can potentially

hamper the effectiveness of quantitative image analysis. Secondly, tissue preparation

and digitization usually generates lots of artifacts which causes challenges for automated

analysis. Finally, the large size of a WSI as well as the large number of heterogeneous

structures that need to be analyzed inside a WSI make development of an accurate and

reliable computer-aided detection for histopathology a challenge.

Deep learning-based diagnostic systems have recently provided automated methods for

histopathology image analysis [73], [74], which may reduce inter- and intra-observer

variability in cancer diagnosis through an objective analysis.

In our project, we want to use Deep Learning with a convolutional neural network

(CNN) algorithm to build a NHL classification model that can accurately classify the

subtypes of NHL (CLL, FL, MCL) on whole-slide images to help pathologists with this

characterization and diagnosis.

In this context, our project is undertaken with the following objectives:

- Making decisions on selecting proper CNN for NHL datasets

- Accurately classify NHL subtypes, including chronic lymphocytic leukemia (CLL), fol-

licular Lymphoma (FL) and mantle cell Lymphoma (MCL), on whole slide images,

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 46

- Development of an accurate and reliable computer-aided detection for histopathology.

3.3 Lymphoma

Lymphoma is one of the most common cancer whether in less developed or developing

countries [22], which is a type of malignant cancer and begins in infection-fighting cells

of the immune system, called lymphocytes. These cells are in the lymph nodes, spleen,

thymus, bone marrow, and other parts of the body (see Figure 3.1).

Figure 3.1: Diagram of vessels and organs in the lymphatic system

Originating from bone marrow, lymphocytes are subdivided into B lymphocytes, T

lymphocytes and null cells. These type of cancer may develop in B cells as well as in

T cells, however, 85% of cases are derived from B lymphocytes [21] . Development,

activation and differentiation of normal B cells can be divided into three stages: pre-

germinal center, germinal center and post-germinal center. Figure 3.2 represents these

B cell development stages and a few Lymphomas related to each one of them [13].

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 47

Figure 3.2: Stages of development, activation and differentiation of B cells related to
different Lymphomas [13]

The two main types of Lymphoma are Hodgkin Lymphoma (HL) and Non-Hodgkin

Lymphoma (NHL)[22]. The differences in these two types of Lymphoma are certain

unique characteristics of the different Lymphoma cells. However, most people with

Lymphoma have the Non-Hodgkin Lymphoma [13].

Non-Hodgkin Lymphoma is further classified into a variety of subtypes based on the

cell of origin (B-cell or T-cell), and the cell chacteristics. The subtype of Non-Hodgkin

Lymphoma predicts the necessity of early treatment, the response to treatment, the type

of treatment required, and the prognosis [22].

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 48

A biopsy is essential in order to exclude or diagnose Lymphoma types. The biopsy is

a minor operation (Figure 3.3). It takes a sample of tissue (made up of cells) from the

body for examination in a laboratory. The tissue sample itself is sometimes also known

as a ‘biopsy’ or a ‘biopsy sample’. To diagnose NHL, a specialist analyses tissue samples

stained with, for example, Hematoxylin&Eosin (H&E) to identify cancerous regions.

These distinctions are essential for disease monitoring, identification of its stage and

orientation towards appropriate treatments for the patient [20].

Figure 3.3: Biopsy operation

Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL) and Mantle Cell

Lymphoma (MCL) are subtypes of NHL [22]:, where differentiation between them in

H&E , in some cases, is difficult by pathologists. Example of these types are extracted

from curated dataset NIA 1 (see Figure 3.4)

Figure 3.4: Histological images, of with 20 magnification and 1388 1040 pixels, for
subtypes of NHL. (a): CLL, (b): MCL, and (c), extracted from curated dataset NIA

1http://www.andrewjanowczyk.com/use-case-7-Lymphoma-sub-type-classification/

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 49

3.3.1 Chronic Lymphocytic Leukemia

CLL is slow-growing, and starts in the blood and bone marrow. It is considered lympho-

proliferative due to lymphoid cells proliferation. These cells are in their maturing stage

but they are immunologically incompetent. In most cases,it is characterized by small

lymphocytes with regular nuclei and condensed chromatin, without evident nucleoli and

scant cytoplasm. Furthermore, the number of prolymphocytes, characterized by their

medium size with abundant cytoplasm and evident nucleoli, is less than 10% [21]. CLL

may present some similarities with MCL, however these cases can be distinguished by

cellular features. Small lymphocytes with condensed chromatin are predominant, with

variations in their nuclear morphologies [22].

The CLL diagnosis usually begins with lymphocytes counting, that must correspond to

at least5 109 B lymphocytes/L of peripheral blood. The identification of CLL cells in

blood is based on the search for small and mature lymphocytes, with a thin border of

cytoplasm and a dense nucleus with undistinguished nucleoli.

3.3.2 Follicular Lymphoma

FL is a slow-growing form of B-cell Lymphoma. About 20% to 30% of all non-Hodgkin’s

Lymphomas are follicular Lymphoma (FL). This cancer usually starts in people who are

over 65. It usually grows in the lymph nodes and bone marrow.

FL diagnosis is based on lymph node biopsies and must be obtained according to the

World Health Organization classification considering the centroblasts absolute number

in the neoplastic follicle [21]:

- Grade I: between 0 and 5 centroblasts;

- Grade II: between 6 and 15 centroblasts;

- Grade III: more than 15 centroblasts.

3.3.3 Mantle Cell Lymphoma

MCL is a rare and fast-growing cancer. About 6% of all non-Hodgkin’s Lymphomas are

this type. MCL starts in B cells of the ”mantle zone” (an area on the outer edge of the

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 50

lymph nodes). This cancer often grows in the lymph nodes, bone marrow, and spleen.

MCL is diagnosed through the identification of tumors with a morphological analysis

of irregular cell nuclei with small/medium size. However, MCL lymphocytes can be

presented by variant morphologies, such as small round cells and marginal zone-like

lymphocytes. A minority of these cases are correctly identified, which makes advisable

the review by a pathologist [22].

3.4 Construction of a DL architecture

When applying DL to a DP image analysis task four high-level modules need to be

considered [4]:

3.4.1 Casting

To design an appropriate network such as input patch size, number of layers,and con-

volutional attributes we can attempt the popular and successful networks (for example

AlexNet networks) with the popular open-source DL framework. However, finding

the most successful network configuration for a given problem can be a difficult chal-

lenge given the total number of possible configurations one could avail of and also the

concomitant amount of time for training and testing the network.

3.4.2 Patch generation

Once the network is defined, which involves locking down input sizes, image patches

need to be generated to construct the training and validation sets. This stage requires

modest domain knowledge in order to ensure a good representation of diversity in the

training set.

3.4.3 Training model

The training procedure for all tasks is essentially the same and follows the well-established

paradigm laid out in [24]. This strategy utilizes a stochastic gradient descent approach,

with a fixed batch size, (a) a series of mean corrected image patches are introduced to

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 51

the network over a series of epochs, (b) an error derivative calculated, and (c) back-

propagated through the network by updating the network weights. The learning rate is

annealed over time so that a local minimum is reached. The resulting learned weights

(i.e., the model) are stored to be used later at test time.

3.4.4 Testing model

By submitting image patches to the network, of the same size used during training, we

obtain a class prediction from the learned model.

3.5 System design

In order to build a deep learning model for classifying NHL subtypes with CNN that

can accurately classify the subtypes of NHL (CLL, FL, MCL), we propose a NHL-CNN

framework presented, in Figure 3.5, which based on a tissue level classification strategy

that is to directly learn the set of features representative of the tissue class via DL. In

this case, the DL classifier could thus be trained to self-discover the nuanced disease

patterns within each class.

Figure 3.5: CNN framework for NHL classification model (NHL-CNN)

The NHL-CNN framework model contains three main components.

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 52

3.5.1 Data Preparation

Data Preparation is the first step has been applied before feeding the data to the CNN.

It is divided to tree sub-components.

3.5.1.1 Collect data

As in numerous other fields which have adopted supervised deep learning techniques,

collect data is the important step for provide training data for supervised multi-label

learning of patch-level Histological Tissue Type (HTT) in a digitized whole slide image.

There exist many publicly available databases of labeled digital pathology images [75],

which may be broadly classified into three types: government or academic repositories,

educational sites, and grand challenges. Despite wider data publication in the recent

years, much of the published work still employs proprietary WSI data set [4].

In our work, We obtained the Lymphoma sub-types WSI from the National Intelligence

Authority (NIA) curated dataset 2. This dataset was created to mirror real-world situa-

tions and samples prepared by different pathologists at different sites. Selected samples

also contain a larger degree of staining variation than one would normally expect.

The dataset consist of 374 images of size 1388 x 1040. These are further broken down into

113 for the CLL class, 139 for the FL class and 122 for the MCL class. Unfortunately,

there is no description with the data indicating if the prefix of the file name indicates

a unique patient or a unique facility. They did indicate that the data has been curated

from multiple sources to create a real-world type cohort, which contains typical stain

and scanning variances. Figure 3.6 presents some examples of these images.

3.5.1.2 Preprocessing

Before providing the data to CNN, certain image processing techniques [11] can be

applied in order to prepare the data and build a deep learning model.

In our work, the Preprocessing step consists en two operations: Normalization and Patch

Extraction (see Figure 3.7).

2http://www.andrewjanowczyk.com/use-case-7-Lymphoma-sub-type-classification/

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 53

Figure 3.6: Examples of NHL images from NIA curated dataset

Figure 3.7: Preprocessing operations

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 54

a- Normalization operation is used in order to standardize the range of independent

variables or features of data [11]. In addition, the best and easy method is Re-

scaling (min-max normalization). It is also known as min-max scaling or min-max

normalization, it consists in re-scaling the range of features to scale the range in

[0, 1] or [-1, 1], according the following equation:

x′ =
x−min(x)

max(x)−min(x)
(3.1)

Where x is an original value, x′ is the normalized value. In our work, the Normal-

ization consists in re-scaling the range of pixel values of each image in Dataset, to

scale the range in [0, 1].

b- Patch Extraction Most successful approaches to training deep learning models on

WSIs, do not use the whole image as input, and instead extract and use only

a small number of patches [73]. Image patches are usually square regions with

dimensions ranging from 32×32 pixels up to 10000×10000 pixels with the majority

of approaches using image patches of around 256×256 pixels [73]. In this operation,

the extraction of the patches are done from all images, separated into the 3 sub-

types, of normalized Dataset. We use overlapping patches to cover the full image.

In this case, the original size of the image is 1338 × 1040 pixels; the images are

down sampled to 1344 × 1024 to crop the overlapping and sequential patches of

size: 64x64 overlapping by 4x4. Since each image is representative of the entire

class, the extract patches, from an image, have the appropriate class of its root

image and stored in Paches-Dataset. Table 3.1 shows the number of images and

images patches for each class (CLL, FL, MCL) in Dataset and Paches-Dataset

respectively. Some extract images patches, from an image of each class (CLL, FL,

MCL) are presented in Figure 3.8.

CLL FL MCL Total samples

Dataset 113 139 122 374 images

Patches-Dataset 44183 54349 47702 146234 patches

Table 3.1: Total samples dataset and patches-dataset

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 55

Figure 3.8: Some extract image patches, from an image of each class (CLL, FL,
MCL)

3.5.1.3 Splitting Dataset

The most frequent splitting strategy of the Dataset, in deep learning, is to divide the

dataset in training, validation, and test sets. The optimal ratio of samples distributed

in each set varies for each problem [14]. However, as a rule of thumb, a split of 80%

training, 10% validation, and 10% test division is commonly used.

For smaller datasets, the most commonly used sampling strategy is the k-fold cross-

validation [76]. The dataset is divided equally in k folds. For each training, the algorithm

is trained on almost all folds but tested on a single holdout fold of the data. The training

is repeated k times using varying holdout folds. The final performance is the mean of

the k measured performances (Figure 3.9).

Deep learning algorithms generally introduce two significant limitations to systemati-

cally use k-fold crossvalidation [14]. First, training deep learning algorithms on large

datasets usually implies an intensive computational burden which prevents in practice a

high number of training iterations with limited resources. Second, training of deep neu-

ral networks depends on many more hyperparameters than shallower machine learning

algorithms.

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 56

Figure 3.9: Data sampling strategies. (a): The whole dataset is split in two distinct
subsets for training and testing purposes. Training dataset is subdivided to perform
cross-validation, (b): k-fold cross-validation. The training dataset is divided in k subsets
of equal size. Training is performed sequentially, considering at each iteration a specific

subset as validation set [14]

In our work, we have a big Patches-Dataset; it contains 146234 samples (image patches).

To construct the training, validation and test set, from this Patches-Dataset, we use a

split of 70% training, 20% validation, and 10% test division, for the image patches of

each class. (see Figure 3.10).

This division allows multiple trainings using the same training set to search for the

optimal hyperparameters to maximize performance on the validation set. When the

best performance is obtained on the validation set, the algorithm is ultimately used

once on the test set to measure and confirm the final performance.

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 57

Figure 3.10: Splitting Patches-Dataset

3.5.2 Training

The goal of training component is to infer a function that can map the input patches

to their appropriate labels (CLL, FL or MCL) well using Training set. The learning

process is based on convolutional neural network which is a deep neural network of

supervised learning, and its structure includes convolution layers, pooling layers, and

fully connected layers, among which the convolution layer and pooling layer are core

parts to realize feature extraction of CNN.

The structure is first arranged alternately by convolution layer and pooling layer to

achieve the extraction and mapping of local features from the Training set, then succes-

sively arranged by several fully connected layers. The last layer of the network classifies

those feature maps with a soft-max method and gives as output scores corresponding to

the ” probability” that each patch belongs to each of the learned classes.

The initialization of CNN parameters has a big impact on the overall prediction accuracy.

We empirically initialized the hyper-parameters and fine-tuned them during the training

process (Figure 3.5). The details of the hyperparameters used in this study are shown

in Table 3.2.

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 58

Parameters Hyperparameters

Convolutional layer Kernels Kernels size, number of kernels,

stride, padding, activation function

Pooling layer None Pooling methods, filter size, stride, padding

Fully connected layer weights Number of weights, activation function

Others Learning rate, loss function, batch size,

epochs, weights initialization, Dataset splitting

Table 3.2: The used parameters and hyperparameters in convolution neural network

The network is trained for Nb epochs with criteria to decrease learning rate if validation

metrics, concerning the identification accuracy of the CNN model, did not improve after

Nb iterations. Model parameters are saved as a ”snapshot” after each reduction of

validation error. The snapshot that performed best on the validation set was used on

test set.

In this context, a training set is used to train a network, where loss values are calculated

via forward propagation and learnable parameters are updated via backpropagation.

A validation set is used to test the intermediately trained CNN model (Figure 3.5).

The accuracy or error of the CNN learning output from the validation set was used as a

feedback parameter to tune the hyper-parameters,including the number of feature maps,

kernel size of the convolutional layers, and filter size of the pooling layers in the network.

Throughout the training-validation cycles, we tuned the hyper-parameters and updated

the training dataset until the accuracy of the CNN learning reached a satisfactory level.

3.5.3 Testing

A test set is ideally used only once at the very end of the project in order to evaluate the

performance of the final model that is fine-tuned and selected on the training process

with training and validation sets.

Ensemble predictions on test set were analyzed for true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FP). These parameters were used to

calculate a variety of performance metrics, including including precision (PR), recall

(RE), accuracy (ACC), F1-score (F1), according to the following equations:

Chapter 3. DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS
CLASSIFICATION 59

PR =
TP

TP + FP
(3.2)

RE =
TP

TP + FN
(3.3)

ACC =
TP + TN

TP + FP + TN + FN
(3.4)

F1 =
2TP

2TP + FP + FN
(3.5)

3.6 Conclusion

In this chapter, we have presented Lymphoma disease which is one of the most common

cancer whether in less developed or developing countries and the classification of its

subtypes (CLL, FL and MCL) on whole-slide images represent a major challenge for

pathologists. Our proposed methodology to design a NHL classification model, by using

Deep Learning with a convolutional neural network (NHL-CNN), is well detailed.

The environments and developing tools used in the realization of the proposed method-

ology will be described in the following chapter.

Chapter 4

DETAIL DESIGN AND

DEVELOPMENT OF NHL

CLASSIFICATION MODEL

4.1 Introduction

In this chapter, we present the development of detailed design that brings our method-

ology to design a deep learning system for classifying lymphoma subtypes with CNN

(NHL-CNN), proposed in chapter 3, into a completed form of specifications. This stage

includes:

- Defining how the information system should be built (environments and developing

tools)

- Ensuring that the information system is operational and used,

- Ensuring that the information system meets quality standard (i.e., quality assurance).

4.2 Environments and developing tools

For the development of our system, different environments and tools are used,to build

the front-end and back-end of system (see Table 4.1 and Table 4.2). The front-end refers

60

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 61

to the user interface; while ”back-end” refers to parts of a computer application or a

program’s code that allow it to operate.

Tools Logo Descriptions

Brackets is a source code editor with a primary focus on web de-
velopment. Created by Adobe Systems, it is free and open-source
software licensed under the MIT License, and is currently main-
tained on GitHub by Adobe and other open-sourced developers.
It is written in JavaScript, HTML and CSS.

is a micro web framework written in Python. It is classified as
a microframework because it does not require particular tools or
libraries.

Hypertext Markup Language (HTML) is the standard markup
language for documents designed to be displayed in a web browser.
It can be assisted by technologies such as Cascading Style Sheets
(CSS) and scripting languages such as JavaScript.

Cascading Style Sheets (CSS) is a style sheet language used for
describing the presentation of a document written in a markup
language like HTML. CSS is a cornerstone technology of the World
Wide Web, alongside HTML and JavaScript.

JavaScript often abbreviated as JS, is a high-level, inter-
preted programming language that conforms to the ECMAScript
specification. JavaScript has curly-bracket syntax, dynamic
typing,prototype-based object-orientation, and first-class func-
tions.

jQuery is a JavaScript library designed to simplify HTML DOM
tree traversal and manipulation,as well as event handling, CSS
animation, and Ajax. It is free, open-source software using the
permissive MIT License. As of May 2019, jQuery is used by 73%
of the 10 millionmost popular websites.

is a software application for accessing information on theWorld
WideWeb. A web browser is a software application for accessing
information on theWorld WideWeb. Each individual web page,
image, and video is identified by a distinct Uniform Resource Lo-
cator, enabling browsers to retrieve these resources from a web
server and display them on a user’s device.

Table 4.1: Developing tools for front-end

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 62

Tools Logo Descriptions

Python is a programming language created by Guido van Rossum
and first released in 1991. Python is successfully used in thou-
sands of real-world business applications around the world e.g.,
Google and YouTube.The primarily rationale for adopting Python
for ML and DL is because it is a general-purpose programming
language for research, development and production, at small and
large scales. Python features a dynamic type system and au-
tomatic memory management, with a large and comprehensive
libraries for scientific computation and data analysis.

PyCharm is an integrated development environment used in com-
puter programming, specifically for the Python language. It is
developed by the Czech company JetBrains.

ANACONDA is a free and open-source distribution of the Python
and R programming languages for scientific computing, that aims
to simplify package management and deployment. Package ver-
sions are managed by the package management system conda.

TensorFlow is an open-source software library for numerical com-
putation using data flow graphs. TensorFlow was created and is
maintained by the Google Brain team within Google’s Machine
Intelligence research organization for ML and DL. It is currently
released under the Apache 2.0 open-source license.

Keras is Python wrapper library that provides bindings to other
DL tools such as TensorFlow, CNTK, Theano, beta version with
MXNet and announced Deeplearning4j. Keras runs on Python
2.7 to 3.6 and can seamlessly execute on GPUs and CPUs given
the underlying frameworks.

CUDA is a parallel computing platform and application program-
ming interface model created by Nvidia. It allows software de-
velopers and software engineers to use a CUDA-enabled graph-
ics processing unit for general purpose processing-an approach
termed GPGPU.

OpenCV is a library of programming functions mainly aimed at
real-time computer vision. Originally developed by Intel, it was
later supported by Willow Garage then Itseez. The library is
cross-platform and free for use under the open-source BSD license.

NumPy is the fundamental package for scientific computing with
Python. Besides its obvious scientific uses, NumPy can also be
used as an efficient multidimensional container of generic data.

Pandas is a Python package providing fast, flexible, and expressive
data structures designed to make it easier to work with relational
or labelled data.

matplotlib is a plotting library for the Python programming lan-
guage and its numerical mathematics extension NumPy. It pro-
vides an object-oriented API for embedding plots into applications
using general-purpose GUI toolkits like Tkinter, wxPython, Qt,
or GTK+.

Table 4.2: Developing tools for Back-end

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 63

4.3 Developing the back-end

In order to implement our deep learning NHL-CNN model, we have used Python lan-

guage with some well-known API’s and libraries working on the deep learning (CNN).

One of the most powerful and easy-to-use Python libraries for developing and evaluat-

ing deep learning models is Keras; It wraps the efficient numerical computation librarie

TensorFlow.

The following steps present our implementation of deep learning NHL-CNN model with

Python and Keras.

4.3.1 Data Preparation

After searching and downloading the NHL subtypes dataset, firstly, we have applied nor-

malization and patch-extraction operations on each image of dataset to obtain Patches-

dataset which is split in three distinct sets: training, validation and test, using a split

of 70% training, 20% validation and 10% test. The ratio of samples distributed in each

set is determined by experiments.

We have applied split folders.ratio, as Python module, such as it is presented in Listing

4.1 and described in the Table 4.3.

1 import split_folders

2 split_folders.ratio(’ C:/ Users/HP/Desktop/patches_dataset ’, output="C

:/Users/HP/Desktop/final_dataset", seed =1337, ratio =(.7, .2, .1))

Listing 4.1: Split patches dataset with a ratio.

Function Arguments

Split folder.ratio() - input folder; path to patches dataset

- seed; set seed value for shuffling the items; defaults to 1337.

- ratio: division percentage (.7,.2,.1)

- Output folder; path to final dataset

Table 4.3: Split with a ratio

split folders.ratio splits, with a ratio, the input folder ‘patches dataset ’ where we have

stored all of image patch data (Patches-dataset)into: train ’train’, validation ‘val ’ and

test ’test ’ directories contained in output folder ’final dataset ’, under each of the dataset

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 64

directories, we have subdirectories, one for each class (CLL, FL, MCL) where the actual

image files (patch files) will be placed, as shown in the Figure 4.1.

Figure 4.1: Data folder structures

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 65

4.3.2 Building NHL-CNN

4.3.2.1 Import libraries and modules

For building deep neural networks with Keras, we first import the various libraries and

modules as they are presented in Listing 4.2 and described in the following Table 4.4.

1 from keras.preprocessing.image import ImageDataGenerator

2 from keras.models import Sequential

3 from keras.layers import Dropout , Flatten , Dense , Activation

4 from keras.layers.convolutional import Conv2D , MaxPooling2D ,

ZeroPadding2D

5 from keras.optimizers import Adam

6 from keras.layers.normalization import BatchNormalization

7 from keras.regularizers import l2

8 from keras.callbacks import TensorBoard

9 import time

10 from keras.callbacks import ModelCheckpoint

Listing 4.2: Import libraries code

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 66

Libraries/modules Descriptions

Numpy Is the core library for scientific computing

in Python. It provides a high-performance

multidimensional array object, and tools for

working with these arrays.

ImageDataGenrator Is used to load our train, validation datasets

into memory and generate batches of tensor .

image data with real-time data augmentation

Sequential For creating deep learning models where an

instance of the Sequential class is created and

model layers are created and added to it. A

Sequential model is appropriate for a plain

stack of layers where each layer has exactly

one input tensor and one output tensor.

Keras core layers Dense Is used to instantiate a dense layer.

Dropout Applies dropout to the input. Dropout consist

of randomly setting a fraction rate of input units

to 0 at each update during training time,

which helps prevent overfitting

Activation Is used to add an activation function .

to the sequence of layers

Flatten Converts the pooled feature map to a single column

that is passed to the fully connected layer.

Keras conventional layers Conv2D Creates a convolution kernel that is convolved

with the layer input to produce a tensor of outputs

Maxpoling2D Downsamples the input representation by taking the

maximum value over the window defined

by pool size for each dimension along the features axis.

ZeroPadding2D Can add rows and columns of zeros at the top, bottom,

left and right side of an image tensor

Adam Optimizer that implements the Adam algorithm.

Adam optimization is a stochastic gradient descent

method that is based on adaptive estimation of

first-order and second-order moments

BatchNormalization() Normalize and scale inputs or activations.

kernel regularizer Create a regularizer that applies an L2

regularization penalty.

TensorBoard Is a visualization tool provided with TensorFlow

ModelCheckpoint Callback to save the Keras model or model weights

at some frequency

Table 4.4: Description of the used libraries and modules

4.3.2.2 NHL-CNN parameter initialization

Before we can begin to train the network, we have to initialize its parameters. The val-

ues of the used parameters are determined basing on previously suggested values that

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 67

can be found in the literature and by experiments. The details of the hyper-parameters,

used in this study, are described in Table 4.5 and shown in Listing 4.3.

Hyper-parameters Descriptions Values

img width, img heighy Size of input patch (image) 64x64

batch size is a hyperparameter that defines the number of samples to 64

work through before updating the internal model parameters

Steps epoch The number of batch iterations before a training epoch is 1600

considered finished

Steps validation Similar to steps epoch but on the validation data set instead 457

on the training data.

Epochs The number of epochs is the number of complete passes. 40

through the training dataset

The number of epochs is a hyperparameter that defines the

number times that the learning

algorithm will work through the entire training dataset

Class num The number of classes; the simples are assigned one 3

of more than three classes (CLL, FL or MCL).

L2 reg The value of regularization parameter 0

Table 4.5: Hyper-parameter description

1 img_width , img_height = 64, 64

2 batch_size = 64

3 steps_epoch = 1600

4 steps_validation = 572

5 epochs = 40

6 classes_num = 3

7 l2_reg =0.

Listing 4.3: Hyper-parameter initialization

4.3.2.3 Loading the datasets

We have used ImageDataGenrator class to load our train, validation datasets into mem-

ory and Generate batches of tensor image data with real-time data augmentation. The

data is looped over (in batches). In this step, the target size, batch size, normaliza-

tion data and class mode are defined. Next, an iterator is required to progressively load

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 68

images for a single dataset. This requires calling the flow from directory() function and

specifying the dataset directory, such as the train, test, or validation directory. More

details can be found in Table 4.6 and Listing 4.4.

1 train_data_path = ’C:/Users/HP/Desktop/final_dataset/train’ #train_data

path

2 validation_data_path = ’C:/Users/HP/Desktop/final_dataset/val’ #

val_data path

3

4 train_datagen = ImageDataGenerator(rescale =1. / 255) # rescale train

data

5 test_datagen = ImageDataGenerator(rescale =1. / 255) # rescale valid

data

6

7 train_generator = train_datagen.flow_from_directory(

8 train_data_path , #train_data path

9 target_size =(img_height , img_width), #target_size

10 batch_size=batch_size , #batch_size

11 class_mode=’categorical ’) #class_mode

12

13 validation_generator = test_datagen.flow_from_directory(

14 validation_data_path , #val_data path

15 target_size =(img_height , img_width), #target_size

16 batch_size=batch_size , #batch_size

17 class_mode=’categorical ’) #class_mode

Listing 4.4: Loading datasets

4.3.2.4 Creating the model

After loading the datasets and initializing the hyper-parameters, we have use Tensorflow

to design our architecture, according to Listing 4.5, for NHL-CNN, which was determined

after trying many CNN configurations. The Table 4.7 describes the layers of the NHL-

CNN model used.

1 model = Sequential ()

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 69

Function Arguments

ImageDataGenerator - Rescale: we multiply the data by the value provided.

flow from directory - directory: string, path to the target directory, must be set

to the path where our train, validation folders are present.

- target size: the size of our input images, every image will

be resized to this size (64,64)

- batch size: Size of the batches of data, in our case 64 No.

of images to be yielded from the generator per batch (64)

- class mode: because we have three classes in our

dataset this is why we set to”categorical”.

Table 4.6: Function descriptions for loading datasets

2 # Layer 1

3 model.add(Conv2D (64, (11, 11), input_shape =(img_width , img_height ,3),

kernel_regularizer=l2(l2_reg)))

4 model.add(BatchNormalization ())

5 model.add(Activation(’relu’))

6 model.add(MaxPooling2D(pool_size =(3, 3)))

7 # Layer 2

8 model.add(Conv2D (128, (5, 5)))

9 model.add(BatchNormalization ())

10 model.add(Activation(’relu’))

11 model.add(MaxPooling2D(pool_size =(2, 2)))

12 # Layer 3

13 model.add(ZeroPadding2D ((1, 1)))

14 model.add(Conv2D (256, (3, 3)))

15 model.add(BatchNormalization ())

16 model.add(Activation(’relu’))

17 model.add(MaxPooling2D(pool_size =(2, 2)))

18 # Layer 4

19 model.add(Flatten ())

20 model.add(Dense (1000))

21 model.add(BatchNormalization ())

22 model.add(Activation(’relu’))

23 model.add(Dropout (0.25))

24 # Layer 5

25 model.add(Dense (500))

26 model.add(BatchNormalization ())

27 model.add(Activation(’relu’))

28 model.add(Dropout (0.25))

29 # Layer 6

30 model.add(Dense(classes_num))

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 70

31 model.add(BatchNormalization ())

32 model.add(Activation(’softmax ’))

Listing 4.5: Creating NHL-CNN model

Layers Composed of

1 Conv2D(64,(11,11), kernel regularizer, batchNormalization,

activation(ReLU), MaxPooling2d(3,3)

2 Conv2D(128,(5,5)),batchNormalization, activation(ReLU),

MaxPooling2d(2,2)

3 Zeropadding2D(1,1),Conv2D(256,(3,3)),batchNormalization,

activation(ReLU),MaxPooling2d(3,3)

4 Flatten(),Dense(1000),batchNormalization, activation(ReLU),Dropout(0.25)

5 Dense(500),batchNormalization, activation(ReLU),Dropout(0.25)

6 Dense(3),batchNormalization, activation(softmax)

Table 4.7: Layer descriptions of NHL-CNN model

The model type that we have used is Sequential. Sequential is the easiest way to build a

model in Keras. It allows building a model layer by layer. We have applied the ‘add()’

function to add layers to our model (see Listing 4.5). We have classes num nodes (

classes num=3) in our output layer, one for each possible outcome (0-2). The activation

is ’softmax ’. Softmax makes the output sum up to 1 so the output can be interpreted

as probabilities. The model can then make its prediction based on which option has the

highest probability.

4.3.2.5 Compiling the model

Once the model is created, we can config the model with model.compile() method , which

takes three arguments: optimizer, loss and metrics (see Table 4.8). The optimizer

controls the learning rate. We have used:

- ’adam’ as our optimizer, witch adjusts the learning rate throughout training. The

learning rate ‘lr’ determines how fast the optimal weights for the model are calcu-

lated.

- ’categorical crossentropy’ for our loss function. It measures the performance of a

classification model whose output is a probability value between 0 and 1.

- ’accuracy’ metric to see the accuracy score on the validation set when we train the

model. It is a function that is used to judge the performance of your model.

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 71

Function Arguments

Compile() - Loss=’categorical crossentropy’

- Optimizer=’adam’: The adam optimizer adjusts the learning rate

throughout training.

- learning rate: our case we use lr=0.01

- Metrics=[’accuracy’]

Table 4.8: Function description for the model compiling

4.3.2.6 Training the model

To train our model, we have used the ’fit generator()’ function. This function first

accepts a batch of the dataset, then performs backpropagation on it, and then updates

the weights in our model. This process is repeated until we have reached the desired

number of epochs. ’ModelCheckpoint’ callback is used in conjunction with training using

’model.fit generator’ to save a model or weights (in a checkpoint file) when there is an

improvement in classification accuracy on the validation dataset (monitor=’val acc’ and

mode=’max’). The argument descriptions of these functions are shown in Table 4.9.

Functions Arguments

modelCheckPoints() Inputs:

- Filepath: the file path you want to save your model in string.

- Monitor: quantity to monitor; we used val acc

- Verbose: verbosity mode, 0 or 1.

- Mode: one of {auto, min, max}, we used max because the

monitored value is val acc

Fit generator() - Training and validation sets.

- Epochs a number of epochs, we want to train our model. In our

case is 40.

- Batch size; 64 per epochs

- Callbacks; a list of callback functions applied during the training

of our model.

- Steps per epochs; specifies the total number of steps taken from

the generator. We can calculate the value of steps per epoch as

the total number of samples in your dataset divided by the batch size.

Table 4.9: Function descriptions for the model training

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 72

The complete code for compiling and training the model is described in following Listing

4.6.

1 filepath="./weights -{epoch :02d}-{val_acc :.3f}.hdf5"

2

3 checkpoint = ModelCheckpoint(filepath , monitor=’val_acc ’, verbose=1,

mode=’max’)

4

5 callbacks_list = [checkpoint]

6

7 model.compile(loss=’categorical_crossentropy ’,optimizer=Adam(lr =0.01) ,

metrics =[’accuracy ’])

8

9 model.fit_generator(

10 train_generator ,

11 steps_per_epoch=steps_epoch ,

12 epochs=epochs ,

13 validation_data=validation_generator ,

14 validation_steps=steps_validation ,

15 callbacks=callbacks_list)

Listing 4.6: Model compiling and training

4.3.2.7 Visualizing loss and accuracy during training

Keras provides the capability to register callbacks when training a deep learning model.

TensorBoard is a visualization tool provided with TensorFlow. The callback logs events

for TensorBoard, including: metrics summary plots,training graph visualization.

In this case, the path of the directory where to save the log files to be parsed by Tensor-

Board would be specified. The listing 4.7 shows the visualizing loss and accuracy during

training.

1 name = "lymphoma -{}".format(int(time.time()))

2

3 tensorbord = TensorBoard(log_dir=’logs /{}’.format(name))

4

5 model.fit_generator(

6 train_generator ,

7 steps_per_epoch=steps_epoch ,

8 epochs=epochs ,

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 73

9 validation_data=validation_generator ,

10 validation_steps=steps_validation ,

11 callbacks=tensorbord)

Listing 4.7: Visualizing training/validation accuracy and loss

4.3.2.8 Predictions on the trained model

Predictions on trained model aim firstly to estimate the generalization accuracy of a

model on test data, and secondly to make a prediction on an entire image.

a- Estimate the generalization accuracy of a model on test data

The model evaluation on test data ’test’, is done as follow:

1. As in the training, we use ImageDataGenrator and flow from directory()

function to pass our test set ’set’ easily by just pointing at a directory.

2. We use load model to load trained model (the best saved model) and saved

it in the hdf5 format.

3. we use the predict generator to generate predictions ’prediction’ from the

input samples of the data generator

4. The confusion matrix is used to classifier performance.

The details of used functions are presented in Table 4.10 and the code correspond-

ing to the evaluation of the model on test data, is described in Listing 4.8

Function Arguments

Load model() - Model path

Predict generator() - Test set

- Steps=epochs

confusion matrix - Labels ; CLL: 001 , FL:010 , MCL:001

- prediction

Table 4.10: Function descriptions for evaluated model

1 import numpy as np

2 from keras.preprocessing.image import ImageDataGenerator

3 import matplotlib.pyplot as plt

4 from sklearn.metrics import confusion_matrix

5 import itertools

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 74

6 import keras

7 batch_size = 1000

8

9 data_path = ’C:/ Users/HP/Desktop/final_dataset/test’

10 test_datagen = ImageDataGenerator(rescale =1. / 255)

11 test_generator = test_datagen.flow_from_directory(

12 data_path ,

13 target_size =(64, 64),

14 batch_size=batch_size ,

15 class_mode=’categorical ’)

16

17 model = keras.models.load_model("weights -02 -0.964. hdf5")

18 prediction = model.predict_generator(test_generator , steps=4,

verbose =0)

19 print(prediction)

20

21 imgs , labels = next(test_generator)

22 prediction = np.argmax(prediction , axis =1)

23 labels = np.argmax(labels , axis =1)

24 cm = confusion_matrix(labels , prediction)

25 classee = [’CLL’, ’FL’, ’MCL’]

26 plot_confusion_matrix(cm, classee , title=’confusion_matrix ’)

27

28

29

Listing 4.8: Predictions on the trained mode

b- Make a prediction on an entire image.

To make prediction on an entire image, we have loaded the best saved model and

pre-process the image for dividing it into small patches (64X64) overlapping. Then

the predictions are made for 100 patches, from this image, randomly selected. The

predicted class value for the entire image is the most predicted of its selected

patches. The following Listing (4.9) describes how to make prediction on an entire

image. Predictions on trained model aim firstly to estimate the generalization

accuracy of a model on test data, and secondly to make a prediction on an entire

image.

1 from random import randrange ,randint

2 import keras

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 75

3 import tensorflow as tf

4 import numpy as np

5 from keras.preprocessing.image import ImageDataGenerator

6

7 CATEGORIES = [’CLL’, ’FL’, ’MCL’]

8

9 def prepare(filepath):

10 image = tf.keras.preprocessing.image.load_img(filepath)

11 input_arr = keras.preprocessing.image.img_to_array(image)

12 x = randrange (1300)

13 y = randrange (950)

14 image = input_arr[y:y+64,x:x+64]

15 input_ar = image /225

16 input_ar = np.array ([input_ar])

17

18 return input_ar

19

20

21 model = keras.models.load_model("weights -02 -0.964. hdf5")

22 i=0

23 j=0

24 s=0

25

26 for x in range (50):

27 pre = CATEGORIES[int(model.predict_classes ([prepare(’C:/ Users/HP/

Desktop/lymphoma/MCL/sj -04 -3077- R2_006.tif’)]))]

28 print(pre)

29 if pre == ’CLL’:

30 i = i + 1

31 if pre == ’FL’:

32 j = j + 1

33 if pre == ’MCL’:

34 s = s + 1

35

36 print(’CLL :’,i)

37 print(’FL :’,j)

38 print(’MCL :’,s)

Listing 4.9: Prediction on an entire image

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 76

4.4 Developing the front-end

In the front-end part of the system, we create a simple design that can be easily used by

any user (with different gender and ages), with some simple colors, and structure. The

figure 4.2 shows the architecture of the front-end pages.

Figure 4.2: Architecture of the front-end pages

To create our web site, we have used html to build the structure of the page, CSS

give us big advantage on designing and styling our page for better looking and well

organizing. Moreover, we have used the JavaScript to make our pages moving and

working giving some benefits on animations, button functions, pages function, uploading,

printing, etc..., and finally, we used flask to relate our web pages with our code python.

The figures below shows the content of some created web page.

- The figure 4.3 represents the home page (the main web page) which generally describes

our project and facilitates navigation to other pages of the site.

Figure 4.3: Home page

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 77

- The page concerning the NHL classification, by selecting the entire image or the image

patch, is shown in the figure 4.4.

Figure 4.4: NHL classification page

4.5 Empirical evaluation and results

All design and training of our deep learning CNN for classifying the NHL subtypes ‘NHL-

CNN’ are performed on a 64-bit Windows machine with Intel Core i5 CPU (@2.20 GHz)

and 12GB of RAM. For taking the benefit of the paralleling computing for fast training

gaining time and resources, the local GPU on desktop machine, Nvidia GeForce820M,

is used.

4.5.1 NHL-CNN architecture

When designing and configuring our deep learning model (NHL-CNN), we have at-

tempted various configurations for the people’s networks and using heuristics. The

proposed architecture for NHL-CNN, is an adaptation of the AlexNet architecture. It

summarized in Figure 4.5 and figure 4.6.

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 78

Figure 4.5: NHL-CNN configuration

4.5.1.1 Tuning the batch size

In this first experiment, we have look at tuning the batch size on 20 epochs when training

the deep learning NHL-CNN, to show its sensitivity for this parameter.

The batch size in iterative gradient descent is the number of patterns shown to the

network before the weights are updated. It is also an optimization in the training of

the network, defining how many patterns to read at a time and keep in memory. The

number of epochs is the number of times that the entire training dataset is shown to

the network during training.

To analyze the comportment of the deep learning NHL-CNN with the set of hyper-

parameters for the CNN layers presented in table, concerning the batch size parameter,

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 79

Figure 4.6: NHL-CNN architecture

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 80

we have evaluated its performance, using the training/validation accuracy (acc and

Val acc respectively) and the training/validation loss (loss and Val loss respectively)

at batch sizes : 1024, 512 and 64. The results for the performance are shown on plots:

Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10.

Figure 4.7: The loss on the training dataset over training epochs with batch sizes:
1024, 512 and 64

Figure 4.8: The accuracy on the training dataset over training epochs with batch
sizes: 1024, 512 and 64

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 81

Figure 4.9: The loss on the validation dataset over training epochs with batch sizes:
1024, 512 and 64

Figure 4.10: The accuracy on the validation dataset over training epochs with batch
sizes: 1024, 512 and 64

From these plots, we can see that:

- Decreasing the training patch-size leads to better performance.

- The model could probably be trained a little more, using batch size = 64 (see green

curve), as the trend for accuracy and loss on both training and validation sets.

4.5.2 Visualize the performance of NHL-CNN

To visualize the performance of our deep learning NHL-CNN over time during training,

we have created:

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 82

- A plot of accuracy on the training dataset ’acc’ over training epochs.

- A plot of accuracy on the validation dataset ’Val acc’ over training epochs.

- A plot of loss on the training dataset ’Val loss’ over training epochs.

- A plot of loss on the validation dataset ’loss’ over training epochs.

Figure 4.11: The accuracy on the training dataset over training epochs

Figure 4.12: The accuracy on the validation dataset over training epochs

Figure 4.13: The loss on the training dataset over training epochs

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 83

Figure 4.14: The loss on the validation dataset over training epochs

From these learning curves, we can see that:

- The plots of learning curves (Plot 4.11. and Plot 4.13) show a good fit because:

• The plot of training accuracy increases to a point of stability.

• The plot of training loss decreases to a point of stability.

- The plots of learning curves for validation accuracy and loss (Figure 4.12 and Figure

4.14) show noisy movements. This may occur if the validation dataset has too few

examples as compared to the training dataset.

- In deep learning, the checkpoint is the stored weights of the model when there is an

improvement in classification accuracy on the validation dataset, these weights can

be used to make predictions as is, or used as the basis for ongoing training. In

our case, the best value of training accuracy (accuracy) is in epoch number 37 (see

plots Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10). In this epoch, the values

of:

• Training loss ’loss’ is 0.01%

• Training accuracy ’accuracy’ is 99.64%

• Validation loss ’Val loss’ is 0.2%

• Validation accuracy ’Val accuracy’ is 96.4 %

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 84

4.5.3 Evaluate model on test data

The evaluation of the NHL-CNN on test data ’test ’, aims to estimate its generalization

accuracy. A confusion matrix is a performance measurement technique used to assess

the performance of the model, built in the training phase, on test set, by comparing

the actual and predicted classes. It provides a more detailed breakdown of correct and

incorrect classifications for each class. The confusion matrix for the accuracy prediction

of 3000 image patches from image patch test set (from each class, 1000 image patches

were randomly selected), is presented in table 4.11.

Confusion matrix Predicted class
of test set CLL FL MCL

CLL 975 10 15
Actual class FL 7 988 5

MCL 12 5 983

Table 4.11: Patch-based method evaluation

Each row of the confusion matrix represents the instances of an actual class and each

column represents the instances of a predicted class. The diagonal elements represent

the number of points for which the predicted label is equal to the true label, while

anything off the diagonal was mislabeled by the system. Therefore, the higher the

diagonal values of the confusion matrix the better, indicating many correct predictions.

The table 11 shows our system CNN-NHL can predict perfectly: 975 image patches of

CLL, 988 of FL and 983 of MCL. However, the highest rate of misclassification is 1.35%,

which was between MCL and CLL. There are 15 image patches of CLL predicted as

MCL and 12 image patches of MCL predicted as CCL. We postulate that the reason for

these misclassifications is CLL may present some similarities with MCL as mentioned

in [22].In addition, it can be seen that the confusion between FL class with each of two

classes MCL and CLL is very weak; because there is a distinction between the slides of

FL tissue samples and those of MCL and of CLL, as mentioned in [22]. We postulate

that the reason for this weak confusion returns to H&E staining.

In Table 4.12, several examples of correctly and incorrectly classified image patches for

different classes (CLL, FL, MCL) are presented. To simplify the explanation of this

table, we take as example the image patches, (a), (b) and (c) which are CLL image

patches. (a) is correctly classified whereas the (b) and (c) are incorrectly classified; (b)

is classified as FL image patch but (c) is classified as MCL image patch.

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 85

CLL

(a) (b) (c)
Actual class FL

(d) (e) (f)
MCL

(g) (h) (i)
CLL FL MCL

Predicted class

Table 4.12: Several examples of correctly and incorrectly classified image patches

Ensemble predictions on image patch test set were analyzed for true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FP). These parameters

were used to calculate a variety of performance metrics, including precision (PR), recall

(RE), accuracy (ACC), F1-score (F1) (see equations 3.2, 3.3, 3.4 and 3.5) The testing

performance and comparison againsted the existing methods are shown in Table 4.13 to

existing deep learning-based approaches for NHL classification, on same dataset, in [4]

and [72].

Methods PR RE F1 ACC

Proposed approach 0.982 0.982 0.981 0.987

AlexNet [4] - - - 0.965

ResNet [72] - - - 0.976

Table 4.13: Patch-based method testing performance and comparison

4.5.3.1 Class prediction of an entire image

In this experiment, from each subtype (CLL, FL or MCL), 20 entire images were

randomly selected and from each one, 100 patches were randomly extracted. A voting

scheme per subtype (class) was used where votes were aggregated based on the CNN-

NHL’s output per patch. In a winner-take-all, the class with the highest number of

votes became the designated class for the entire image. The following tables present the

obtained results:

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 86

Votes for CLL entire images

CLL FL MCL

1 98 0 2

2 98 0 2

3 94 0 6

4 94 0 6

5 78 0 22

6 90 0 10

7 90 0 10

8 98 0 2

9 90 8 2

10 100 0 0

11 88 6 6

12 96 2 2

13 54 6 40

14 100 0 0

15 100 0 0

16 100 0 0

17 90 8 2

18 64 2 34

19 86 0 14

20 94 4 2

Average 90.1 1.8 8.1

Votes for FL entire images

CLL FL MCL

1 38 62 0

2 2 98 0

3 40 60 0

4 0 84 16

5 0 94 6

6 0 100 0

7 2 98 0

8 0 98 2

9 2 90 8

10 10 84 6

11 0 98 2

12 0 98 2

13 0 100 0

14 0 100 0

15 40 60 0

16 14 82 4

17 14 74 12

18 4 96 0

19 2 98 0

20 0 100 0

Average 8.4 88.7 2.9

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 87

Votes for MCL entire images

CLL FL MCL

1 2 0 98

2 34 0 66

3 42 0 58

4 33 0 67

5 11 0 89

6 0 0 100

7 0 0 100

8 0 2 98

9 2 0 98

10 0 0 100

11 22 4 74

12 0 2 98

13 18 0 82

14 0 0 100

15 2 0 98

16 2 0 98

17 0 0 100

18 0 0 100

19 2 2 96

20 0 2 98

Average 8.9 0.6 90.5

From this experiment, we have seen that the highest number of votes and their averages

always corresponds to the actual class for the entire image. The following tables (Tables

4.14, 4.15 and 4.16) present three examples of entire images with their vote numbers,

per subtype. These examples are randomly chosen. In this context, the total accuracy

(100%) is achieved in entire image based method.

CLL’s images CLL FL MCL Predicted class

94 0 6 CLL

100 0 0 CLL

96 2 2 CLL

Table 4.14: Voting scheme and class predictions of entire CLL’s images

DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL 88

FL’s images CLL FL MCL Predicted class

14 82 4 FL

0 100 0 FL

2 90 8 FL

Table 4.15: Voting scheme and class predictions of entire FL’s images

MCL’s images CLL FL MCL Predicted class

2 2 96 MCL

0 0 100 MCL

33 0 67 MCL

Table 4.16: Voting scheme and class predictions of entire MCL’s images

4.6 Conclusion

In this chapter, we have described the detailed design for our NHL-CNN system with

the used tools for developing front-end and back-end of this system. The proposed

system, only needs the image patches which have been tagged with the class label (in

NIA dataset) to learn the most discriminating representations for class separability, and

self-discover the nuanced disease patterns within each class. The experimental results

were evaluated considering different performance metrics including: precision, recall,

accuracy and F1-score. The obtained results were very promising compared to existing

deep learning-based approaches for NHL in [4] and [72].

Conclusion

With the latest advancements in digital pathology, enabling the rapid collection of digital

slides, image analysis plays a key role in the day-to-day role of a pathologist. Accurate

classification for different Non-Hodgkin Lymphomas (NHL)is one of the main challenges

in clinical pathological diagnosis due to its intrinsic complexity.

In this work, we have explored the potential of DL for DP image analysis. We have

investigated the concepts of DL with a CNN algorithm to build NHL model for three

diagnostic categories: mantle cell lymphoma (MCL), follicular lymphoma (FL), and

chronic lymphocytic leukemia (CLL), on whole-slide images.

The proposed deep learning CNN for classifying the NHL subtypes (NHL-CNN) model

excels by learning relevant features directly from image patches of NIA curated dataset

images.

In fact, in this setting, our NHL-CNN model is distinguished by:

- A tissue level classification strategy, which consists in directly learning all the repre-

sentative features of the tissue class via DL.

- Obviates the need for explicit primitive identification and provides a more direct path-

way to the final classification while not at the same time requiring a comprehension

of the domain-specific (potentially unknown) relationships of primitives.

- Only needs the image patches which have been tagged with the class label (in NIA

dataset) to learn the most discriminating representations for class separability, and

self-discover the nuanced disease patterns within each class.

After successfully training the model, the testing accuracy is computed according to

two methods: patch-based and entire image based method. In the first method, for

89

Conclusion 90

3000 image patches from image patch test data (from each class, 1000 image patches

were randomly selected), we have achieved 98.2 % testing accuracy and the highest rate

of misclassification between two classes is 1.35%, which was between MCL and CLL.

However, the total accuracy (100%) is achieved in entire image based method, where

the class prediction of an entire image is the most predicted of its 50 randomly selected

patches. In addition, the achieved accuracy in our patch-based method was also very

promising compared to existing deep learning-based approachs for NHL classification in

[4] and [72].

From this evaluation, we can conclude that:

- As the number of samples increases, the performance of NHL-CNN model increases

significantly.

- When the image patches were incorrectly classified, the quality of its root image may

be poor.

- The image patches have significant artifacts, which likely caused its misclassification.

- The misclassification between MCL and CLL class can be back to the similarities

beteween the H&E-stained MCL and CLL image, as it was mentioned in [22].

From this research, we conclude that:

- The deep learning based methods are able to solve clinically relevant tasks in diagnostic

pathology at the required level for routine diagnostics.

- Our system could serve as a CAD to facilitate pathology diagnostics by discriminating

between the three Non-Hodgkin Lymphomas subtypes MCL, FL, CLL.

- The use of our system can provide complementary information to the pathologist for

more objective assessment of the lesion. Additionally, it can reduce costs and

alleviate the lack of experienced pathologists.

However, this research could be improved in certain points which we consider as prospects

for our work.

- Including other disease types of NHL.

Conclusion 91

- Integration of the pathology expert’s diagnosis, into the evaluation of the obtained

results, is very important.

- Using other NHL dataset for training, validation, and testing.

Bibliography

[1] F. Aeffner and et al. Introduction to digital image analysis in whole-slide imag-

ing: A white paper from the digital pathology association. Journal of Pathology

Informatics, 10(9):1–17, 2019.

[2] D. Ameisen and et al. Technologie des lames virtuelles - de la numerisation a la

mise en ligne. Med Sci (Paris), 28(11):977–982, 2012.

[3] B. E. Bejnordi. Histopathological diagnosis of breast cancer using machine learning,

doctoral thesis in computer science. Radboud University Nijmegen, 2017.

[4] J. Andrew and A. Madabhushi. Deep learning for digital pathology image analysis:

A comprehensive tutorial with selected use cases. Journal of pathology informatics,

(7), 2016.

[5] D. Komura and S. Ishikawa. Machine learning methods for histopathological image

analysis. Computational and Structural Biotechnology Journal, 8:34–42, 16 2018.

[6] R. Mayer and H. A. Jacobsen. Scalable deep learning on distributed infrastructures:

Challenges,techniques and tools. ACM Comput. Surv., 1, 2019.

[7] B. Erickson and al. Machine learning for medical imaging. RadioGraphics, pages

505–515, 2017.

[8] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning.

arXiv: 1603.07285 [stat.ML], 2018.

[9] B. Sahiner and et al. Deep learning in medical imaging and radiation therapy.

Medical Physics, pages 533–536, 2019.

[10] R. Yamashita and al. Convolutional neural networks: an overview and application

in radiology. Insights into Imaging, 9, 06 2018.

92

Bibliography 93

[11] Md.Z. Alom and al. A state-of-the-art survey on deep learning theory and archi-

tectures. Electronics, 8:292, 03 2019.

[12] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural net-

works without residuals. ICLR2017, 2017.

[13] E.J. Guerard and al. Bishop overview of non-hodgkin’s lymphoma dis mon. vol-

ume 4, pages 208–218, 58 2012.

[14] E. Montagnon and al. Deep learning workflow in radiology: a primer. Insights into

Imaging, 11:1–15, 2020.

[15] J. Prewitt and ML. Mendelsohn. The analysis of cell images. Annals of the New

York Academy of Sciences, 1966.

[16] J.D. Webster and R.W. Dunstan. Whole-slide imaging and automated image anal-

ysis: Considerations and opportunities in the practice of pathology. Veterinary

Pathology, 51(1):211–223, 2014.

[17] O. Sertel and al. Computer-aided detection of centroblasts for follicular lymphoma

grading using adaptive likelihood-based cell segmentation. IEEE transactions on

bio-medical engineering, 57:2613–6, 10 2010.

[18] Newitt. Whole slide imaging for primary diagnosis: ’now it is happening’. CAP

Today, 2017.

[19] J. Swerdlow and al. Who classification of tumours of the haematopoietic and lym-

phoid tissues. Lyon; IARC, 2, 01 2008.

[20] N.V. Orlov and al. Automatic classification of lymphoma images with transform-

based global features. IEEE Transactions on Information Technology in

Biomedicine, 14:1003–1013, 2010.

[21] T. Tosta and al. Segmentation methods of h&e-stained histological images of lym-

phoma: A review. Informatics in Medicine Unlocked, 9, 2017.

[22] G.P. Canellos and al. The lymphomas. Saunders Elsevier, 2006.

[23] H. Jiang. An effective multi-classification method for nhl pathological images. IEEE

International Conference on Systems, Man, and Cybernetics (SMC), 2018.

Bibliography 94

[24] Y. LeCun and al. Deep learning. Nature, 521:436–444, 2015.

[25] Y. Lecun and al. Reading checks with multilayer graph transformer networks.

volume 1, pages 151–154, 05 1997.

[26] J. Latif and al. Medical imaging using machine learning and deep learning algo-

rithms: A review *. 03 2019.

[27] N. Peter and et al. Nuclei segmentation in histopathology images using deep neural

networks, biomedical imaging,isbi 2017. In 2017 IEEE 14th International Sympo-

sium on Biomedical Imaging (ISBI 2017), IEEE, pages 933–936, 2017.

[28] A. Cruz-Roa and et al. Automatic detection of invasive ductal carcinoma in whole

slide images with convolutional neural networks. SPIE Medical Imaging, 9041(7):

1–14, 2014.

[29] R. Ferjaoui and al. Lymphoma lesions detection from whole body diffusion-weighted

magnetic resonance images. In 5th International Conference on Control, Decision

and Information Technologies, pages 364–369, 2018.

[30] S. Dwivedi and et al. The advent of digital pathology: A depth review, journal of

entomology and zoology studies. JEZS, 7(2):43–49, 2019.

[31] G.A. Meijeret and et al. Origins of image... analysis in clinical pathology. J Clin

Pathol, 50(5):365–370, 1997.

[32] L. Pantanowitz and et al. Validating whole slide imaging for diagnostic purposes

in pathology. Arch Pathol Lab Med, pages 1–13, 2013.

[33] N. Farahani and et al. Whole slide imaging in pathology: advantages, limitations,

and emerging perspectives. Pathol Lab Med Int, 7:23–33, 2015.

[34] A. Karsnas. Image analysis methods and tools for digital histopathology appli-

cations relevant to breast cancer diagnosis. In Dissertations from the Faculty of

Science and Technology, volume 4792, page 129. Acta Universitatis Upsaliensis,

2014.

[35] H. Irshad and et al. Methods for nuclei detection, segmentation, and classification

in digital histopathology: A review-current status and future potential. IEEE Rev

Biomed Eng, 7:97–114, 2014.

Bibliography 95

[36] A.H. Beck and et al. Systematic analysis of breast cancer morphology uncovers

stromal features associated with survival. Sci Transl Med, (3):108–113, 2011.

[37] Md.Z. Alom and et al. Recurrent residual convolutional neural network based on

u-net (r2u-net) for medical image segmentation. Computer Vision and Pattern

Recognition (cs.CV), 2018.

[38] A. Madabhushi. Digital pathology image analysis: opportunities and challenges.

Imaging Med., 2018.

[39] V. Gupta and al. Breast cancer histopathological image classification: Is magnifi-

cation important? Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, 2017.

[40] Y. Liu and al. Detecting cancer metastases on gigapixel pathology images. ArXiv,

2017.

[41] A. Saito and al. A novel method for morphological pleomorphism and heterogeneity

quantitative measurement: named cell feature level co-occurrence matrix. J Pathol

Inform, 2016.

[42] AM. Khan and al. A nonlinear mapping approach to stain normalization in dig-

ital histopathology images using image-specific color deconvolution. IEEE Trans

Biomed Eng, 2014.

[43] N. Nilsson. The quest for artificial intelligence: A history of ideas and achievements.

Cambridge University Press, 2010.

[44] J. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3:417–424,

1980.

[45] A. Lundervold and Ar. Lundervold. An overview of deep learning in medical imaging

focusing on mri. Zeitschrift fur Medizinische Physik, 29, 12 2018.

[46] L. Deng. A tutorial survey of architectures, algorithms, and applications for deep

learning-erratum. APSIPA Transactions on Signal and Information Processing, 3,

12 2014.

[47] S. Pouyanfar and al. A survey on deep learning: Algorithms, techniques, and

applications. ACM Computing Surveys, 51:1–36, 09 2018.

Bibliography 96

[48] C. Bishop. Pattern recognition and machine learning. Springer Science and Business

Media, 2006.

[49] D. E. Rumelhart and et al. Learning representations by back-propagating errors.

Nature 323, pages 533–536, 1986.

[50] A. Borovkov. Image classification with deep learning. Doctoral Thesis in Computer

Science, University of Dundee, 2017.

[51] G. Jiuxiang and al. Recent advances in convolutional neural networks. Pattern

Recognition, 12 2017.

[52] Y. Boureau and al. A theoretical analysis of feature pooling in visual recognition.

Proceedings of the International Conference on Machine Learning (ICML), 2010.

[53] M.D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.

volume 4792, pages 818–833. Proceedings of the European Conference on Computer

Vision (ECCV), 2014.

[54] A. Krizhevsky and al. Imagenet classification with deep convolutional neural net-

works. Neural Information Processing Systems, 25, 01 2012.

[55] S. Karen and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. ICLR 2015, 2015.

[56] S. Ruder. An overview of gradient descent optimization algorithms. arXiv:

1609.04747, 2016.

[57] E. Hinton and al. Improving neural networks by preventing co-adaptation of feature

detectors. arXiv, pages 1–18, 2012.

[58] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37, pages 448–456. PMLR, 2015.

[59] I. Sergey and C. Szegedy. Batch normalization:accelerating deep network training

by reducing internal covariate shift. arXiv: 1502.03167, 2015.

[60] H. Kaiming and al. Deep residual learning for image recognition. pages 770–778,

06 2016.

Bibliography 97

[61] G. Huang and al. Densely connected convolutional networks. arXiv:1608.06993 .

DenseNet, 2016.

[62] M. Zhou and al. Progress in neural nlp: Modeling, learning, and reasoning, engi-

neering. Research Artificial Intelligence, 6:275–290, 2020.

[63] C. Xiong and al. Dynamic memory networks for visual and textual question an-

swering. arXiv, 2016.

[64] C. Angermueller and al. Deep learning for computational biology. Molecular Sys-

tems Biology, 2016.

[65] C. Syrykh and al. Accurate diagnosis of lymphoma on whole-slide histopathology

images using deep learning. npj Digit. Med., 63, 2020.

[66] J. Scheurer and al. Semantic segmentation of histopathological slides for the clas-

sification of cutaneous lymphoma and eczema. volume 1248, pages 26–42. Commu-

nications in Computer and Information Science, 2020.

[67] He. Kaiming and al. Deep residual learning for image recognition. Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016.

[68] F. Spanhol and al. Breast cancer histopathological image classification using con-

volutional neural networks. 07 2016.

[69] F. Spanhol and al. A dataset for breast cancer histopathological image classification.

volume 63, pages 1455–1462. IEEE Trans Biomed Eng., 07 2016.

[70] N. Brancati and al. Multi-classification of breast cancer histology images by using

a fine-tuning strategy. volume 10882, pages 771–778. LNCS, Springer, 2018.

[71] G. Aresta and al. Bach: Grand challenge on breast cancer histology images. Medical

Image Analysis, 56, 05 2019.

[72] N. Brancati and al. A deep learning approach for breast invasive ductal carcinoma

detection and lymphoma multi-classification in histological images. IEEE Access,

7, 04 2019.

[73] N. Dimitriou and al. Deep learning for whole slide image analysis: An overview.

Frontiers in Medicine, 6:264, 2019.

Bibliography 98

[74] J. Xu and al. Deep learning for histopathological image analysis: Towards comput-

erized diagnosis on cancers. pages 73–95, 2017.

[75] M. Hosseini and al. Atlas of digital pathology: A generalized hierarchical histolog-

ical tissue type-annotated database for deep learning. 07 2019.

[76] J. Rodriguez and al. Sensitivity analysis of k-fold cross validation in prediction

error estimation. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 32:569–575, 2009.

Abstract 99

Digital pathology image analysis with deep learning

Abstract:

The advent of whole-slide imaging in digital pathology (DP) has helped the advance-

ment of computer-aided diagnostics of tissue, via digital image analysis.

In our master’s project, we have explored the potential of deep learning (DL)for DP

digital pathology image analysis.We have investigated the concepts of DL with a Con-

volutional Neural Network (CNN) algorithm to build a Non-Hodgkin Lymphomas (NHL)

multi-classification model that can accurately classify subtypes of NHL concerning chronic

lymphocytic leukemia (CLL), follicular lymphoma (FL) and mantle cell lymphoma

(MCL), on whole slide images.

The proposed deep learning CNN for classifying the Non-Hodgkin Lymphomas subtypes

(NHL-CNN) model excels by learning relevant features directly from image patches of

NIA curated dataset images.

After successfully training the model, the testing accuracy is computed according to two

methods: patch-based and entire image based method. In the first method, we have

achieved 98.2 % testing accuracy. However, the total accuracy (100%) is achieved in en-

tire image based method. The experimental results clearly demonstrate the robustness

and efficiency of our proposed NHL-CNN as compared to existing DL approaches for

NHL classification in literature.

Keywords: Digital pathology, Deep learning, Convolutional Neural Networks, Non-

Hodgkin Lymphomas, Multi-classification

Abstract 100

Analyse d’images de pathologie numérique avec apprentissage en

profondeur

Résumé:

L’avènement de l’imagerie sur les lames virtuelles en pathologie numérique (DP : dig-

ital pathology) a permis de faire progresser le diagnostic assisté par ordinateur (CAD:

computer-aided diagnostics) des tissus, via l’analyse d’images numériques.

Dans notre projet de Master, nous avons exploré le potentiel de l’apprentissage en pro-

fondeur (DL : deep learning) pour l’analyse d’images en pathologie numérique. Nous

avons étudié les concepts DL avec un algorithme de réseau de neurones convolutionnel

(CNN : Convolutional Neural Network) pour construire un modèle multi-classification

des Lymphomes Non Hodgkiniens (NHL) qui peut classer avec précision les sous-types

NHL concernant la Leucémie Lymphöıde Chronique (LLC), le Lymphome Folliculaire

(FL) et Lymphome à Cellules du Manteau (MCL), sur des images de lames virtuelles.

Le modèle d’apprentissage en profondeur CNN proposé pour la classification des sous-

types de lymphomes non hodgkiniens (NHL-CNN) excelle en apprenant les caractéristiques

pertinentes directement à partir des pièces des images de jeux de données organisées par

le NIA. Après avoir entrâıné avec succès le modèle, la précision de test est calculée selon

deux méthodes : méthode basée sur les pièces d’image et méthode basée sur l’image

entière.

Dans la première méthode, nous avons atteint une précision de test de 98,2%. Cepen-

dant, la précision totale (100%) est obtenue dans la méthode basée sur l’image entière.

Les résultats expérimentaux démontrent clairement la robustesse et l’efficacité de notre

proposition de NHL-CNN par rapport aux approches DL existantes pour la classification

de NHL dans la littérature.

Mots clés: Pathologie numérique, apprentissage en profondeur,réseaux de neurones

convolutionnels, lymphomes non hodgkiniens Le lymphome non hodgkinien (LNH),

multi-classification, Lame virtuelle , L’apprentissage en profondeur, Les réseaux de neu-

rones (CNN)

Abstract 101

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	1 WHOLE SLIDE IMAGING IN DIGITAL PATHOLOGY
	1.1 Introduction
	1.2 Digital pathology
	1.3 The roots of digital pathology
	1.4 Whole-slide imaging
	1.4.1 Routine Histopathology
	1.4.2 Telepathology and Data Transmission
	1.4.3 Education
	1.4.4 Pathology Archiving

	1.5 Histopathology
	1.6 Histopathological image analysis
	1.6.1 Segmentation and Detection Tasks
	1.6.1.1 Nuclei segmentation
	1.6.1.2 Epithelium Segmentation
	1.6.1.3 Tubule segmentation
	1.6.1.4 Lymphocyte detection
	1.6.1.5 Mitosis detection
	1.6.1.6 Invasive ductal carcinoma detection

	1.6.2 Tissue-Based Classification Task

	1.7 Problems specific to histopathological image analysis
	1.7.1 Enormous density of data
	1.7.2 Different levels of information
	1.7.3 WSI as orderless texture-like image
	1.7.4 Color variation and artifacts

	1.8 Requirement of design Computer-aided diagnosis systems for histopathology
	1.9 Conclusion

	2 MACHINE LEARNING
	2.1 Introduction
	2.2 Machine learning concept
	2.3 Types of machine learning algorithms
	2.3.1 Supervised learning
	2.3.2 Unsupervised learning
	2.3.3 Reinforcement learning
	2.3.4 Deep learning

	2.4 Artificial neural networks
	2.5 Convolutional Neural Networks
	2.5.1 Convolutional layer
	2.5.2 Pooling layer
	2.5.3 Fully-connected layers

	2.6 Network parameters and required memory for CNN
	2.7 Training a network
	2.7.1 Loss function
	2.7.2 Gradient descent

	2.8 Advanced Training Techniques
	2.8.1 Regularization
	2.8.2 Batch Normalization

	2.9 Popular CNN Architectures
	2.9.1 LeNet
	2.9.2 AlexNet
	2.9.3 VGGNet
	2.9.4 GoogLeNet
	2.9.5 Residual Network (ResNet)
	2.9.6 Densely Connected Network (DenseNet)
	2.9.7 FractalNet

	2.10 Deep learning for digital pathology image analysis
	2.11 Conclusion

	3 DEEP NEURAL NETWORK FOR NON-HODGKIN LYMPHOMAS CLASSIFICATION
	3.1 Introduction
	3.2 Motivation and problem statement
	3.3 Lymphoma
	3.3.1 Chronic Lymphocytic Leukemia
	3.3.2 Follicular Lymphoma
	3.3.3 Mantle Cell Lymphoma

	3.4 Construction of a DL architecture
	3.4.1 Casting
	3.4.2 Patch generation
	3.4.3 Training model
	3.4.4 Testing model

	3.5 System design
	3.5.1 Data Preparation
	3.5.1.1 Collect data
	3.5.1.2 Preprocessing
	3.5.1.3 Splitting Dataset

	3.5.2 Training
	3.5.3 Testing

	3.6 Conclusion

	4 DETAIL DESIGN AND DEVELOPMENT OF NHL CLASSIFICATION MODEL
	4.1 Introduction
	4.2 Environments and developing tools
	4.3 Developing the back-end
	4.3.1 Data Preparation
	4.3.2 Building NHL-CNN
	4.3.2.1 Import libraries and modules
	4.3.2.2 NHL-CNN parameter initialization
	4.3.2.3 Loading the datasets
	4.3.2.4 Creating the model
	4.3.2.5 Compiling the model
	4.3.2.6 Training the model
	4.3.2.7 Visualizing loss and accuracy during training
	4.3.2.8 Predictions on the trained model

	4.4 Developing the front-end
	4.5 Empirical evaluation and results
	4.5.1 NHL-CNN architecture
	4.5.1.1 Tuning the batch size

	4.5.2 Visualize the performance of NHL-CNN
	4.5.3 Evaluate model on test data
	4.5.3.1 Class prediction of an entire image

	4.6 Conclusion

	Conclusion
	Bibliography

