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    Fractional calculus is a more than 300 years old topic. The number of applications where 

fractional calculus has been used rapidly grows. These mathematical phenomena allow to 

describe a real object more accurately than the classical “integer-order” methods. The real 

objects are generally fractional ,however, for many of them the fractionality is very low. A 

typical example of a non-integer (fractional) order system is the voltage-current relation of a 

semi-infinite lossy transmission line or diffusion of the heat through a semi-infinite solid, 

where heat flow is equal to the half-derivative of the temperature . 

     The main reason for using the integer-order models was the absence of solution methods 

for fractional differential equations. At present time there are lots of methods for 

approximation of fractional derivative and integral and fractional calculus can be easily used 

in wide areas of applications (e.g.: control theory - new fractional controllers and system 

models, electrical circuits theory - fractances, capacitor theory, etc.). 

     For closed-loop control systems, there are four situations. They are : 

 1) IO (integer order) plant with IO controller 

 2) IO plant with FO (fractionalorder) controller  

 3) FO plant with IO controller  

4) FO plant with FO controller 

     From control engineering point of view, doing something better is the major concern. 

Existing evidences have confirmed that the best fractional order controller can outperform the 

best integer order controller. It has also been answered in the literature why to consider 

fractional order control even when integer (high) order control works comparatively well .  

     Fractional order PID controller tuning has reached to a matured state of practical use. 

Since (integer order) PID control dominates the industry, we believe FO-PID will gain 

increasing impact and wide acceptance. Furthermore, we also believe that based on some real 

world examples, fractional order control is ubiquitous when the dynamic system is of 

distributed parameter nature. 
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     In this project, a simple tutorial on fractional calculus in controls. Basic definitions of 

fractional calculus, fractional order dynamic systems and controls are presented first in Sec. I. 

Then, Optimisation algorithms are introduced in Sec. II. In Sec. III. A DC Motor simulation 

on MatLab  with IOPID and FOPID to compare their performance. 



 

Section I : 

FRACTIONAL 

ORDER CALCULUS 

And 

FRACTIONAL 

ORDER SYSTEMS 
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I.1FRACTIONAL ORDER CALCULUS: MATHEMATICAL OVERVIEW : 

Fractional order calculus is an area where the mathematicians deal with derivatives and 

integrals from noninteger orders.  

Gamma function is simply the generalization of the factorial for all real numbers. The 

definition of the gamma function is given by : 

                                                                            Γ(x)= ∫ 𝑧𝑥−1∞

0
𝑒−𝑧𝑑𝑧       (1) 

            Γ(x)=(x-1)! 

𝐷𝑡
𝛼

𝑎  is the combination of differentiation and integration operation commonly used in 

fractional calculus. Reimann- Liouville definition for 𝐷𝑡
𝛼

𝑎  is 

                                              𝐷𝑡
𝛼

𝑎 {

𝑑𝛼

𝑑𝑡𝛼
    𝛼 > 0

1                𝛼 = 0

∫ (𝑑𝜏)−𝛼𝑡

0
         𝛼 < 0

             (2) 

Here α is the fractional order. a and t are the limits. 

There are two commonly used definitions for general Differintegral 𝐷𝑡
𝛼

𝑎   . 

1. Grunwald - Letnikov 

2. Riemann- Liouville 

Grunwald – Letnikov definition 

 (3) 

Riemann-Liouville definition  

(4) 

Laplace Transform of Differintegral operator 𝑫𝒕
𝜶

𝒂  

 

n lies in between n-1< α ≤ n. 
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Properties of Fractional Calculus : 

The main properties of fractional derivatives and integrals are the following: 

- If f(t) is an analytical function of t, its fractional derivative 𝐷𝑡
𝛼

𝑎 f(t) is an analytical 

function of z and α. 

- For α = n, where n is an integer, the operation 𝐷𝑡
𝛼

𝑎 f(t) gives the same result as 

classical differentiation of integer order n. 

- For α = 0 the operation 𝐷𝑡
𝛼

𝑎 f(t) is the identity operator: 𝐷𝑡
𝛼

𝑎 f(t) = f(t) 

- Fractional differentiation and fractional integration are linear operations:                        

𝐷𝑡
𝛼

0 f(t) +bg(t) = a 𝐷𝑡
𝛼

0 f(t) +b 𝐷𝑡
𝛼

0 𝑔(t) 

- The additive index law (semigroup property)                                                                      

𝐷𝑡
𝛼

0 𝐷𝑡
β

0 f(t) = 𝐷𝑡
𝛼

0 𝐷𝑡
β

0 f(t) = 𝐷𝑡
β+𝛼

0  f(t)                                                                              

holds under some reasonable constraints on the function f(t).                                      

The fractional-order derivative commutes with integer-order derivative 

 

under the condition t = a we have 𝑓(𝑘)(a) = 0, (k = 0,1,2,...,n − 1).  

The relationship above says the operators 
𝑑𝑛

𝑑𝑛𝑡
 and 𝐷𝑡

𝛼
𝑎 commute.[14] 

I.2Fractional Order Dynamic Systems : 

    A fractional-order dynamic system can be described by a fractional differential equation of 

the following form : 

 (7) 

Where 𝐷𝛾
≡ 𝐷𝑡

𝛾
0  ; 𝑎𝑘 (k = 0,··· n), 𝑏𝑘 (k = 0,··· m) are constants; and 𝛽𝑘 (k = 0,··· n),             

𝛼𝑘 (k = 0,··· m) are arbitrary real numbers. 

Without loss of generality we can assume that 𝑎𝑛> 𝑎𝑛−1 > ··· > 𝑎0, and 𝛽𝑚> 𝛽𝑚−1 > ··· > 𝛽0.  

For obtaining a discrete model of the fractional-order system (7), we have to use discrete 

approximations of the fractional-order integro-differential operators and then we obtain a 

general expression for the discrete transfer function of the controlled system [15]. 

  

                                                                                                                              (8) 

where (𝑤(𝑧−1)) denotes the discrete equivalent of the Laplace operator s, expressed as a 

function of the complex variable z or the shift operator 𝑧−1. 
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    The fractional-order linear time-invariant system can also be represented by the following 

state-space model :                

𝐷𝑡
𝑞

0 𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                 

         𝑦(𝑡) = 𝐶𝑥(𝑡)                        (9)    

where x ∈ 𝑅𝑛, u ∈ 𝑅𝑟and y ∈ 𝑅𝑝are the state, input and output vectors of the system and A ∈ 

𝑅𝑛𝑋𝑛, B ∈ 𝑅𝑛𝑋𝑟, C ∈ 𝑅𝑝𝑋𝑛, q is the fractional commensurate order. 

I.3Fractional Order Control Systems : 

Classical PID Controller : 

    The classical PID controller can be considered as a particular form of lead-lag 

compensation in the frequency domain. Its transfer function can be expressed as : 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑. 𝑠                       (10) 

𝐶(𝑠) = 𝑘
(𝑠/𝜔𝑐)2 +

2𝛿𝑐𝑠
𝜔𝑐

+ 1

𝑠
                          (11) 

With 𝜔𝑐 = √𝐾𝑖/𝐾𝑑 , 𝛿 = 𝐾𝑝/(2√𝐾𝑖𝐾𝑝),𝑘 = 𝐾𝑖 

Another form can be : 

𝐶(𝑠) = 𝑘
(𝑠 +  𝑎)(𝑠 +  𝑏)

𝑠
          (12) 

Therefore, the contributions of the controller depend on one of: 

- Gains 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 

- Gain k and parameters 𝜔𝑐, 𝛿𝑐 

- Gain k and location of zeros a and b. [14][11] 

 

 

 

Fig.1-Frequency 

 response of  

the classical PID 

 controller  

with 

 𝐾𝑝 = 𝐾𝑖 = 𝐾𝑑 = 1 
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Fractional-order PID Controller : 

     The integro-differential equation defining the control action of a fractionalorder PID 

controller is given by : 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝐷−𝜆𝑒(𝑡) + 𝐾𝑑𝐷𝜇𝑒(𝑡)        (13) 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑 . 𝑠𝜇 =   𝑘

(𝑠/𝜔𝑓)𝜆+𝜇 +
𝑠𝛿𝑓𝑠𝜆

𝜔𝑓
+ 1

𝑠𝜆
            (14) 

 

 

 

 

 

 

 

 

 

                      Fig.2 Frequency response of the classical PID controller with Kp = 1, Ki = 0.5,Kd =1 

 

 

 

 

 

 

 

 

 

 Fig.3 Frequency response of the fractional-order PID controller with k = 1, ωf = 1, δf = 1, and λ = μ = 

0.5 
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As can be observed, this fractional-order controller allows us to select both the slope of the 

magnitude curve and the phase contributions at both high and low frequencies. 

In a graphical way, the control possibilities using a fractional-order PID controller are shown in Fig. 4, 

extending the four control points of the classical PID to the range of control points of the quarter-

plane defined by selecting the values of λ and μ 

 

 

 

 

 

 

 

Fig.4 Fractional-order PID vs classical PID: from points to plane: (a) integer-order and (b) fractional-

order 

 



 

 

 

Section II : 

METAHEURISTICS 
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II .1 INTRODUCTION 

     Optimization plays a vital role in many engineering applications. In design activity, an 

optimal design is achieved by comparing a few alternative design solutions created by using 

prior problem knowledge. In such activity the feasibility of each design solution is first 

investigated. Thereafter an estimate of the underlying objective (cost, profit, etc) of each 

design solution is computed and the best solution is adopted. Optimization algorithms provide 

systematic and efficient ways of creating and comparing new design solutions in order to 

achieve an optimal design. The optimization process must only be used in those problems 

where there is a specific need of accomplish a quality product or a competitive product. It is 

expected that the design solution obtained through an optimization method is better than other 

results in terms of the selected objective. 

 

II .1 OPTIMIZATION 

     The optimization is from 'Optimum' which implies a point at which the conditions are best 

and most favorable. Optimization is finding better among different possible solutions with the 

measure of the quality of those solutions. The real problems are 'hard', it means that, it is not 

guaranteed to find the best solution in acceptable amounts of time. 

For many engineers and researchers, optimization is an esoteric technique used in 

Mathematics and Operations Research related activities. With the advent of computers, 

optimization has become a part of computer aided activities. 

An optimization algorithm is a procedure which is executed iteratively by comparing various 

solutions till the optimum or a satisfactory solution is found.  

In many industrial design activities, optimization is achieved indirectly by comparing a few 

chosen design solutions and accepting the best solution. This simplistic approach never 

guarantees an optimal solution. On the contrary, optimization algorithms begin with one or 

more design solutions supplied by the user and then iteratively check new design solutions in 

order to achieve the trueoptimum solution. 

       There are two distinct types of optimization algorithms which are in use today. : 

1.Algorithms which are deterministic, with specific rules for moving from the one solution to 

the other. These algorithms have been in use for quite some time and have been successfully 

applied to many engineering design problems. 

2.Algorithms which are stochastic in nature, with probabilistic transition rules These 

algorithms are comparatively new and are gaining popularity due to certain properties which 

the deterministic algorithms do not have. These are mainly classified as, Traditional 

optimization algorithms and Evolutionary Algorithms. Traditional optimization algorithms 

some methods are shown in fig.5 
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Fig5 Methods of Traditional optimization algorithms 

 

 

II .3 METAHEURISTICS 

     A metaheuristic is anadvanced technique or heuristic designed to locate, create, or select a 

heuristic that may provide adequately superior result to an optimization problem, specially 

with partial or imperfect information. Metaheuristic sample a set of solutions which is too 

large to be completely sampled. Metaheuristic may make few assumptions about the 

optimization problem being solved, and so they may be usable for a variety of problems. 

     A heuristic is any approach to problem solving, learning, or discovery that employs a 

practical method not guaranteed to be optimal or perfect, but sufficient for the immediate 

goals. Where finding an optimal solution is impossible or impractical, heuristic methods can 

be used to speed up the process of finding a satisfactory solution. 

MetaheuristicAlgorithms 

These algorithms are found to be potential in search and optimization for complex 

engineering optimization problems. In these categories, important metaheuristic algorithms 

are : 

- Genetic algorithm (GA) 

- Artificial Immune System (AIS) Algorithm 

- Particle Swarm Optimization (PSO) Algorithm 

- Ant Colony Optimization (ACO) Algorithm 

- Sheep Flocks Heredity Model Algorithm (SFHM) 
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Fig6 Optimisation methodes 

 

II .4Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based stochastic optimization technique 

developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird 

flocking or fish schooling. It has been applied successfully to wide variety of search and 

optimization problems. It can be applied to virtually any problem that can be expressed in 

terms of an objective function. 

Suppose the following scenario: a group of birds are randomly searching for food in an area. 

There is only one piece of food in the area being searched. All of birds do not know where the 

food is. But they know how far the food is in each iteration. So what is the best strategy to 

find the food? The effective one is to follow the bird that is nearest to the food. 

The PSO algorithm is iterative and involves initializing a number of vectors (called particles) 

randomly within the search space of the objective function. These particles are collectively 

known as the swarm. Each particle represents a potential solution to the problem expressed by 

the objective function. During each time the objective function is evaluated to establish the 

fitness of each particle using its position as input. Fitness values are used to determine which 
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positions in the search space being attracted to both their personal best position as well as the 

best position found by the swarm so far. 

The PSO algorithm has shown its robustness and efficacy in solving function value 

optimization problems in real number space. The attractiveness of the PSO algorithm is due to 

the features natural metaphor, stochastic move, adaptively, and positive feedback. 

The features of PSO are, 

1. PSO can be applied for non-linear, non-continuous optimization problem with continuous 

variables PSO has been successfully applied in many areas: function optimization, artificial 

neural network training, fuzzy system control, and other areas where GA can be applied. 

2. PSO is mainly solving continuous optimization tasks. 

3. PSO gets better results in a faster, cheaper way compared with other methods. 

4. PSO has robustness and efficiency in solving function value optimization problems in real 

number space. 

5. PSO has good convergence speed and there are few parameters to adjust. One version, with 

slight variations, works well in a wide variety of applications. 

6. Unlike the other heuristic techniques, PSO has a flexible and well-balanced mechanism to 

enhance and adapt to the global and local exploration abilities. 

7. PSO is a zero order algorithm, for no derivative is necessary for its implementation. 

8. PSO has natural metaphor, stochastic move, adaptivity, and positive feedback. 

9. PSO has been used for approaches that can be used across a wide range of applications, as 

well as for specific applications focused on a specific requirement. 

10.Unlike GA, PSO does not have genetic operators like crossover and mutation. Particles 

update themselves with the internal velocity. They also have memory, which is important to 

the algorithm. 

11.In GA, chromosomes share information with each other. So the whole population moves 

like a one group towards an optimal area. In PSO, only GBest (or IBest ) gives out the 

information to others. It is a one-way information sharing mechanism. The evolution only 

looks for the best solution quickly even in the local version in most cases.  

Figure 7 shows the flow diagram for PSO. 
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                                                          Fig7 the flow diagram for PSO. 

 

Steps in PSO 

Step 1 :The population has to be generated and number of iterations has also to be fixed. 

Step 2 : Evaluate the objective functions along with the required design variables. 

Step 3 : Assign Pbest[i] = initial solution where i = 1,2, ... N (N: no of particles). Store the 

objective value. 

Step 4 :Find best among all particles and assign this to Gbest. Compare step 2 objective 

functions with step 3 objective functions and carryout swapping to obtain the step 3 objective 

function, store the swapped data. 
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Step 5 :Generate initial velocities randomly for all particles. 

Step 6 :Add velocities to the corresponding particles, i.e., Present[i] (new) = Present[i] old) + 

V[i]. 

Step 7 :Update velocity according to V[i] = V[i] (present) + Cl * (Pbest[i] - present[i]) +c2 * 

(Gbest[i] - present [i]). 

Step 8 : Evaluate the updated particles to get new ones Step 9 : If number of iterations is 

lesser for optimization Go to step6. 

Step l0: Compare the Objective Function Value with the last solution obtained, go to step7 if 

they are not equal, else, end the loop. 

Step 11: The algorithm has to be terminated after pertaining required numbers of iterations. 

 



 

 

Section III : 
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III.1 INTRODUCTION : 

      PID controllers have been used for several decades in industries for process control 

applications .The reason for their wide popularity lies in the simplicity of design and good 

performance including low percentage overshoot and small settling time for slow process 

plants . The performance of the PID controllers can be improved by making use of fractional 

order derivatives and integrals. 

      This greatest flexibility makes us possible to design more robust control system. In 

fractional order PID (FOPID) controller, the integral and derivative orders are usually 

fractional. In FOPID besides Kp, Ki, Kd we have two more parameters λ and μ , the integral 

and derivative orders respectively. If λ =1  and μ =1, then it becomes integer PID. The five 

parameters Kp, Ki, Kd,λ , μ are to be optimized in five-dimensional hyper-space to obtain an 

optimal solution that satisfies all the user specifications. It is necessary to understand the 

theory of fractional calculus in order to understand the significance of FOPID controller . This 

paper mainly focuses on the better way of tuning by comparing the results of PSO based 

tuning of FOPID controllers with the other conventional tuning methods. 

Dynamic systems based on fractional order calculus have been a subject of extensive research 

in recent years since the proposition of the concept of the fractional order 𝑷𝑰𝛌𝑫µ controllers 

and the demonstration of their effectiveness in actuating desired fractional order system 

responses .Classical optimization techniques cannot be used here because of the roughness of 

the objective function surface . We, therefore, use a derivative-free optimization technique –– 

particle swarm optimization (PSO) originally devised by Kennedy and Eberhart , in this 

section were going to the system shown in fig .7,the compare the FOPID to the IOPID       

. 

Fig.8 
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III.3 DC MOTOR DESIGN : 

 

The electrical equivalent diagram of an armature controlled DC motor is given in the fig.9 

Where  R = armature resistance (Ω),  L = self inductance of armature (H),Ia = armature 

current (A), If = field current (A), Ea = applied armature voltage (V), Eb = back emf (V),                  

Tm = torque produced by the motor (Nm), θ = angular displacement of motor shaft (rad),      

ω = angular speed of motor shaft (rad/sec), J = equivalent moment of inertia of motor and 

load referred to motor shaft (kg-m2), B = equivalent viscous friction coefficient of motor and 

load referred to motor shaft (Nm*s/rad). 

 

 

 

 

 

 

 

 

The transfer function of DC motor is given by: 

 

 

 

 

 

 

Fig.9 
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                                  Fig.10 Block diagram of armature controlled  DC Motor 

 

 

 

                                       Tab.1 Parameter values of DC motor 

the final transfer function of DC motor becomes 
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III.4 Simulation and results 

Now we are going to see the unit step response of DC motor transfer function using classical 

and fractional PID controller and its performance parameters.Classical PID controller is tuned 

by Ziegler-Nicholas method and we obtained the proportional gain Kp = 6, integral gain       

Ki = 28.3 and derivative gain Kd = 0.318.The unit step response and performance parameters 

such as peak overshoot,peak time and settling time for PID control is shown below: 

 

                           Fig .11 Unit step response of DC motor using PID controller 

The unit step response using PID controller gives an overshoot (Mp) of 12.85%,peak time 

(Tp) of 2.47 sec and settling time (Ts) of 3.1 sec which is undesirable.To minimize these 

parameters, we use fractional order PID controller which can provide better performance. 

The unit step response and control performance parameters for FOPID controller with 

different combinations of λ and μ is shown below.These graphs shows the step responses of 

system with fractional PID controller, where the derivative order μ and integral order λ  are in 

fractions. The fractions can be less than or greater than 1. 
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a) With λ = 1 and varying values of μ < 1 

 

 

 

 

 

 

 

 

Fig.12 Unit step response of DC motor using FOPID controller for varying values of μ < 1 

 

             

          Tab.2 Comparison of Parameters for Different Combinations of λ=1 and μ<1 

 

Changing the μ value here does no difference. 
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b) With varying values of λ<1 and μ= 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13Unit step response of DC motor using FOPID controller for varying values of λ < 1  

 

 

 

 

 

 

     Tab.3 Comparison of Parameters for Different Combinations of λ <1 and μ=1 

 

In this case ,it’s clear that increasing the λ value improves the control parameters. 

 

c) With varying values of λ<1 and μ<1 



                                                                                                                        III.Simulation and results 

 

22 
 

 

 

 

 

 

 

 

 

 

 

       Fig.14 Unit step response of DC motor using FOPID controller for varying values of λ < 

1 and μ < 1 

 

 

 

 

 

 

 

              Tab.4 Comparison of Parameters for Different Combinations of λ<1 and μ<1 

It can be seen from the above table that when λ=0.9 and µ=0.7, control parameters values are 

the smallest. 
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d) With λ=1 and varying values of μ>1 

 

 

  Fig.15 Unit step response of DC motor using FOPID controller for varying values of μ > 1 

 

 

 

 

                   Tab.5 Comparison of Parameters for Different Combinations of λ=1 and μ>1 

Slight improvement in increasing μ, but it ends after μ=1.15. 
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e) With varying values of λ>1 and μ=1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 Unit step response of DC motor using FOPID controller for varying values of λ > 1 

 

 

 

 

 

 

  Tab.6 Comparison of Parameters for Different Combinations of λ>1 and μ=1 

 

 

Increasing λ decreases the overshoot bu slows down the system a little. 
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f) With varying values of λ>1 and μ>1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17 Unit step response of DC motor using FOPID controller for varying values of λ > 1 

and μ > 1 

 

 

 

 

 

 

 

 

 

 

Tab.7 Comparison of Parameters for Different Combinations of λ>1 and μ>1 

λ=1.15 and µ=1.15 are the best values here 
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g) With varying values of λ<1 and μ>1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18 Unit step response of DC motor using FOPID controller for varying values of λ < 1 

and μ > 1 

 

 

 

 

 

 

 

 

 

Tab.8 Comparison of Parameters for Different Combinations of λ<1 and μ>1 

Again ,that reduces the peak overshoot but slows down the system. 
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h) With varying values of λ>1 and μ<1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.19 Unit step response of DC motor using FOPID controller for varying values of λ > 1   

and μ < 1 

 

 

 

 

 

 

 

 

 

          Tab.9 Comparison of Parameters for Different Combinations of λ>1 and μ<1 
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Now ,into using PSO to find the optimal FOPID parameters  

The parameter values taken for running the PSO algorithm in MATLAB environment is given 

in table below: 

 

 

 

 

 

 

 

                                                   Tab.10 PSO parameter values 

we obtain the following solution set which gives the most optimal parameter values of the 

controller in the defined search space. 

[1.15 1.15] = [6.87 2.75 2.95 0.252] 

After getting the optimal values of λ and μ ,we compare the unit step response of optimal 

FOPID controller and classical PID controller ,we get the following results : 

 

 

 

 

 

 

 

 

 

 

 

                     Fig. 20 Comparison of step responses of PID and FOPID controller 
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         Tab.11 Comparison of performance parameters of PID and FOPID controller 

The optimal FOPID is performing better than the regular PID controller and it can be seen 

clearly thru the table and the graph above.    



 

 

 

 

CONCLUSION 
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     In this Project, a fractional order PID controller is. Using numerical optimization (PSO), 

numerous simulation comparisons presented in this paper indicate that, the fractional order 

PID controller, if properly designed and implemented, will outperform the conventional 

integer order PID controller. It was shown that the best FO PID works better than IO PID. For 

actually implementation, we introduced a modified approximation method to realize the 

designed fractional order PID controller. 

     We used simulation to illustrate that the order the approximation does not affect the control 

performance in any noticeable amount. With the rapid development of computer 

performances, the realization of fractional order control systems also became possible and 

much easier than before. Despite fractional order control’s promising aspects in modeling and 

control design, fractional order control research is still at its primary stage. The notable future 

research is to develop tuning rules for FO PID and in particular on tuning the fractional 

orders. 



REFERENCES : 

[1] I. Petras, Fractional Order Non Linear Systems: Modeling, Analysis and 

Simulation, Higher Education Press, Beijing and SpringerVerlag Berlin 

Heidelberg, 2011. 

[2]J. P. Jiang, S. C. and P. K. Sinha, “Optimal feedback control of direct current 

motors, ” IEEE Transactions on Industrial Electronics, vol. 31, no. 4, Aug. 1990, 

pp. 269-274. 

[3]B. Allaoua, A. Abderrahmani, B. Gasbaoui and A. Nasri, “Intelligent 

controller design for DC motor speed control based on fuzzy logic genetic 

algorithms optimization,” Leonardo Journal of Sciences, Dec. 2008, pp. 90-102. 

[4]G. Zeng, J. Chen, Y. Dai, L. Li, C. Zheng and M. Chen, "Design of fractional 

order PID controller for automatic regulator voltage system based on multi-

objective extremal optimization", Neurocomputing, vol. 160, pp. 173-184, 2015. 

[5]Y. Luo, Y.Q. Chen, Fractional-order [proportional derivative] controller for 

robust motion control: Tuning procedure and validation, American Control 

Conference, pp. 1412-1417, 2009. 

[6]Mohamed Karim Bouafoura, Naceur Benhadj Braiek, “PID controller design 

for integer and fractional plants using piecewise orthogonal functions,” 

Commun Nonlinear Sci Number Simulat 15, 2010, pp. 1267- 1278 

[7]Majid Zamani, Masoud Karimi-Ghartemani, Naseer Sadati, “FOPID 

controller design for robust performance using particle swarm optimization,” 

Fractional Calculus and Applied Analysis, vol. 10, no. 2, 2007, pp. 169-187 

[8]Ivo Petras, Fractional-order nonlinear systems: Modeling, Analysis and 

Simulation, Springer, 2010 

[9]Ricardo Enrique Gutierrez, Joao Mauricio Rosario, Jose Tenreio Machado, 

“Fractional order calculus: Basic concepts and engineering applications,” 

Mathematical Problems in Engineering, Hindwai Publishing Corporation, vol. 

2010. 2010. pp. 1- 19 

[10]Schlegel Milos , C Ech Martin, “The fractional order PID controller 

outperforms the classical one,” Proc. 7th Int. Sci. & Tech. Conf.- Process 

Control, 2006, pp. 1-7 



[11]Concepcion A. Monje, Blas M. Vinagre, Vicente Feliu, YangQuan Chen, 

“Tuning and auto-tuning of fractional order controllers for industry 

applications,” Control Engineering Practice, 16, 2008, pp. 792 – 812 

[12]A survey on optimization metaheuristics Ilhem Boussaïd a, Julien Lepagnot 

b, Patrick Siarry b,Université des sciences et de la technologie Houari 

Boumediene, Electrical Engineering and Computer Science Department, El-Alia 

BP 32 Bab-Ezzouar, 16111 Algiers, Algeria b Université Paris Est Créteil, 

LiSSi, 61 avenue du Général de Gaulle 94010 Créteil, France 

[13]F. Glover, M. Laguna, R. Marti, Scatter search and path relinking: advances 

and applications, in: F. Glover, G. Kochenberger (Eds.), Handbook of 

Metaheuristics, International Series in Operations Research & Management 

Science, vol. 57, Springer, New York, 2003, pp. 1–35. 

[14]I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 

1999. 

[15]B. M. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu: On realization of 

fractional-order controllers. Conference Internationale Francophone 

d’Automatique, Lille, Jule 5-8, 2000, pp. 945–950. 


