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Introduction

The variable Lebesgue spaces, originally introduced by Orlicz [19] via replacing p with

an exponent function p(·) : Rn → (0,∞), are a generalization of the classical Lebesgue

spaces. Many properties in classical Lebesgue spaces have been generalized to the variable

Lebesgue spaces. In 1931’s, Kováčik and Rákosńık [18] proved some elementary properties for

this kind of spaces. These spaces have been extensively studied by many researchers due to

their wide use in different fields such as harmonic analysis and partial differential equations,

see for example [3, 10, 17, 7]. The real variable theory of Hardy spaces Hp(Rn) is another

generalisation of the classical Lebesgue spaces. It was introduced by Stein and Weiss in [8].

This theory was regularly developed by Fefferman and Stein in [3] for the case p ∈ (0, 1].

The Hardy spaces are a good replacement of the classical Lebesgue spaces especially in

the study of the boundedness of various operators and the Reisz transforms are a typical

example, they are bounded on the Hardy spaces Hp(Rn), however, they miss this property

in the Lp(Rn) spaces. Additionally, the different characterization of Hardy spaces allow them

to be more important and useful in many problems and play a considerable role in various

fields of analysis such as harmonic analysis and partial differential equations (see for example

[9, 16, 3] and their references). Nakai and Sawano [10] introduced and studied the variable

Hardy space Hp(.)(Rn) and investigated their dual spaces.In this dissertation, we give the

study the variable Hardy space Hp(.)(Rn) and it maximal function characterization.

We end this introduction by describing the layout of this thesis.

In Chaptre 01, we introduce some preliminaries and recall the definition of the variable

Lebesgue space and its well-known properties.
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Introduction

In Chaptre 02, we study the variable Hardy space and its different characterization.Hp(.)(Rn).

In Chaptre 03, we introduce the boundedness of the Singular operators on Hp(.)(Rn).
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Chapitre 1

Preliminaries

In this Chapter, we present some preliminaries and recall the definition of the variable

Lebesgue space Lp(·)(Rn) and some of its known and elementary properties.

1.1 Variable exponent and modular

Given an open set Ω ⊂ Rn. We put

P0(Ω) := {p mesurable : p(.) : Ω→ [c,∞[ for some c > 0} .

The elements of P0(Ω) are called exponent functions or simply exponents. In order to dis-

tinguish between variable and constant exponents, we will always denote exponent functions

by p(.).

Next, we give an example of exponent functions presented in see[4].

Example 1.1.1 [2] Some examples of exponent functions on : Ω = R include p(x) = p

for some constant p, 1 ≤ p ≤ ∞, or p(x) = 2 + sin(x). Exponent functions can be un-

bounded : for instance, if Ω = (1,∞), let p(x) = x and if Ω = (0, 1), let p(x) = 1 /x .
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Chaptre 1 : Preliminaries

Notation 1.1.1 [11] We denote by

P(Ω) := {p mesurable : p(.) : Ω ⊂ Rn → [1,∞[} .

Given p ∈ P0 and a set E ⊆ Ω, let

p−(E) = ess inf
x∈E

p(x) and p+(E) = ess sup
x∈E

p(x).

If the domain E = Ω = Rn we will simply write

p− = p−(Ω) and p+ = p+(Ω).

We define three canonical subsets of Ω

Ωp(.)
∞ = {x ∈ Ω : p(x) =∞} ,

Ω
p(.)
1 = {x ∈ Ω : p(x) = 1} ,

Ωp(.)
∗ = {x ∈ Ω : 1 < p(x) <∞} .

0 < p− ≤ p+ <∞

Remark 1.1.1 1. Given p(.) ∈ P(Ω), define the conjugate exponent function p
′
(.) by

the formula

1

p(x)
+

1

p′(x)
= 1, x ∈ Ω,

with the convention that 1
∞ = 0.

2. (p
′
(.))+ = (p−)

′
, (p

′
(.))− = (p+)

′
.
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Chaptre 1 : Preliminaries

Modular and properties of the modular

Given p ∈ P(Ω), we define the variable Lebesgue space Lp(.)(Ω) as the set of all measurable

functions f such that ∫
Ω

|f(x)|p(x) dx <∞.

There are problems with this approach, the most obvious being that it does not

work when Ω∞ has positive measure. To remedy them, we begin with the following

definition.

Definition 1.1.1 [2] Given Ω, p(.) ∈ P(Ω) and a Lebesgue measurable function f, define

the modular functional (or simply the modular) associated with p(.) by

ρp(.),Ω(f) =

∫
Ω\Ω∞

|f(x)|
p(x)

dx+ ‖f‖L∞(Ω∞) .

– If f is unbounded on Ω∞ or if f(.)p(.) /∈ L1(Ω\Ω∞) we define ρp(.),Ω(f) = +∞. When

|Ω∞| = 0,

– in particular when p+ < ∞, we let ‖f‖L∞(Ω∞) = 0, when |Ω\Ω∞| = 0, then ρp(.),Ω(f) =

‖f‖L∞(Ω∞) .

If there is no ambiguity, we will write simply ρ(f).

Remark 1.1.2 There are two other definitions of the modular in the literature.

One immediate alternative is to define it as

ρ(f) = max

(∫
Ω\Ω∞

|f(x)|
p(x)

dx, ‖f‖L∞(Ω∞)

)
.

The modular has the following properties
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Chaptre 1 : Preliminaries

Proposition 1.1.1 [2] Given Ω, and p(.) ∈ P(Ω), then :

1. for all f , ρ(f) ≥ 0 and ρ(|f |) = ρ(f).

2. ρ(f) = 0 if and only if f(x) = 0 for almost every x ∈ Ω.

3. if ρ(f) <∞, then f(x) <∞ for almost every x ∈ Ω.

4. ρ is convex : given α, β ≥ 0, α + β = 1,

ρ(αf + βg) ≤ αρ(f) + βρ(g).

5. if |f(x)| ≥ |g(x)| a.e., then ρ(f) ≥ ρ(g).

6. if for some Λ > 0, ρ(f /Λ) < ∞, then the function λ → ρ(f /Λ) is continuous and

decreasing on [Λ,∞) . Further, ρ(f /Λ)→ 0 as λ→∞.

An immediate consequence of the convexity of ρ is that if α > 1, then αρ(f) ≤ ρ(αf),

and if 0 < α < 1, then ρ(αf) ≤ αρ(f). We will often invoke this property by referring

to the convexity of the modular.

Definition 1.1.2 [11] Given Ω and p(.) ∈ P (Ω), the variable Lebesgue space Lp(.)(Ω) to

be the set of all measurable functions f such that ρp(.)(f/λ) <∞ for some λ > 0.

Lp(.)(Ω) =

{
f measurable :∃ λ > 0 : ρp(.)(f/λ) =

∫
Ω

∣∣∣∣f(x)

λ

∣∣∣∣p(.) ≤ 1

}
,

equipped with the following quasi-norm

‖f‖Lp(.)(Ω) := inf
{
λ > 0 : ρp(.)(f/λ) ≤ 1

}
.

If the set on the right-hand side is empty we define ‖f‖Lp(.)(Ω) =∞. If Ω = Rn, we will

often write ‖f‖p(.) instead of ‖f‖Lp(.)(Rn) .

Definition 1.1.3 [11] Given Ω and p(.) ∈ P (Ω), Define L
p(.)
loc (Ω) dy

L
p(.)
loc (Ω) :=

{
f measurable : f ∈ Lp(.)(K) for every compact set K ⊂ Ω

}
.
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Chaptre 1 : Preliminaries

Proposition 1.1.2 [2] Given Ω and p(.) ∈ P(Ω), if p+ < ∞, then f ∈ Lp(.)(Ω) if and

only if

ρ(f) =

∫
Ω

|f(x)|p(.) dx <∞.

Proof. Since p+ <∞, we can drop the L∞ term in the modular. Clearly, if ρ(f) <∞ then

f ∈ Lp(.). Conversely, by Property (5) in Proposition (1.1.1) , we have that ρ(f/λ) < ∞

for some λ > 1. But then

ρ(f) =

∫
Ω

(
|f(x)|λ

λ

)p(.)
dx ≤ λp+(Ω)ρ(f/λ) <∞.

Theorem 1.1.1 Given Ω and p(.) ∈ P(Ω), Lp(.)(Ω) is a vector space.

Theorem 1.1.2 Given Ω and p(.) ∈ P(Ω), the function ‖.‖Lp(.)(Ω) defines a norm on

Lp(.)(Ω).

Remark 1.1.3 [2] Let p(.) ∈ P(Ω), p− ∈ [1,∞) , then Lp(.)(Ω) is a Banach space.

Proposition 1.1.3 [1]Let p ∈ P0(Rn) with p+ <∞ and s > 0 be such that 1/p− ≤ s <

∞. Then

‖|f |s‖p(.) = ‖f‖ssp(.) .

Proof. This follows at once from the definition of the norm : since |Ω∞| = 0, if we let

µ = λ1/s

‖|f |s‖p(.) = inf

{
λ > 0 :

∫
Ω

(
|f(x)|s

λ

)p(x)

dx ≤ 1

}

= inf

{
µs > 0 :

∫
Ω

(
|f(x)|
µ

)s p(x)

dx ≤ 1

}
= ‖f‖ssp(.) .

7



Chaptre 1 : Preliminaries

Example 1.1.2 Let Ω = (1,∞) and p(x) = x. Then there exists a function f ∈ Lp(x)

such that ρ(f
/
‖f‖p(.) ) < 1.

Proof. We will construct a function f such that ρ(f) < 1 but for any λ < 1, ρ(f /λ) =∞.

Then ‖f‖p(.) = 1 and ρ(f
/
‖f‖p(.) ) = ρ(f) < 1. For k ≥ 2 let IK = [k, k + k−2] and define

the function f by

f(x) =
∞∑
k=2

χIK(x),

then

ρ(f) =
∞∑
k=2

1

k2
=
π2

6
− 1 < 1.

On the other hand, for any λ < 1

ρ(f/λ) =
∞∑
k=2

∫ k+k−2

k

λ−xdx ≥
∞∑
k=2

1

λkk2
=∞.

This example can be adapted to any space such that p+(Ω\Ω∞) = ∞ ; otherwise, equality

must hold.

Lemma 1.1.1 p(.) ∈ P0(Ω) and p− ≤ 1, f, g ∈ Lp(.)

‖f + g‖Lp(.) ≤ ‖f‖Lp(.) + ‖g‖Lp(.) .

Proof. [1] Since p /p− ∈ P , by Lemma(1.1.3) , convexity and Minkowski’s inequality, for

the variable Lebesgue spaces,

‖f + g‖p−p(.) = ‖|f + g|p−‖p−p(.)/p− ≤
∥∥|f |p− + |g|p−

∥∥p−
p(.)/p−

≤ ‖|f |p−‖p−p(.)/p− +
∥∥|g|p−∥∥p−

p(.)/p−
= ‖f‖p−p(.) ‖g‖

p−
p(.) .
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Chaptre 1 : Preliminaries

1.1.1 Lebesgue spaces with variable exponents

Let Ω ⊂ Rn. We recall that Lp(Ω) is the set of all measurable functions for which the

norm

‖f‖Lp =

(∫
Ω

|f(x)|p dx
) 1

p

<∞

Here and below we consider Lebesgue spaces with variable exponent, which is the

heart of this paper. We are placing ourselves in the setting where the value of p above varies

according to the position of x ∈ Ω. The simplest case is as follows : suppose we are given a

measurable partition Ω = Ω1 ∪ Ω2 of Ω. Consider the norm ‖f‖z given by

‖f‖z =

(∫
Ω1

|f(x)|p1 dx

) 1
p1

+

(∫
Ω2

|f(x)|p2 dx

) 1
p 2

,

so,if we set p(.) = p1χΩ1 + p2χΩ2 ,

then we are led to the space Lp(.)(Ω). What happens if the measurable function p(.) assumes

infinitely many different values ? The answer can be given by way of modulars.

Lebesgue spaces with variable exponents have been studied intensively for these two

decades right after some basic properties were established by Kováčik and Rákosńık[18].

Theorem 1.1.3 (Minkowski’s inequality). Let 1 ≤ p ≤ ∞. Then, we have

‖f + g‖
Lp (Ω) ≤ ‖f‖Lp (Ω) + ‖g‖

Lp (Ω) .

for all f, g ∈ Lp(Ω).

1.1.2 Elementary properties

Given a variable exponent p(.), we define the following :

a. p− = sup {a : p(x) ≥ a, x ∈ Ω} ,

b. p+ = inf {a : p(x) ≤ a, x ∈ Ω} ,

9



Chaptre 1 : Preliminaries

c. Ω0 = p−1((1,∞)) = Ω/Ω1 ∪ Ω∞,

d. Ω1 = p−1(1),

e. Ω∞ = p−1(∞),

f. the conjugate exponent p
′
(.)

p
′
(x) :=


∞ (x ∈ Ω1)

p(x)
p(x)−1

(x ∈ Ω0)

1 (x ∈ Ω∞)

,

namely 1
p(x)

+ 1
p′ (x)

= 1. see[5]

Remark 1.1.4 [14]

Lp(.)(Ω) = Lp0(Ω), and ‖f‖Lp(.)(Ω) = ‖f‖Lp0 (Ω) ,

if p(.)equals to a constant p0 ∈ [1,∞]. We will prove that ρp(f) is a modular and that ‖.‖Lp(.)(Ω)

is a norm in the above.

Lemma 1.1.2 [14]If x, y ∈ Rn and 0 ≤ t ≤ 1 ≤ r <∞, then the following inequality

holds :

|tx+ (1− t)y|r ≤ t |x|r + (1− t) |y|r ,

Theorem 1.1.4 Let p(.) : Ω → [1,∞] be a variable exponent. Then ρp(.) is a modu-

lar. If p(.) additionally satisfies p̃+ := ess supx∈Ω\Ω∞ p(x) <∞, then ρp(.) is a continuous

modular.

Lemma 1.1.3 [14]Assume that f ∈ L0(Ω) satisfies 0 < ‖f‖Lp(.)(Ω) <∞.

1. ρp(
f

‖f‖
Lp(.)(Ω)

) ≤ 1,

2. if , p̃+ = ess supx∈Ω\Ω∞ p(x) <∞, then ρp(
f

‖f‖
Lp(.)(Ω)

) = 1 holds.

Lemma 1.1.4 Let p(.) : Ω→ [1,∞]be a variable exponent and f ∈ L0(Ω)

10



Chaptre 1 : Preliminaries

1. if ‖f‖Lp(.)(Ω) ≤ 1 then we have ρp(f) ≤ ‖f‖Lp(.)(Ω) ≤ 1.

2. Conversely if ρp(f) ≤ 1 , then ‖f‖Lp(.)(Ω) ≤ 1 holds.

3. Assume in addition that 1 ≤ p̃+ := ess supx∈Ω\Ω∞ p(x) <∞ and that ρp(f) ≤ 1 holds.

Then ‖f‖Lp(.)(Ω) ≤ ρp(f)
1
p̃+ ≤ 1.

Remark 1.1.5 let

ρ(0)
p (f) =

∫
Ω

|f(x)|p(x) dx and

‖f(x)‖(0)

Lp(.)(Ω)
= inf

{
λ > 0 : ρ(0)

p (f /λ) ≤ 1
}

= inf

{
λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
,

where it is understood that

r∞ =

 0 0 ≤ r ≤ 1

∞ r > 1
,

then ρ
(0)
p is a semimodular and ‖f(x)‖(0)

Lp(.)(Ω)
is a norm. If p+ <∞, then ρ

(0)
p

clearly coincides with ρp and it is continuous.

1.2 Hardy space

1.2.1 Definition and basic properties

Definition 1.2.1 For 0 < p <∞ and 0 < r < 1, for a function f defined on D

(D = {x, y ∈ R, z = x+ iy ∈ C : |z| < 1}) we set

Mp(f, r) =

(
1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ)1/p

,

11



Chaptre 1 : Preliminaries

We define the Hardy space Hp = Hp(D) as

Hp=

{
f ∈ H(D) : sup

0<r<1
Mp(f, r) <∞

}
,

and for f ∈ Hp we set

‖f‖Hp = sup
0<r<1

Mp(f, r),

Furthermore, we define H∞ as the space of holomorphic functions that are bounded on the

unit disc, endowed with the sup-norm.

For the special case p =∞, we require that

‖f‖∞ = M∞(f, r) = sup
0≤θ≤2π

∣∣f(reiθ)
∣∣ <∞,

and we write f ∈ H∞.

We mention in passing that, also when 0 < p < 1 we set

‖f‖Lp =

(
1

2π

∫ 2π

0

∣∣f(eiθ)
∣∣p dθ)1/p

,

and, with an abuse of language, we call it the Lp-norm. However, setting d(f, g) = ‖f − g‖pLp ,

Lp becomes a complete metric space. Notice that ‖f + g‖Lp ≤ 2(1−p)/p (‖f‖Lp + ‖g‖Lp).

Corollary 1.2.1

1. For 0 < p <∞ we have

Hp =

{
f ∈ H(D) : lim

r→1−
Mp(f, r) <∞

}
,

2. If f ∈ Hp for 0 < p ≤ ∞ we notice ‖f‖Hp = limr→1−Mp(f, r),

Remark 1.2.1 Aside from the case p =∞, also the space H2 can be described at once.

For, if f is holomorphic on D, then it admits power series expansion f(z) =
∑∞

n=0 anz
n, z = reiθ.

12



Chaptre 1 : Preliminaries

Using the uniform convergence on compact subsets of D we have

M2(f, r)2 =
1

2π

∫ 2π

0

∣∣f(reit)
∣∣2 dt

=
1

2π

∫ 2π

0

+∞∑
n,m=0

anamr
n+meit(n−m)dt

=
+∞∑
n=0

r2n |an|2 ,

Therefore,

sup
0<r<1

M2(f, r) =

(
+∞∑
n=0

|an|2
)1/2

,

that is f ∈ H2 if and only if
∑+∞

n=0 |an|
2 is finite.In particular, it follows that H2 is a

Hilbert space. Observe that, in particular, a function f in H2 can be extended to the bound-

ary ∂D = T =
{
ζ ∈ C :ζ = eiθ

}
, (unit circle), having as “boundary values” the function

f̃ ∈ L2(∂D) given by

f̃(eit) =
+∞∑
n=0

ane
int = lim

r→1−
f(reit),

Moreover, by Lemma (1.2.1) P(f̃)(r.) = (Pr ∗ f̃) =
∑∞

n=0 anr
nein(.) = f(r.). We can call

f̃ “boundary values” since f(r.) = Pr ∗ f̃ → f̃ in L2(T) as r → 1−

Remark 1.2.2 Given f holomorphic in D, the function Mp(f, r) is increasing in r, 0 <

r < 1. This statement holds true for the full range 0 < p ≤ ∞, but its proof is elementary

only in the case p ≥ 1 and we will restrict to this case.

Lemma 1.2.1 Let g ∈ L1(∂D). Then for every 0 < r < 1 we have that

(Pr ∗ g)(eiη) =
+∞∑

k=−∞

gˆ(k)r|k|eikη,

in which

Pr(e
iη) =

+∞∑
k=−∞

r|k|eikη =
1− r2

|1− reiη|2
= P (reiη).

13



Chaptre 1 : Preliminaries

Remark 1.2.3 For 0 < % < 1and a function f defined in D we write f% := f(%.) to

denote a function on the unit circle. For 0 < r; % < 1, given a function f holomorphic in D

notice that fr is holomorphic in a ngbh of D so that

f(r%eiη) = (fr ∗ P%)(eiη),

Hence, we have

Mp(f, r%) = ‖fr ∗ P%‖Lp(T)

≤ ‖fr‖Lp(T) ‖P%‖L1(T) = Mp(f, r),

that is, Mp(f, r) is increasing in r and

sup
0<r<1

Mp(f, r) = lim
r→1−

Mp(f, r),

Proposition 1.2.1 For 1 ≤ p ≤ ∞ Hp is a Banach space.

Proof. It is clear that ‖.‖Hp is a norm, so we only need to prove that it is complete.

Let 0 < r ,% < 1 and notice that for f holomorphic on D we have

∣∣fr ∗ P%(eit)∣∣ ≤ ‖fr‖Lp(T) ‖P%‖Lp′ (T)

≤ C% ‖f‖Hp ,

This shows that

sup
|z|≤%
|f(z)| ≤ C% ‖f‖Hp ,

and therefore the convergence in the Hp-norm implies the uniform convergence on compact

subsets.Thus, let {fn} be a Cauchy sequence in the Hp-norm, and let f be the function

uniform limit on compact subsets of D. Then f is holomorphic and for 0 < r < 1 fixed, using

14



Chaptre 1 : Preliminaries

the uniform convergence, for p <∞ we have

Mp(fn − f, r)p =
1

2π

∫ 2π

0

∣∣fn(reit)− f(reit)
∣∣p dt

= lim
m→+∞

1

2π

∫ 2π

0

∣∣fn(reit)− fm(reit)
∣∣p dt

= lim
m→+∞

Mp(fn − fm, r)p

≤ lim
m→+∞

‖fn − fm‖pHp ,

Therefore,

‖fn − f‖Hp ≤ lim
m→+∞

‖fn − fm‖Hp < ε.

for n sufficiently large. The case p =∞ is similar

Proposition 1.2.2 If 1 ≤ p < q ≤ ∞ ,then Hq(D) ⊂ Hp(D) and for f ∈ Hq(D)

‖f‖Hp ≤ ‖f‖Hq .

Proposition 1.2.3 The function f(z) = (1− z)−1 in is Hp for every 0 < p < 1, but

is not in H1 and thus not in any Hp space for any p ≥ 1.

1.2.2 Atomic Hp spaces

A function a ∈ L∞(Rn) is called an atom if there exists a ball B such that

(i) supp(a) ⊂ B;

(ii) ‖a‖L∞ ≤ |B|
1
q ;

(iii)
∫
Rn a(x)xαdx = 0 for all α with |α| ≤ n(p−1 − 1).

The atomic Hardy space Hp
A, 0 < p ≤ 1, is defined as the set of all distributions f ∈ S ′ that

can be represented in the form

f =
∞∑
j=1

λjaj, where

∞∑
j=1

|λj|p <∞,

15



Chaptre 1 : Preliminaries

1.2.3 Atomic decomposition of Hp
A spaces

Definition 1.2.2 For any 0 < p ≤ 1 the continuous embedding Hp ⊂ Hp
A is valid, that

is, if f ∈ Hp, then f ∈ Hp
A and

‖f‖Hp
A
≤ c ‖f‖Hp ,

where c > 0 is a constant depending only on p, n.

1.3 The Hardy-Littlewood maximal operator

1.3.1 Basic properties

Given a function f ∈ L1
loc(Rn), we define the maximal function of f , is defined for any

x ∈ Rn by :

Mf(x) = sup
Q3x

∮
Q

|f(y)| dy,

where

∮
Q

gdy = |Q|−1 ∫
Q
gdy, and the supremum is taken over all cubes Q ⊂ Rn that contain

x and whose sides are parallel to the coordinate axes.

Proposition 1.3.1 [2] The Hardy-Littlewood maximal operator has the following proper-

ties :

1. M is sublinear : M(f + g)(x) ≤ Mf(x) + Mg(x), and for all α ∈ R, M(αf)(x) =

|α|Mf(x).

2. If f is not identically zero, then on any bounded set Ω there exists ε > 0 such that

Mf(x) ≥ ε, x ∈ Ω.

3. If f is not equal to 0, then Mf(x) /∈ L1(Rn).

4. If f ∈ L∞(Rn), then Mf ∈ L∞(Rn) and ‖Mf‖∞ = ‖f‖∞ .

16



Chaptre 1 : Preliminaries

Proposition 1.3.2 [2] Given a locally integrable function f , then for a. e. x ∈ Rn,

|f(x)| ≤Mf(x)

Definition 1.3.1 [1] Given p(.) ∈ P0, we say p(.) ∈ MP0 if p− > 0 and there exists p0,

0 < p0 < p−, such that ‖Mf‖p(.)/p0
≤ C (n, p(.), p0) ‖f‖p(.)/p0

.

A useful sufficient condition for the boundedness of the maximal operator is log-Hölder con-

tinuity : for a proof, see [6, 15]

Lemma 1.3.1 [1] Given p(·) ∈ P, such that 1 < p− ≤ p+ <∞ , suppose that p(.)satisfies

the log-Hölder continuity condition locally,

|p(x)− p(y)| ≤ C0

− log(|x− y|)
, |x− y| < 1/2. (1.1)

and at infinity : there exists p∞ such that

|p(x)− p∞| ≤
C∞

log(e+ |x|)
. (1.2)

Then ‖Mf‖p(.) ≤ C (n, p(.)) ‖f‖p(.) .

Lemma 1.3.2 Let p(.) ∈ P(Rn). If the maximal operator M is bounded on Lp(.)(Rn)

then for all s ∈ (1,∞), M is also bounded on Lsp(.).

Proof. This follows at once from Hölder’s inequality and proposition(1.1.3)

‖Mf‖sp(.) = ‖(Mf)s‖1/s
p(.) ≤ ‖(M |f |)

s‖1/s
p(.) ≤ C1/s ‖|f |s‖1/s

p(.) = C1/s ‖f‖sp(.) .

Lemma 1.3.3 [1] Given p(.) ∈ P, if the maximal operator is bounded on Lp(.), then for

every ball B ⊂ Rn

‖χB‖p(.) ‖χB‖p′ (.) ≤ C |B| .

17



Chaptre 1 : Preliminaries

The maximal operator also satisfies a vector-valued inequality.

Lemma 1.3.4 Given p(.) ∈ P such that p+ <∞, if the maximal operator is bounded on

Lp(.), then for any r, 1 < r <∞

∥∥∥∥∥∥
(∑

k

(Mfk)
r

)1/r
∥∥∥∥∥∥
p(.)

≤ C(n, p(.), r)

∥∥∥∥∥∥
(∑

k

|fk|r
)1/r

∥∥∥∥∥∥
p(.)

.

Lemma 1.3.5 [1] Given p(·) ∈ P such that 1 < p− ≤ p+ < ∞, the maximal operator is

bounded on Lp(.) if and only if it is bounded on Lp
′(.).

18



Chapitre 2

Variable Hardy spaces

In this chapter, let p(·) be a measurable function on Rn satisfying 0 < p− := ess infx∈Rn p(x) ≤

ess supx∈Rn p(x) =: p+ <∞ and the globally log-Hölder continuity condition, and q ∈ (0,∞).

We study the variable Hardy spaces and its different characterizations.

2.1 Definition and atomic decomposition

In this section, we define the variable Hardy spaces and give equivalent characterizations

in terms of maximal operators. We need a few definitions.

Let S be the space of Schwartz functions and let S
′

denote the space of tempered

distributions. We will say that a tempered distribution f is bounded if f ∗ Φ ∈ L∞ for

every Φ ∈ S. For complete information on distributions. Define the family of semi-norms on

‖.‖α,β, α and β multi-indices, on S by

‖f‖α,β = sup
x∈Rn

∣∣xαDβf(x)
∣∣ .

and for each integer N > 0 let

SN =
{
f ∈ S : ‖f‖α,β ≤ 1, |α| , |β| ≤ N

}
.
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Chaptre 2. :Variable Hardy spaces

Given Φ and t > 0, let Φt(x) = t−nΦ(x /t) = t−nΦ(t−1x). We define three maximal operators :

given Φ ∈ S and f ∈ S
′
, define the radial maximal operator

MΦ,0f = sup
t>0
|f ∗ Φt(x)| .

and for each N (large)> 0 the grand maximal operator

MNf(x)= sup
Φ∈SN

MΦ,0f(x).

Finally, define the non-tangential maximal operator

N f(x) = sup
|x−y|<t

|Pt ∗ f(y)| .

where P is the Poisson kernel

P (x) =
Γ(n+1

2
)

π
n+1

2

1

(1 + |x|2)
n+1

2

.

Theorem 2.1.1 [1] Given p(.) ∈MP0, for every f ∈ S
′

the following are equivalent :

1. there exists Φ ∈ S,
∫

Φ(x)dx 6= 0, such that MΦ,0f ∈ Lp(.).

2. for all N > n /p0 + n+ 1, MNf ∈ Lp(.).

3. f is a bounded distribution and N f ∈ Lp(.).

Definition 2.1.1 (Variable hardy space) Let p(.) ∈ MP0 for N > n /p0 + n + 1,

define the space Hp(.) to be the collection of f ∈ S ′ such that ‖f‖Hp(.) = ‖MNf‖p(.) <∞.

Remark 2.1.1 [1]

The spaces Hp(.)(Rn) are independent of the choice of N > n /p0 + n+ 1.
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Chaptre 2. :Variable Hardy spaces

2.1.1 Atomic decomposition

THE ATOMIC DECOMPOSITION (p(·), ∞) ATOMS

Definition 2.1.2 [1] Given p(.) ∈MP0, and q, 1 < q <∞ a function a(.)is a (p(·), q)atom

if supp(a) ⊂ B = B(x0, r) = {y ∈ Rn : |x0 − y| < r} for some x0 ∈ Rn, r > 0 and it

satisfies

(i) ‖a‖q ≤ |B|
1
q ‖χB‖−1

p(.) .

(ii)
∫
a(x)xαdx = 0 for all |α| ≤ bn(p−1

0 − 1c.

In (i) we interpret 1/∞ = 0. These two conditions are called the size and vanishing moments

conditions of atoms.

Remark 2.1.2 If p0 > 1 (which can happen if p− > 1), then bn(p−1
0 − 1c < 0, and we

interpret this to mean that no vanishing moments are required.

In the remainder of this section we consider the case q =∞

Theorem 2.1.2 Suppose p(.) ∈MP0. Then a distribution f is in Hp(.)(Rn) if and only

if there exists a collection {aj} of (p(·),∞) atoms supported on balls {Bj}, and non-negative

coefficients {λj} such that

f =
∑
j

λjaj,

where the series converges in Hp(.)(Rn). Moreover

‖f‖Hp(.) w inf


∥∥∥∥∥∥∥
∑
j

λj
χ
Bj∥∥∥χBj∥∥∥p(.)

∥∥∥∥∥∥∥
p(.)

: f =
∑
j

λjaj

 . (2.1)
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Chaptre 2. :Variable Hardy spaces

Lemma 2.1.1 Given p(.) ∈ MP0, suppose {aj} is a sequence of (p(·),∞) atoms, sup-

ported on Bj = B(xj, rj), and {λj} is a non-negative sequence that satisfies

∥∥∥∥∥∥∥
∑
j

λj
χ
Bj∥∥∥χBj∥∥∥p(.)

∥∥∥∥∥∥∥
p(.)

<∞. (2.2)

Then the series f =
∑

j λjaj converges in Hp(.), and

‖f‖Hp(.) ≤ C(n, p(.), p0)

∥∥∥∥∥∑
j

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
p(.)

. (2.3)

Proof. Fix Φ ∈ S such that
∫

Φdx 6= 0 and supp(Φ) ⊂ B(0, 1). Fix atoms {aj} with

support {Bj} and coefficients {λj} such that 2.2 holds.

Given B = B(x0, r), let 2B = B(x0, 2r). We consider the case p− < 1 ; if p− ≥ 1 the proof is

essentially the same, omitting the exponent p−

‖MΦ,0‖p−p(.) .

∥∥∥∥∥∑
j

λjMΦ,0(aj)

∥∥∥∥∥
p−

p(.)

≤

∥∥∥∥∥∑
j

λjMΦ,0(aj).χ(2Bj)

∥∥∥∥∥
p−

p(.)︸ ︷︷ ︸
I1

+

∥∥∥∥∥∑
j

λjMΦ,0(aj).χ(2Bcj)

∥∥∥∥∥
p−

p(.)︸ ︷︷ ︸
I2

,

We first estimate I1 By the size condition on (p(·),∞) atoms, we have that

MΦ,0aj(x) ≤ ‖aj‖∞ ‖Φ‖1 ≤ c
∥∥χBj∥∥−1

p(.)
,

Define gj = (
∥∥χBj∥∥−1

p(.)
λj)

p0χBj .

If x ∈ χ(2Bj), then by the definition of the maximal operator

Mgj(x) ≥ (
∥∥χBj∥∥−1

p(.)
λj)

p0χBj
1

|2Bj|

∫
2Bj

χBjdx = 2−n(
∥∥χBj∥∥−1

p(.)
λj)

p0 .
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Chaptre 2. :Variable Hardy spaces

Then by proposition(1.1.3) and lemma (1.3.4)

I1 ≤ C

∥∥∥∥∥∑
j

∥∥χBj∥∥−1

p(.)
λjχ2Bj

∥∥∥∥∥
p−

p(.)

≤ C

∥∥∥∥∥∑
j

M(gj)
1/p0

∥∥∥∥∥
p−

p(.)

= C

∥∥∥∥∥
(∑

j

M(gj)
1/p0

)p0
∥∥∥∥∥
p−
p0

p(.)
p0

≤ C

∥∥∥∥∥
(∑

j

(gj)
1/p0

)p0
∥∥∥∥∥
p−
p0

p(.)
p0

= C

∥∥∥∥∥∑
j

∥∥χBj∥∥−1

p(.)
λjχBj

∥∥∥∥∥
p−

p(.)

,

To estimate I2, let a be an atom supported on B = B(x0, r)

MΦ,0a(x) ≤ c

(
r

|x− x0|

)n+1+d ∮
B

a(y)dy

≤
(

r

|x− x0|

)n+1+d

‖a‖∞ ≤ c

(
r

|x− x0|

)nγ
‖χB‖−1

p(.)

we have for each j that

MΦ,0aj(x) ≤ c

(
rj

|x− xj|

)nγ ∥∥χBj∥∥−1

p(.)
≤ c

∥∥χBj∥∥−1

p(.)
M(χBj)

γ,

We can now estimate I2 : by proposition(1.1.3) and lemma(1.3.4)

I2 ≤

∥∥∥∥∥∑
j

λjMΦ,0(aj).χ(2Bcj)

∥∥∥∥∥
p−

p(.)

≤ c

∥∥∥∥∥∑
j

λj∥∥χBj∥∥p(.)M(χBj)
γ

∥∥∥∥∥
p−

p(.)

=

∥∥∥∥∥∥∥
M∑

j

 λ
1/γ
j∥∥χBj∥∥1/γ

p(.)

χBj

γ1/γ
∥∥∥∥∥∥∥
γp−

γp(.)

≤ C

∥∥∥∥∥∥
(∑

j

∥∥χBj∥∥−1

p(.)
λjχBj

)1/γ
∥∥∥∥∥∥
γp−

γp(.)

= C

∥∥∥∥∥∑
j

∥∥χBj∥∥−1

p(.)
λjχBj

∥∥∥∥∥
p−

p(.)

.
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Lemma 2.1.2 Let p(.) ∈ MP0. if f ∈ Hp(.), then there exist (p(.),∞) atoms {ak,j} ,

supported on balls Bk,j, and non-negative coefficients {λk,j} such that

f =
∑
k,j

λk,jak,j,

Moreover ∥∥∥∥∥∑
k,j

λk,j
χBk,j∥∥χBk,j∥∥p(.)

∥∥∥∥∥
p(.)

≤ C(n, p(.), p0) ‖f‖Hp(.) .

THE ATOMIC DECOMPOSITION (p(·), q) ATOMS :

Infinite atomic decomposition using (p(·), q) atoms We extend Theorem (2.1.2)

by giving an atomic decomposition using (p(·), q) atoms.

Theorem 2.1.3 [1] Suppose p(·) ∈ MP0. Then a distribution f is in Hp(.) if and only if

for q > 1 sufficiently large, there exists a collection {aj} of (p(·), q) atoms supported on balls

{Bj}, and non-negative coefficients {λj} such that

f =
∑
j

λjaj,

where the series converges in Hp(.). Moreover

‖f‖Hp(.) w inf


∥∥∥∥∥∑

j

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
p(.)

: f =
∑
j

λjaj

 . (2.4)

Remark 2.1.3 Denote the norm of the maximal operator by ‖M‖(p(·)/p0)′ . Then it suf-

fices to take q > max(1, p+, p0(1 + 2n+3 ‖M‖(p(·)/p0)′ )).

Lemma 2.1.3 Given p(·) ∈ MP0, there exists q = q(p(·), p0, n) > max(p+, 1) such

that if {aj} is a sequence of (p(·), q) atoms supported on Bj = B(xj, rj), and {λj} is a
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non-negative sequence that satisfies

∥∥∥∥∥∑
j

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
p(.)

<∞, (2.5)

then the series f =
∑

j λjaj converges in Hp(.), and

‖f‖Hp(.) ≤ C(n, p(.), p0, q)

∥∥∥∥∥∑
j

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
p(.)

, (2.6)

Lemma 2.1.4 Given w ∈ A1, then w ∈ RHs, where s = 1 + (2n+2 [w]A1
)−1

in which

[w]A1
= ess sup

x∈Rn

Mw(x)

w(x)
<∞.

Remark 2.1.4 Given a weight w ∈ A1 and p0 > 0, the weighted Hardy space Hp0(w)

consists of all tempered distributions f such that

‖f‖Hp0 (w) = ‖MΦ,0f‖Lp0 (w) =

(∫
Rn
MΦ,0f(x)p0w(x)dx

)1/p0

<∞.

These spaces have an atomic decomposition.

Lemma 2.1.5 Given p(·) ∈ MP0 and q > max(p0, 1), suppose {aj} is a sequence of

(p(·), q) and {λj} is a non-negative sequence and w ∈ A1 ∩RH(p(.)/p0)′ . if

∥∥∥∥∥∑
j

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
LP0 (w)

<∞,

Then the series f =
∑

j λjaj converges in Hp0(w) and

‖f‖Hp0 (w) ≤ C(p(.), p0, q, n, [w]A1
, [w]RH

(p(.)/p0)
′ )

∥∥∥∥∥∑
j

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
Lp0 (w)

.
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Remark 2.1.5 form the Rubio de Francia iteration algorithm with respect to L(p(.)/p0)
′

Given a function h, define

Rh =
∞∑
i=0

M ih

2i ‖M‖(p(.)/p0)′
,

where M0h = |h| and for i ≥ 1 M ih = M ◦ M ◦ ... ◦ Mh. is i iterates of the maximal

operator.

Finite atomic decompositions : Given q < ∞, let H
p(.),q
fin be the subspace of Hp(.)

consisting of all f that have decompositions as finite sums of (p(·), q) atoms.

Theorem 2.1.4 Let p(·) ∈ MP0 and fix q as in Theorem (2.1.3)

For f ∈ Hp(.),q
fin (Rn), define

‖f‖
H
p(.),q
fin

= inf


∥∥∥∥∥

k∑
j=1

λj
χBj∥∥χBj∥∥p(.)

∥∥∥∥∥
p(.)

: f =
k∑
j=1

λjaj

 , (2.7)

where infimum is taken over all finite decompositions of f using (p(·), q) atoms aj, supported

on balls Bj. Then

‖f‖Hp(.) ' ‖f‖Hp(.),q
fin

.

Lemma 2.1.6 Define the non-tangential grand maximal function MN,1,by

MN,1f(x) = sup
Φ∈SN

sup
|y−x|<t

|Φt ∗ f(x)| ,

Then for all x ∈ Rnand tempered distributions f

MN,1f(x) ≈MNf(x),

where the constants depend only on N

The second lemma is a decay estimate for the grand maximal operator.
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Chaptre 2. :Variable Hardy spaces

Lemma 2.1.7 Given p(·) ∈ MP0, suppose f ∈ Hp(.) is such that supp(f) ⊂ B(0, R)

for

some R > 1. Then for all x ∈ B(0, 4R)c

MNf(x) ≤ C(N, p(.), p0)
∥∥χB(0,R)

∥∥−1
.
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Chapitre 3

Boundedness of Operators on variable

Hardy spaces

In this Chapter, we show that convolution type Calderón-Zygmund singular integrals with

sufficient regularity are bounded on Hp(.).

First we define the class of singular integrals we are interested in.

Definition 3.0.3 [1] Let K ∈ S ′ we say Tf = K ∗ f =
∫
Rn K(x− y)f(y)dy is a convolution-

type singular integral operator with regularity of order k if the distribution K coincides with

a function on Rn \{0} and has the following properties :

1. K̂ ∈ L∞;

2. for all multi-indices 0 ≤ |β| ≤ k + 1 and x 6= 0,
∣∣∂βK(x)

∣∣ ≤ C

|x|n+|β| .

Singular integrals that satisfy this definition are bounded on Lp, 1 < p <∞.

Lemma 3.0.8 Let T be a convolution-type singular integral operator as defined above.

Given w ∈ A1 and 0 < p < 1, then for every ball B,

∫
B

|Tf(x)|pw(x)dx ≤ C(T, n, p, [w]A1
)w(B)1−p

(∫
Rn
|f(x)|w(x)dx

)p
.
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Chaptre 03 : Boundedness of Operators on variable Hardy spaces

Theorem 3.0.5 Given p(·) ∈MP0 and q > 1 sufficiently large (as in Theorem (2.1.3)

), let T be a singular integral operator that has regularity of order k ≥ bn( 1
p0
− 1)c. then

‖Tf‖p(.) ≤ C(T, p(.), p0, q, n) ‖f‖Hp(.) .

Theorem 3.0.6 Given p(·) ∈MP0 and q > 1 sufficiently large (as in Theorem (2.1.3)

), let T be a singular integral operator that has regularity of order k ≥ bn( 1
p0
− 1)c. then

‖Tf‖Hp(.) ≤ C(T, p(.), p0, q, n) ‖f‖Hp(.) .

Theorem 3.0.7 [1] Given p(·) ∈MP0 with 0 < p0 < 1 and q > 1 sufficiently large (as in

Theorem (2.1.3) ), suppose that T is a sublinear operator that is defined on (p(·), q) atoms.

Then :

(1). If for all w ∈ A1 ∩RH(q/p0 )
′ and every (p(·), q/p0) atom a(·) with support B,

‖Ta‖Lp0 (w) ≤ C(T, p(.), p0, q, n, [w]A1
, [w]RH

(q/p0 )
′ )
w(B)1/p0

‖χB‖p(.)
, (3.1)

then T has a unique, bounded extension T̃ : Hp(.) → Lp(.).

(2). If for all w ∈ A1 ∩RH(q/p0 )
′ and every (p(·), q/p0) atom a(·) with support B,

‖Ta‖HP0 (w) ≤ C(T, p(.), p0, q, n, [w]A1
, [w]RH

(q/p0 )
′ )
w(B)1/p0

‖χB‖p(.)
, (3.2)

then T has a unique, bounded extension T̃ : Hp(.) → Hp(.)

Remark 3.0.6 The additional hypothesis that 0 < p0 < 1 is not a real restriction, since

by Lemma (1.3.2) we may take p0 as small as desired.

Remark 3.0.7 Note that when p(·) is constant and w ≡ 1, then conditions 3.1 and 3.2

reduce to showing that T is uniformly bounded on atoms, which is the condition used to prove

singular integrals are bounded on classical Hardy spaces.
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Proof. First suppose that 3.1 holds.

Fix f ∈ Hp(·),q/p0

fin ; by Theorem(2.1.3) this set is dense in Hp(.). Since T is well-defined on

the elements of H
p(·),q/p0

fin , it will suffice to prove that

‖Tf‖Lp(.) ≤ C(T, p(.), p0, q, n) ‖f‖Hp(.) . (3.3)

For in this case by a standard density argument there exists a unique bounded extension

T̃ such that T̃ : Hp(.) → Lp(.).

To prove 3.3 we will use the extrapolation argument in Lemma (2.1.5) to reduce the variable

norm estimate to a weighted norm estimate. Arguing as we did in that proof, we have that

‖Tf‖p0

Lp(.)
≤ sup

∫
|Tf(x)|p0Rg(x)dx,

with the supremum taken over all g ∈ L(p(·)/p0)
′

with ‖g‖
L(p(·)/p0)

′ ≤ 1.

Suppose for the moment that we can prove that for all f ∈ Hp(·),q/p0

fin

‖Tf‖Lp0 (Rg) ≤ C(T, p(.), p0, q, n) ‖f‖Hp0 (Rg) . (3.4)

(In particular, the constant is independent of g) Then we can continue the argument as in

the proof of Lemma (2.1.5) to get

‖Tf‖p0

Lp0 (Rg) ≤ C(T, p(.), p0, q, n) ‖f‖p0

Hp0 (Rg) ≤ C

∫
MNf(x)p0Rg(x)dx

≤ C ‖(MNf)p0‖p(·)/p0
‖Rg‖(p(·)/p0)′ ≤ C ‖MNf‖p0

p(·) ≤ C ‖f‖p0

Hp(.) .

This gives us 3.3.

To complete the proof we will show 3.4.Recall that as sets, H
p0,q/p0

fin (Rg) = H
p(.),q/p0

fin .

Therefore, let

f =
k∑
j=1

λjaj
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be an arbitrary finite decomposition of f in terms of (p(·), q/p0) atoms.

Since, 0 < p0 < 1, by the sublinearity of T , convexity and 3.1,

‖Tf‖p0

Lp0 (Rg) =

∫
|Tf(x)|p0Rg(x)dx ≤

k∑
j=1

λp0

j

∫
Bj

|Taj(x)|p0Rg(x)dx

≤ C

k∑
j=1

λp0

j

Rg(Bj)∥∥χBj∥∥p0

p(.)

= C

∥∥∥∥∥
k∑
j=1

λp0

j

χBj∥∥χBj∥∥p0

p(.)

∥∥∥∥∥
L1(Rg)

.

This is true for any such decomposition of f .

Therefore, since Rg ∈ A1 ∩ L(p(·)/p0)
′

by construction, by see [1, Lemma 7.11] we can take

the infimum over all such decompositions to get

‖Tf‖Lp0 (Rg) ≤ C ‖f‖HP0 (Rg) , where C = C(T, p(·), p0, q, n). This proves 3.4 for all

f ∈ Hp(·),q/p0

fin .

We now consider the case when condition 3.2 holds.

The proof is essentially the same as before, except instead of proving 3.4, we need to prove

that for all f ∈ Hp(·),q/p0

fin ,

‖Tf‖Hp0 (Rg) ≤ C(T, p(.), p0, q, n) ‖f‖Hp0 (Rg) . (3.5)

Given this, we can then repeat the extrapolation argument as before.

To prove 3.5 we use the same argument used to prove 3.4, replacing Tf with MΦ,0(Tf)

where Φ ∈ S with
∫

Φdx = 1 , and using 3.2 instead of 3.1.
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Proof. of Theorem (3.0.5)

By Theorem (3.0.7) it will suffice to show that condition 3.1 holds for all (p(·), q/p0) atoms

and all w ∈ A1 ∩RH(q/p0 )
′ .

Fix such an atom a(·) with support B = B(x0, r). Let 2B = B(x0, 2r) and write

‖Ta‖p0

Lp0 (w) =

∫
|Ta(x)|p0 w(x)dx

=

∫
2B

|Ta(x)|p0 w(x)dx︸ ︷︷ ︸
I1

+

∫
(2B)c

|Ta(x)|p0 w(x)dx︸ ︷︷ ︸
I2

We first estimate I1 :

By Lemma (3.0.8) there exists a constant C = C(T, n, p0, [w]A1
) such that

I1 ≤ Cw(B)1−p0

(∫
Rn
|a(x)|w(x)dx

)p0

≤ Cw(B)1−p0 |B|p0

(∮
B

|a(x)|q/p0 dx

)1/q (∮
B

w(x)(q/p0)′dx

)p0/(q/p0)′

Since a(·) is a (p(·), q/p0) atom and w ∈ RH
(q/p0 )

′ , we get that

I1 ≤ C [w]p0

RH
(q/p0 )

′ w(B)1−p0 |B|p0 ‖χB‖−p0

Lp(.)
|B|−p0 w(B)p0 = C [w]p0

RH
(q/p0 )

′ w(B) ‖χB‖−p0

Lp(.)
.

To estimate I2

Let d = bn( 1
p0
− 1)c, We claim that there exists a constant C = C(T, n) such that for all

x ∈ (2B)c ,

|Ta(x)| ≤ C
|B|1+ d+1

n

‖χB‖Lp(.)
.

1

|x− x0|n+d+1
. (3.6)

To prove this, let Pd be the Taylor polynomial of K of degree d centered at x − x0. By our

definition of d and our assumption on k, d+ 1 ≤ k + 1. Therefore, the remainder

|K(x− y)− Pd(y)| can be estimated by Condition (2) in Definition(3.0.3) .
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Hence, by the vanishing moment and size conditions on a(·) and Hölder’s inequality

|Ta(x)| ≤
∫
|K(x− y)− Pd(y)| |a(y)| dy

≤ C

|x− x0|n+d+1

∫
B(x0,r)

|y − x0|d+1 |a(y)| dy

≤ C
rd+1 |B|

|x− x0|n+d+1

∮
B

a(y)dy

≤ C
|B|

n+d+1
n |B|−p0/q ‖a‖q/p0

|x− x0|n+d+1

≤ C
|B|1+ d+1

n

‖χB‖p(.)
.

1

|x− x0|n+d+1
.

Given 3.6 we have that

∫
(2B)c

|Ta(x)|p0 w(x)dx ≤ C
|B|p0(n+d+1

n
)

‖χB‖p0

p(.)

∫
(2B)c

w(x)

|x− x0|p0(n+d+1)
dx︸ ︷︷ ︸

J

.

To complete the proof we will show that there exists a constant C = C(n, p0) such that

J ≤ C
[w]A1

w(B)

|B|p0(n+d+1
n )

. (3.7)

we have (2B)c = ∪∞i=1(2i+1B/2iB), for x ∈ 2i+1B/2iB, we have |x− x0| w 2ir w 2i |B|1/n .
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Since w ∈ A1 and p0(n+ d+ 1) > n, we can estimate as follows :

J =
∞∑
i=1

∫
2i+1B/2iB

w(x)

|x− x0|p0(n+d+1)
dx

≤ C

|B|p0(n+d+1
n )

∞∑
i=1

1

2ip0(n+d+1)

∫
2i+1B/2iB

w(x)dx

=
C

|B|p0(n+d+1
n )

∞∑
i=1

2n(i+1) |B|
2ip0(n+d+1)

∮
2i+1B

w(x)dx

≤
C2n [w]A1

|B|p0(n+d+1
n )

∞∑
i=1

1

2ip0(n+d+1)−in (|B| essx∈B inf w(x))

= C
[w]A1

w(B)

|B|p0(n+d+1
n )

.

Proof. of Theorem (3.0.6)

Our argument is similar to the proof of Theorem (3.0.5) . By Theorem (3.0.7) it will suffice

to show that condition 3.2 holds for an arbitrary (p(·), q/p0) atom a(·) with support B =

B(x0, r), and all w ∈ A1 ∩RH(q/p0)
′ .

Fix Φ ∈ S with
∫

Φdx = 1; then we can estimate ‖Ta‖Hp0 (w) as follows :

‖Ta‖p0

Hp0 (w) .
∫

2B

MΦ,0(Ta)(x)p0w(x)dx︸ ︷︷ ︸
R1

+

∫
(2B)c

MΦ,0(Ta)(x)p0w(x)dx︸ ︷︷ ︸
R2

To estimate R1 the we first use the fact thatMΦ,0(Ta) ≤ cM(Ta). Moreover, we have that

since w ∈ A1,

R1 ≤ Cw(2B)1−p0(

∫
Rn
|Ta(x)|w(x)dx︸ ︷︷ ︸

L

)p0

To get the desired estimate for R1 it will suffice to show that

L ≤ w(B)

‖χB‖p(.)
.
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To prove this, we again split the integral :

L =

∫
Rn
|Ta(x)|w(x)dx =

∫
2B

|Ta(x)|w(x)dx︸ ︷︷ ︸
L1

+

∫
(2B)c

|Ta(x)|w(x)dx︸ ︷︷ ︸
L2

.

To estimate L1 we apply Hölder’s inequality, the boundedness of T on Lq/p0 , and the fact

that w ∈ RH
(q/p0)

′ to get

L1 ≤
(∫

2B

|Ta(x)|q/p0 dx

)p0/q (∫
2B

w(x)(q/p0)
′

dx

)1
/

(q/p0)
′

≤ ‖a‖Lq/p0 . |2B|
1
/

(q/p0)
′
(∮

2B

w(x)(q/p0)
′

dx

)1
/

(q/p0)
′

≤ C(n, [w]A1
, [w]RH

(q/p0)
′ )

w(B)

‖χB‖p(.)
.

To estimate L2

L2 ≤ C
|B|

n+d+1
n

‖χB‖p(.)

(∫
(2B)c

w(x)

|x− x0|n+d+1
dx

)

≤ C
|B|

n+d+1
n

‖χB‖p(.)
.
w(B) [w]A1

|B|
n+d+1
n

.

(
∞∑
i=0

2ni

2i(n+d+1)

)
≤ C

w(B)

‖χB‖p(.)
.

To estimate R2, we will prove a pointwise bound for MΦ,0(Taj)(x) for x ∈ (2Bj)
c similar to

3.6. Define Kt = K ∗ Φt; then K(t) satisfies condition (3) of Definition (3.0.3) uniformly

for all t > 0.

Moreover, for x ∈ (2B)c, the integral for K ∗ a(x) converges absolutely, so

|Φt ∗ (K ∗ a)(x)| = |Φt ∗K(x) ∗ a(x)| =
∣∣K(t) ∗ a(x)

∣∣ .
Let d = nb( 1

p0
− 1)c and fix t > 0.

If Pd is the Taylor polynomial of K(t)centered at x − x0, we can argue exactly as we did to
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prove 3.6 to get

∣∣K(t) ∗ a(x)
∣∣ =

∣∣∣∣∫ [K(t)(x− y)− Pd(y)
]
a(y)dy

∣∣∣∣
≤ C

|x− x0|n+d+1

∫
B(x0,r)

|y − x0|d+1 |a(y)| dy

≤ C
|B|1+ d+1

n |B|−p0/q

|x− x0|n+d+1
‖a‖Lq/p0

≤ C
|B|1+ d+1

n

‖χB‖Lp(.)
1

|x− x0|n+d+1
.

The final constant is independent of t, an so we can take the supremum over all t to

MΦ,0(Ta)(x) ≤ C
|B|1+ d+1

n

‖χB‖Lp(.)
1

|x− x0|n+d+1
.

Then arguing as we did before, by 3.7 we have that

J2 ≤
w(B)

‖χB‖p0

p(.)

.
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Annexe A :Abbreviations and

Notations

The different abbreviations and notations used throughout this thesis are explained below :

Ω : open set in Rn.

P(Ω) : set of variable exponents.

ρ : semimodular ;modular.

Rn : Euclidean,n-dimensional space.

D : is the open unit disc.

T : is open unit circle.

Hp : Hardy space.

p(.) : exponent function.

P0(Ω) : simply exponents.

p
′
(.) : conjugate exponent function.

S ′ : space of tempered distributions.

S : space of schwartz functions.

α, β : multi indices.

P (x) : poisson kernel.

Hp(.) : variable hardy space.

N f(x) : non-tangential maximal operator.

MΦ,0f(x) : radial maximal operator.
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Annexe A : Abbreviations and Notations

‖.‖ : norm.

Lp(.)(Ω) : variable lebesgue space.

Tf : convolution -type singular integral operator.

Mf : maximal function.

MNf : grand maximal operator.

L0(Q) : The set of measurable functions on Q
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