République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ MOHAMED KHIDER, BISKRA

FACULTÉ des SCIENCES EXACTES et des SCIENCES de la NATURE et de la VIE

DÉPARTEMENT DE MATHÉMATIQUES

Master $2019/\text{UMKB}_{logo.wmf}$

Mémoire présenté en vue de l'obtention du Diplôme :

MASTER en Mathématiques

Option: Probabilités

Par

Labed Asma

Titre:

Théorème de comparaison pour les équations différentielles doublement stochastiques rétrogrades et leur application

Membres du Comité d'Examen :

Dr.	Mansouri Badereddine	UMKB	Président
Dr.	Tamer Lazhar	UMKB	Encadreur
Dr.	Aoune Salima	UMKB	Examinateur

Juin 2019

D'edicace

Te dédie ce modeste travail à :

Mes chèrs parents

 $Mon\ mari$

Mon frère : slimen

Mes chères : Aya, Hadjer, Radja, Dida, Mimi, jijou, Abir.

Mes amis : Sabrina, Siham, Nacira.

Tous les membres de ma famille

REMERCIEMENTS

Te tiens à remercier tout d'abord Allah

le tous puissant, qui m'a donné la patience et l'effort pour réaliser ce mémoire.

En second lieu, je tiens a remercier mon encadreur " Dr.Tamer Lazhar ".

pour son précieux conseil et son aide

durant toute la période du travail, il m'a en effet guidé pendant toute l'année.

Je remercie le chef de département **Dr. "Hfayad Mokhtar"**.

Et je remercie également aux membres du Jury **Dr.Mansouri Badereddine** et **Dr.Aoune Salima**, qui ont acceptés d'évaluer et de juger mon travail.

Je tiens remercie

à ma famille, notamment à mes parents pour tout ce qu'ils ont fait pour moi.

Merci a tous.

Table des matières

R	Remerciements		
Ta	able (es matières	ii
In	trod	ction	1
1	Rappel sur le calcul stochastique		
	1.1	Notions générales	2
		1.1.1 Processus stochastique	2
		1.1.2 Filtration et adaptation	3
		1.1.3 Espérence conditionnelle	4
	1.2	Mouvement Brownien	5
	1.3	Martingale à temps continue	5
	1.4	Calcul d'Itô	7
		1.4.1 Processus d'Itô	7
		1.4.2 Formule d'Itô	8
	1.5	Intégrale stochastique progressive-rétrograde	11
		1.5.1 Notation et préliminaires	11
2	Equ	ations différentielles doublement stochastiques rétrogrades	13
	2.1	Définitions et notations	13
	2.2	Hypothèses	15

	2.3	Existe	nce et unicité	15
3	Thé	eorème	s de comparaison pour les EDDSR et applications	2 0
	3.1	THÉC	DRÈMES DE COMPARAISON :	20
		3.1.1	Application du théorème de comparaison	23
Bi	bliog	graphie		32
Δ.	nnev	e·Ah	réviations et Notations	33

Introduction

Les équations différentielles doublement stochastique rétrograde (EDDSR) on été introduits par Pardoux et Peng [15] en 1994, avec deux directions différentes d'intégrales stochastiques, un intégrale stochastique standard (progressive) dW_t et un intégrale stochastique rétrograde dB_t . Ils ont prouvé l'existence et l'unicité de la solution sous la condition de Lipschitz . L'objectif de ce travail est de rappeler un résultat sur le théorème de comparaison de ce type d'équation (résultat de [4]) , et par suite on donne une application de ce théorème dans l'étude des EDDSR à coefficients continues.

Ce mémoire est composé en 03 chapitre :

- Dans le chapitre (01) : On présente des notions de base sur le calcul stochastique (généralité de processus stochastique, mouvement Brownien, martingale, intégrale stochastique et calcul...etc).
- Dans le chapitre (02): On montre que, si les deux générateurs f et g de l'équation différentielle doublement stochastique rétrograde (EDDSR) satisfaisons certaine condition la solution est unique.
- Dans le chapitre (03) : On donne le résultat de théorème de comparaison pour les équations différentielles doublement stochastiques rétrograde et comme application on étudier le cas continue.

Chapitre 1

Rappel sur le calcul stochastique

Dans ce chapitre, nous présentons les résultats de calcul stochastique dont nous aurons besoin dans la suite de ce mémoire.

1.1 Notions générales

1.1.1 Processus stochastique

Définition 1.1.1 Un processus stochastique est une famille de variable aléatoire $X = (X_t)_{t \in \mathbb{R}_+}$ définie sur un espace de probabilité (Ω, \mathcal{F}, P) à valeur dans (E, ε) , appelée espaces d'états généralement $(E, \varepsilon) = (\mathbb{R}^d, B(\mathbb{R}^d))$.

Remarque 1.1.1 - Dans la pratique l'indice t représente le temps.

- Pour $t \in \mathbb{R}_+$ fixé, $\omega \in \Omega \to X_t(\omega)$ est une variable aléatoire sur l'espace de probabilité (Ω, \mathcal{F}, P) .
- Pour $\omega \in \Omega$ fixé, $t \in \mathbb{R}_+ \to X_t(\omega)$ est une fonction à valeur réelles, appelée trajectoire du processus.

Définition 1.1.2 Soient $X = (X_t)_{t \geq 0}$ et $Y = (Y_t)_{t \geq 0}$ deux processus stochastique :

- a) On dit que Y est une modification de X si, pour tout $t \ge 0$, les variables aléatoires X_t et Y_t sont égales P.p.s c'est à dire : $\forall t \ge 0$, $P(X_t = Y_t) = 1$.
- b) X et Y sont indistinguables si P.p.s, les trajectoires de X et de Y sont les mêmes c'est
 à dire : P (X_t = Y_t, ∀t ≥ 0) = 1.

Proposition 1.1.1 1. Indistinguable \implies modification \implies èquivalents.

2. Soient $X = (X_t)_{t \in \mathbb{R}_+}$ et $Y = (Y_t)_{t \in \mathbb{R}_+}$ deux processus stochastique continu alors : X et Y sont indistinguables $\iff X$ est une modification de Y.

Définition 1.1.3 Un processus X est dit continue si pour presque toutes les trajectoires sont continues, c'est à dire :

$$P(t \in \mathbb{R}_+ \longmapsto X_t \ est \ continu) = 1.$$

Définition 1.1.4 Un processus $X = (X_t)_{t \geq 0}$ est dit mesurable si la fonction :

$$(t,\omega) \in (\mathbb{R}_+, \mathbf{B}(\mathbb{R}_+)) \times (\Omega, \mathcal{F}) \longmapsto X_t(\omega) \in (\mathbb{R}^d, \mathbf{B}(\mathbb{R}^d))$$
.

est mesurable.

1.1.2 Filtration et adaptation

Définition 1.1.5 Une filtration $\{\mathcal{F}_t\}_{t\geq 0}$ sur un espace de probabilité (Ω, \mathcal{F}, P) est une suite croissante de sous-tribus de \mathcal{F} c'est à dire :

$$\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}, \quad \forall s \leq t.$$

Définition 1.1.6 *Soit* $(\mathcal{F}_t)_{t\geq 0}$ *une filtration.*

- On définit $\mathcal{F}_{t^-} = \sigma(\cup \mathcal{F}_s)$ la tribu des événements antérieurs à t > 0 et $\mathcal{F}_{t^+} = \left(\bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon}\right)$ la tribu des événements instantéments postérieurs à $t \geq 0$.

- On dit qu'une filtration continue à droite si $\forall t \geq 0$, $\mathcal{F}_t = \mathcal{F}_{t^+}$. De façon analogue si $\mathcal{F}_t = \mathcal{F}_{t^-}$ pour tout $t \geq 0$ on dit qu'elle est continue à gauche.

Définition 1.1.7 (adaptation) Un processus X est adapté par rapport à la filtration $\{\mathcal{F}_t\}_{t\geq 0}$ si, pour tout t, X_t est \mathcal{F}_t -mesurable.

1.1.3 Espérence conditionnelle

Définition 1.1.8 Soit X une variable aléatoire réelle intégrable définie sur (Ω, \mathcal{F}, P) et \mathcal{G} une sous tribu, l'espérance conditionnelle de X sachant \mathcal{G} est l'unique variable aléatoire $E[X \mid \mathcal{G}]$ tel que :

i) G-mesurable.

ii)
$$\int_A E[X \mid \mathcal{G}] dP = \int_A X dP$$
, $\forall A \in \mathcal{G}$.

Propriété 1.1.1 Soient X, Y deux variables aléatoires réelles appartenant à $L^2(\Omega, \mathcal{F}, P)$, soit \mathcal{G} une sous tribu de \mathcal{F} . On a alors :

1. Linéarité : Soit a et b deux constantes

$$E\left[aX+bY\mid\mathcal{G}\right]=aE\left[X\mid\mathcal{G}\right]+bE\left[Y\mid\mathcal{G}\right].$$

- 2. Positivité: si $X \ge Y \Longrightarrow E[X \mid \mathcal{G}] \ge E[Y \mid \mathcal{G}]$ p.s.
- 3. Si X est indépendante de \mathcal{G} , alors $E[X \mid \mathcal{G}] = E[X]$.
- 4. Si X est \mathcal{G} -mesurable, alors: $E[X \mid \mathcal{G}] = X$.
- 5. Si X est \mathcal{G} -mesurable, alors: $E[XY \mid \mathcal{G}] = XE[Y \mid \mathcal{G}]$.
- 6. E[E[X | G]] = E[X].

1.2 Mouvement Brownien

Définition 1.2.1 On appelle mouvement brownien standard un processus stochastique W à valeurs réelles tel que :

- 1. P.p.s. $t \longmapsto W_t(\omega)$ est une fonction continue.
- 2. pour $0 \le s \le t$, $W_t W_s$ est indépendant de la tribu $\sigma \{W_u, u \le s\}$ et de loi gaussienne centrée de variance t s.
- 3. $W_0 = 0 \ P.p.s.$

Pour tout $t \ge 0$, la variable aléatoire W_t suit la loi quassienne centrée de variance t donc de densité $(2\pi t)^{-1/2} \exp\{-x^2/(2t)\}$.

Remarque 1.2.1 On dit que W est un $\{\mathcal{F}_t\}_{t\geq 0}$ -MB si W est un processus continue, adapté à la filtration $\{\mathcal{F}_t\}_{t\geq 0}$, vérifiant:

$$\forall u \in \mathbb{R}, \forall 0 \le s \le t, E\left(e^{iu(W_t - W_s)} \mid \mathcal{F}_s\right) = \exp\left\{-u^2(t - s)/2\right\}.$$

Remarque 1.2.2 Dans la suite, lorsque l'on parlera de mouvement Brownien, sans autre précision, il s'agira d'un mouvement Brownien standart.

1.3 Martingale à temps continue

Définition 1.3.1 Soit $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ un espace de probabilité filtré. Un processus $(X_t)_{t\geq 0}$ est une martingal, pour tout $t\geq 0$:

- i) X_t est \mathcal{F}_t -mesurable.
- ii) X_t est intégrable, c'est à dire : $E(|M_t|) < +\infty$.
- iii) $E[X_t \mid \mathcal{F}_s] = X_s$, pour tout $0 \le s \le t$.

Remarque 1.3.1 Une martingale $(X_t)_{t\geq 0}$ vérifie la propriété suivante :

$$\forall t \ge 0, \qquad E[X_t] = E[X_0].$$

Proposition 1.3.1 Soit $(X_t)_{t>0}$ une martingale de carré intégrable, alors, $\forall s \leq t$, on a :

$$E\left[\left(X_{t}-X_{s}\right)^{2}\mid\mathcal{F}_{s}\right]=E\left[X_{t}^{2}-X_{s}^{2}\mid\mathcal{F}_{s}\right].$$

Théorème 1.3.1 (Burkholder-Davis-Gundy (BDG)) Soit p > 0 un réel. Il existe deux constantes c_p et C_p telles que , pur toute martingale locale continue X, nulle en zéro,

$$c_p E\left[\langle X, X \rangle_{\infty}^{p/2}\right] \le E\left[\sup_{t \ge 0} |X_t|^p\right] \le C_p E\left[\langle X, X \rangle_{\infty}^{p/2}\right]$$

Remarque 1.3.2 En particulier, si T > 0,

$$c_p E\left[\langle X, X \rangle_T^{p/2}\right] \le E\left[\sup_{0 \le t \le T} |X_t|^p\right] \le C_p E\left[\langle X, X \rangle_T^{p/2}\right]$$

Lemme 1.3.1 (Gronwall) soit $g:[0,T] \to \mathbb{R}$ une fonction continue telle que, pour tout t

$$g(t) \le a + b \int_0^t g(s) ds, a \in \mathbb{R}, b \ge 0.$$

Alors, pour tout t,

$$g(t) \le a \exp(bt)$$
.

Théorème 1.3.2 (Inégalité de Hölder)

Soient $p, q \in (1; +\infty)$ avec $\frac{1}{p} + \frac{1}{q} = 1$, ou alors soient p = 1 et $q = \infty$. Alors, pour $f \in L^p$ et $g \in L^q$,

$$\int |fg| \, d\mu \le \|f\|_p \, \|g\|_q \, .$$

Théorème 1.3.3 (Représentation des martingales Browniennes) Soit $M = (M_t)_{t\geq 0}$ une martingale (càdlàg) de carré intégrable pour la filtration $(\mathcal{F}_t)_{t\geq 0}$, la filtration d'un mouvement Brownien $B = (B_t)_{t\geq 0}$. Alors il existe un unique processus $H = (H_t)_{t\geq 0}$ de $M^2(\mathbb{R}^K)$, tel que :

$$\forall t \geq 0, \ M_t = M_0 + \int_0^t H_s.dB_s, \quad P.p.s.$$

1.4 Calcul d'Itô

Nous introduire un calcul différentiel sur ces intégrales stochastiques. La formule d'Itô donner la façon de différecier $t \mapsto f(B_t)$ si f est une fonction deux fois continûment différentiable.

1.4.1 Processus d'Itô

Définition 1.4.1 Soient $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$ un espace probabilisé muni d'une filtration et $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement Brownien. On appelle processus d'Itô, un processus $(X_t)_{0\leq t\leq T}$ à valeur dans \mathbb{R} tel que : P.p.s

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dB_s$$

avec:

- * X_0 est \mathcal{F}_0 -mesurable.
- * $(b_t)_{t \leq T}$ et $(\sigma_t)_{t \leq T}$ des processus \mathcal{F}_t -adapté.

*
$$\int_0^T |b_s| ds < +\infty$$
 P.p.s.

*
$$\int_0^T |\sigma_s| dB_s < +\infty$$
 $P.p.s.$

1.4.2 Formule d'Itô

Théorème 1.4.1 1) Soit $(X_t)_{0 \le t \le T}$ un processus d'Itô :

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dB_s$$

et f une fonction deux fois continûment différentiable, on a :

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X, X \rangle_s$$

tel que:

$$\langle X, X \rangle_t = \int_0^t \sigma_s^2 ds$$

$$et \int_0^t f'(X_s) dX_s = \int_0^t f'(X_s) b_s ds + \int_0^t f'(X_s) \sigma_s dB_s.$$

Avec la table de multiplication

	dt	dB_t
dt	0	0
dB_t	0	dt

2) De même si $(t,x) \mapsto f(t,x)$ est une fonction deux fois continûment différentiables en x et une fois différentiable en t, ces dérivées continues en (t,x), $(f \in C^{1,2})$, on a:

$$f(t, X_t) = f(0, X_0) + \int_0^t f_s'(s, X_s) \, ds + \int_0^t f_x'(s, X_s) \, dX_s + \frac{1}{2} \int_0^t f_{xx}''(s, X_s) \, d\langle X, X \rangle_s$$

= $f(0, X_0) + \int_0^t \frac{\partial f}{\partial s}(s, X_s) \, ds + \int_0^t \frac{\partial f}{\partial x}(s, X_s) \, dX_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, X_s) \, d\langle X, X \rangle_s$.

Lemme 1.4.1 Soit $\alpha \in S^2([0,T];\mathbb{R}^k)$, $\beta \in M^2([0,T];\mathbb{R}^k)$, $\gamma \in M^2([0,T];\mathbb{R}^k)$, $\delta \in M^2([0,T];\mathbb{R}^{k \times d})$, tels que:

$$\alpha_t = \alpha_0 + \int_0^t \beta_s ds + \int_0^t \gamma_s d\beta_s + \int_0^t \delta_s dW_s , 0 \le t \le T,$$

alors

$$|\alpha_t|^2 = |\alpha_0|^2 + 2\int_0^t (\alpha_s, \beta_s) \, ds + 2\int_0^t (\alpha_s, \gamma_s d\beta_s) + 2\int_0^t (\alpha_s, \delta_s dW_s) - \int_0^t ||\gamma_s||^2 \, ds + \int_0^t ||\delta_s||^2 \, ds.$$

Et

$$E |\alpha_t|^2 = E |\alpha_0|^2 + 2E \int_0^t (\alpha_s, \beta_s) ds - E \int_0^t ||\gamma_s||^2 ds + E \int_0^t ||\delta_s||^2 ds.$$

Plus généralement, si $\phi \in C^2(\mathbb{R}^k)$

$$\phi(\alpha_t) = \phi(\alpha_0) + \int_0^t (\phi'(\alpha_s), \beta_s) ds + \int_0^t (\phi'(\alpha_s), \gamma_s d\beta_s) + \int_0^t (\phi'(\alpha_s), \delta_s dW_s) - \frac{1}{2} \int_0^t Tr[\phi''(\alpha_s) \gamma_s \gamma_s^*] ds + \frac{1}{2} \int_0^t Tr[\phi''(\alpha_s) \delta_s \delta_s^*] ds.$$

Intégration par parties

Théorème 1.4.2 Si f est une fonction de classe C^1 :

$$\int_{0}^{t} f(s) dB_{s} = f(t) B_{t} - \int_{0}^{t} f'(s) B_{s} ds.$$

Proposition 1.4.1 (Formule d'intégration par parties)

Soit X_t et Y_t deux processus d'Itô, c'est-à-dire on la forme

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dB_s$$

$$et$$

$$Y_t = Y_0 + \int_0^t b_s' ds + \int_0^t \sigma_s' dB_s.$$

Alors:

$$X_{t}Y_{t} = X_{0}Y_{0} + \int_{0}^{t} X_{s}dY_{s} + \int_{0}^{t} Y_{s}dX_{s} + \langle X, Y \rangle_{t}$$

avec la convention que :

$$\langle X, Y \rangle_t = \int_0^t \sigma_s \sigma_s' ds.$$

Preuve. On a d'aprés la formule d'Itô :

$$(X_t + Y_t)^2 = (X_0 + Y_0)^2 + 2\int_0^t (X_s + Y_s) d(X_s + Y_s)$$
(1.1)

$$+\int_0^t \left(\sigma_s + \sigma_s'\right)^2 ds \tag{1.2}$$

$$X_t^2 = X_0^2 + 2\int_0^t X_s dX_s + \int_0^t \sigma_s^2 ds$$
 (1.3)

$$Y_t^2 = Y_0^2 + 2 \int_0^t Y_s dY_s + \int_0^t \sigma_s'^2 ds$$
 (1.4)

d'où, en faisant la différence entre la première ligne et les deux suivantes :

$$2X_{t}Y_{t} = 2X_{0}Y_{0} + 2\int_{0}^{t} X_{s}dY_{s} + 2\int_{0}^{t} Y_{s}dX_{s} + 2\int_{0}^{t} \sigma_{s}\sigma'_{s}ds$$

ce qui implique :

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \int_0^t \sigma_s \sigma_s' ds.$$

1.5 Intégrale stochastique progressive-rétrograde

1.5.1 Notation et préliminaires

Soit $\{W\left(t\right),t\in\left[0,1\right]\}$ un processus de Wiener standard de dimension d satisfaisant $W\left(0\right)=0,$ défini sur un espace de probabilité $\left(\Omega,\mathcal{F},P\right)$; $\left(W\left(t\right)=\left(W_{1}\left(t\right),W_{2}\left(t\right),...,W_{d}\left(t\right)\right)\right)$. A chaque $t\in\left[0,1\right]$, on associe deux σ -algèbres

$$\mathcal{F}_{t} = \sigma\left(W\left(s\right), \ 0 \leq s \leq t\right),$$

et

$$\mathcal{F}^{t} = \sigma\left(W\left(s\right) - W\left(1\right); \ t \leq s \leq 1\right).$$

Alors $\{\mathcal{F}_t\}$ est une filtration progressive (c-à-d. $\mathcal{F}_t \uparrow \text{ comme } t \uparrow$), et $\{\mathcal{F}^t\}$ est une filtration retrograde $(\mathcal{F}^t \uparrow \text{ comme } t \downarrow)$.

Nous utiliserons la notation avec l'indice $\{X_t\}$ pour indiquer un processus \mathcal{F}_t -adapté, et la notation avec $\{Y^t\}$ pour indiquer un processus \mathcal{F}^t -adapté. La raison de la notation $\{W(t)\}$ est que $\{W(t), t \uparrow\}$ est un processus \mathcal{F}_t Wiener, et $\{W(t) - W(1), t \downarrow\}$ est un processus \mathcal{F}^t -Wiener, les deux ayant le même différetiel dW(t).

On donne maintenant les définitions des intégrales stochastiques progressive et retrograde. Soit $\{X_t, t \in [0,1]\}$ un processus continu \mathcal{F}_t -adapté avec des valeurs dans \mathbb{R}^n , et $\Phi \in C(\mathbb{R}^n)$. Soit $\{\pi^n, n \in \mathbb{N}\}\$ n'importe quelle suite de partitions :

$$\pi^n = \{0 = t_0^n < t_1^n < \dots < t_n^n = 1\},\,$$

tel que

$$|\pi^n| \triangleq \sup_{0 \le k \le n-1} (t_{k+1}^n - t_k^n) \longrightarrow 0 \text{ quand } n \longrightarrow \infty.$$

Alors l'intégrale progressive d'Itô de $\Phi(X_t)$ par rapport à dW(t) définie comme suit

$$\int_{0}^{t} \Phi\left(X_{s}\right) dW\left(s\right) \triangleq P - \lim_{n \to \infty} \sum_{k=0}^{n-1} \Phi\left(X_{t_{k}}\right) \left(W\left(t_{k+1} \wedge t\right) - W\left(t_{k} \wedge t\right)\right),$$

On suppose maintenant que $\{Y^t, t \in [0,1]\}$ soit un processus continu \mathcal{F}^t -adapté avec des valeur dans \mathbb{R}^M , et $\Psi \in C\left(\mathbb{R}^M\right)$. Alors l'intégrale d'Itô retrograde de $\Psi\left(Y^t\right)$ par rapport à $dW\left(t\right)$ est définie comme :

$$\int_{t}^{1} \Psi\left(Y^{s}\right) dW\left(t\right) \triangleq P - \lim_{n \to \infty} \sum_{k=0}^{n-1} \Psi\left(Y^{t_{k}+1}\right) \left(W\left(t_{k+1} \lor t\right) - W\left(t_{k} \lor t\right)\right).$$

Et le processus qui en résulte est une \mathcal{F}^t martingale locale continue retrograde.

Chapitre 2

Equations différentielles doublement stochastiques rétrogrades

Le but de ce chapitre est de presenter briévement le resultat d'existence et d'unicité de la solution d'une equation différentielle doublement stochastique retrograde.

2.1 Définitions et notations

Soient (Ω, \mathcal{F}, P) un espace de probabilités, T > 0 un temps fini.

 $\{W_t, 0 \le t \le T\}$ et $\{B_t, 0 \le t \le T\}$ deux processus de mouvement brownien standard et independants, avec des valeurs dans \mathbb{R}^d et \mathbb{R}^l définie sur (Ω, \mathcal{F}, P) , respectivement.

On considère les filtrations

$$\mathcal{F}_t^W = \sigma \{W_s; 0 \le s \le t\} \quad \text{et} \quad \mathcal{F}_{t,T}^B = \sigma \{B_s - B_t; t \le s \le T\}$$

complétes par les ensemble p-nulle.

Le σ -algebre

$$\mathcal{F}_t \triangleq \mathcal{F}_{t,T}^W \vee \mathcal{F}_{t,T}^B$$

ou pour chaque processus $\{\eta_t\}$,

$$\mathcal{F}_{s,t}^{\eta} = \sigma \left\{ \eta_r - \eta_s; s \le r \le t \right\} \vee N, \quad \mathcal{F}_t^{\eta} = \mathcal{F}_{0,t}^{\eta}.$$

Notons que la collection $\{\mathcal{F}_t, t \in [0,T]\}$ n'est ni croissante, ni décroissante, et il ne s'agit pas donc d'une filtration.

On défini les éspaces des processus suivants :

 $M^2([0,T];\mathbb{R}^n)$ l'ensemble des processus $\{\varphi_t, t \in [0,T]\}$ mesurables, à valeurs dans \mathbb{R}^n , tels que:

1.
$$E \int_0^T |\varphi_t|^2 dt < \infty$$
.

2. φ_t est \mathcal{F}_t mesurable $\forall t \in [0, T]$.

 $S^2([0,T];\mathbb{R}^n)$ l'ensemble des processus aléatoires continues $\{\varphi_t, t \in [0,T]\}$ à valeurs dans \mathbb{R}^n , qui satisfait :

- 1. $E\left(\sup_{0 \le t \le T} |\varphi_t|^2\right) < \infty$.
- 2. φ_t est \mathcal{F}_t mesurable pour $\forall t \in [0, T]$.

On considère les deux fonctions

$$f: \Omega \times [0, T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^k,$$
$$g: \Omega \times [0, T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^{k \times l}.$$

Qui sont mesurables pour tout $(x, y) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}$, et

$$f(.,y,z) \in M^{2}([0,T]; \mathbb{R}^{k}),$$
$$g(.,y,z) \in M^{2}([0,T]; \mathbb{R}^{k \times l}).$$

2.2 Hypothèses

On considère les hypothèses suivantes :

$$(\mathbf{H.1}) \begin{cases} &\text{Il existe des contantes } c > 0 \text{ et } 0 < \alpha < 1, \text{ tel que,} \\ &\text{pour tout } (\omega, t) \in \Omega \times [0, T], (y_1, z_1), (y_2, z_2) \in \mathbb{R}^k \times \mathbb{R}^{k \times l}, \\ &|f(t, y_1, z_1) - f(t, y_2, z_2)|^2 \le c \left(|y_1 - y_2|^2 + ||z_1 - z_2||^2\right), \\ &||g(t, y_1, z_1) - g(t, y_2, z_2)||^2 \le c |y_1 - y_2|^2 + \alpha ||z_1 - z_2||^2. \end{cases}$$

$$\begin{aligned} \textbf{(H.2)} & \left\{ \begin{aligned} &\text{Il existe } c \text{ , tel que pour tous } & (t,y,z) \in [0,T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d}, \\ & gg^*\left(t,y,z\right) \leq zz^* + c\left(\|g\left(t,0,0\right)\|^2 + |y|^2\right)I. \end{aligned} \right. \\ & \textbf{(H.3)} & \left\{ g_z'\left(t,x,y,z\right)\theta\theta^*g_z'\left(t,x,y,z\right)^* \leq \theta\theta^*, \forall t \in [0,T] \right. \\ & , x \in \mathbb{R}^d, \ y \in \mathbb{R}^k, \ z,\theta \in \mathbb{R}^{k \times d}. \end{aligned}$$

Etant donné $\xi \in L^2(\Omega, \mathcal{F}_T, P, \mathbb{R}^k)$, on cherche à resoudre l'équation différentielle doublement stochastique retrograde suivante :

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds + \int_{t}^{T} g(s, Y_{s}, Z_{s}) dB_{s} - \int_{t}^{T} Z_{s} dW_{s}, \quad 0 \le t \le T, \quad (2.1)$$

La variable aléatoire ξ est dite condition terminale et f est le générateur.

Nous notons que l'intégrale par rapport à $\{B_t\}$ est " l'intergrale d'Itô retrograde " et l'integrale par rapport à $\{W_t\}$ est " l'intergrale d'Itô progressive ".

2.3 Existence et unicité

L'objectif principal de cette section est de prouver :

Théorème 2.3.1 Sous l'hypothèse (H.1), l'eq (2.1) possède une unique solution, telles que :

$$(Y,Z) \in S^2([0,T];\mathbb{R}^k) \times M^2([0,T];\mathbb{R}^{k\times d})$$
.

Avant de prouver le théorème, nous établissons le même résultat dans le cas où f et g ne dépendent pas ni de Y et ni de Z. Etant donné $f \in M^2\left([0,T];\mathbb{R}^k\right)$ et $g \in M^2\left([0,T];\mathbb{R}^{k\times l}\right)$ et $\xi \in L^2\left(\Omega,\mathcal{F}_T\right)$, considérons l'EDDSR:

$$Y_t = \xi + \int_t^T f(s) ds + \int_t^T g(s) dB_s - \int_t^T Z_s dW_s, \quad 0 \le t \le T.$$
 (2.2)

Proposition 2.3.1 Il existe un unique couple

$$(Y,Z) \in S^{2}\left(\left[0,T\right];\mathbb{R}^{k}\right) \times M^{2}\left(\left[0,T\right];\mathbb{R}^{k \times d}\right).$$

qui résoudre l'eq (2.2).

Preuve. Unicité : Soit $(\overline{Y}, \overline{Z})$ la différence de deux solutions, alors

$$\overline{Y_t} + \int_t^T \overline{Z_s} dW_s = 0, \quad 0 \le t \le T$$

par l'orthogonalité on obtient que

$$E\left(\left|\overline{Y_{t}}\right|^{2}\right) + E\int_{t}^{T}T_{r}\left[\overline{Z_{s}Z_{s}}^{*}\right]ds = 0,$$

et donc $\overline{Y_t}=0$ P p.s., $\overline{Z_t}=0$ dt.dP p.s d'où l'unicité.

Existence : On défini la filtration $(\mathcal{G}_t)_{0 \le t \le T}$ par

$$\mathcal{G}_t = \mathcal{F}_t^W \vee \mathcal{F}_T^B$$
, et soit

$$M_t = E^{\mathcal{G}_t} \left[\xi + \int_0^T f(s) \, ds + \int_0^T g(s) \, dB_s \right], 0 \le t \le T$$
, une martingales de caré intégrable.

Par le théorème de représentation des martingale, il existe un processus $\{Z_t\}$, (\mathcal{G}_t) – progressivement mesurable à valeur dans $\mathbb{R}^{k \times d}$, tel que :

$$E\int_0^T |Z_t|^2 dt < \infty,$$

et

$$M_t = M_0 + \int_0^t Z_s dW_s, 0 \le t \le T.$$

Par conséquent

$$M_T = M_t + \int_t^T Z_s dW_s,$$

En remplacement M_T et M_t , par leurs définition, alors on a, pour $t \in [0,T]$,

$$Y_{t} = \xi + \int_{t}^{T} f(s) ds + \int_{t}^{T} g(s) dB_{s} - \int_{t}^{T} Z_{s} dW_{s},$$

où

$$Y_{t} \triangleq E^{\mathcal{G}_{t}} \left(\xi + \int_{t}^{T} f(s) ds + \int_{t}^{T} g(s) dB_{s} \right).$$

Il me reste à montrer que $\{Y_t\}$ et $\{Z_t\}$ sont \mathcal{F}_t -adaptés. Pour Y_t est évident puisque pour chaque t,

$$Y_t = E\left(\Theta/\mathcal{F}_t \vee \mathcal{F}_t^B\right).$$

 $O\grave{u}\ \Theta\ est\ \mathcal{F}_{T}\lor\mathcal{F}_{t}^{B}\ mesurable.\ Puisque\ \mathcal{F}_{t}^{B}\ est\ indépendante\ de\ \mathcal{F}_{T}\lor\sigma\left(\Theta\right),\ et$

$$Y_t = E\left(\Theta/\mathcal{F}_t\right)$$
.

Maintenant

$$\int_{t}^{T} Z_{s} dW_{s} = \xi + \int_{t}^{T} f(s) ds + \int_{t}^{T} g(s) dB_{s} - Y_{t},$$

Et le côté droit est $\mathcal{F}_{T}^{W} \vee \mathcal{F}_{t,T}^{B}$ mesurable. Ainsi, d'après le théorème de représentation des martingales d'Itô, $\{Z_{s}, t < s < T\}$ est $\mathcal{F}_{s}^{W} \vee \mathcal{F}_{t,T}^{B}$ adapté. Par conséquent Z_{s} est $\mathcal{F}_{s}^{W} \vee \mathcal{F}_{t,T}^{B}$ mesurable pour tout t < s, donc il est $\mathcal{F}_{s}^{W} \vee \mathcal{F}_{t,T}^{B}$ mesurable.

Preuve. (de la théoreme 2.3.1)

L'unicité. Soit $\{Y_t^1, Z_t^1\}$ et $\{Y_t^2, Z_t^2\}$ deux solutions. de l'EDDSR (2.1) On suppose que :

$$\overline{Y_t} = Y_t^1 - Y_t^2$$
, $\overline{Z_t} = Z_t^1 - Z_t^2$, $0 \le t \le T$.

Et par suite, on applique le **lemme** (1.3.1) a \overline{Y} , on trouve

$$E(|\overline{Y_{t}}|^{2}) + E \int_{t}^{T} ||\overline{Z_{s}}||^{2} ds = 2E \int_{t}^{T} (f(s, Y_{s}^{1}, Z_{s}^{1}) - f(s, Y_{s}^{2}, Z_{s}^{2}), \overline{Y_{s}}) ds + E \int_{t}^{T} ||g(s, Y_{s}^{1}, Z_{s}^{1}) - g(s, Y_{s}^{2}, Z_{s}^{2})||^{2} ds.$$

D'aprés (H.1) et l'inégalité

$$ab \leq \frac{1}{2(1-\alpha)}a^{2} + \frac{1-\alpha}{2}b^{2}$$

$$E\left(\left|\overline{Y_{t}}\right|^{2}\right) + E\int_{t}^{T}\left\|\overline{Z_{s}}\right\|^{2}ds \leq c\left(\alpha\right)E\int_{t}^{T}\left|\overline{Y_{t}}\right|^{2}ds$$

$$+ \frac{1-\alpha}{2}E\int_{t}^{T}\left\|\overline{Z_{s}}\right\|^{2}ds + \alpha E\int_{t}^{T}\left\|\overline{Z_{s}}\right\|^{2}ds,$$

avec $0 < \alpha < 1$ est la constante dans (H.1). Par conséquent

$$E\left(\left|\overline{Y_{t}}\right|^{2}\right) + \frac{1-\alpha}{2}E\int_{t}^{T}\left\|\overline{Z_{s}}\right\|^{2}ds \leq c\left(\alpha\right)E\int_{0}^{T}\left\|\overline{Y_{s}}\right\|^{2}ds,$$

par le lemme de **Gronwall**, il vient que $E\left(\left|\overline{Y}_{t}\right|^{2}\right)=0, \ 0 \leq t \leq T$, et donc $E\int_{0}^{T}\overline{\left|Z_{s}\right|^{2}}ds=0$.

Existence. On défini une suite récurssive $\{(Y_t^i,Z_t^i)\}_{i=0,1,\dots}$ comme suit $Y_t^0\equiv 0, Z_t^0\equiv 0$. étant donné $\{(Y_t^i,Z_t^i)\}, \{(Y_t^{i+1},Z_t^{i+1})\}$ l'unique solution de l'EDDSR suivante :

$$Y_{t}^{i+1} = \xi + \int_{t}^{T} f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) ds + \int_{t}^{T} g\left(s, Y_{s}^{i}, Z_{s}^{i}\right) dB_{s} - \int_{t}^{T} Z_{t}^{i+1} dW_{s}.$$

 $Soient \ \overline{Y}_t^{i+1} \triangleq Y_t^{i+1} - Y_t^i \ et \ \overline{Z}_t^{i+1} \triangleq Z_t^{i+1} - Z_t^i, 0 \leq t \leq T \ par \ un \ calcul \ on \ obtient :$

$$E\left(\left|\overline{Y_{t}}^{i+1}\right|^{2}\right) + E\int_{t}^{T} \left\|\overline{Z_{s}}^{i+1}\right\|^{2} ds = 2E\int_{t}^{T} f\left(s, Y_{s}^{i}, Z_{s}^{i}\right) - \left(f\left(s, Y_{s}^{i-1}, Z_{s}^{i-1}\right), \overline{Y_{s}}^{i+1}\right) ds + E\int_{t}^{T} \left\|g\left(s, Y_{s}^{i}, Z_{s}^{i}\right) - g\left(s, Y_{s}^{i-1}, Z_{s}^{i-1}\right)\right\|^{2} ds.$$

Soit $\beta \in \mathbb{R}$. Par l'intégration par parties, on obtient

$$\begin{split} &E\left(\left|\overline{Y_t}^{i+1}\right|^2\right)e^{\beta t}+\beta E\int_t^T\left|\overline{Y_t}^{i+1}\right|^2e^{\beta s}ds+E\int_t^T\left\|\overline{Z_s}^{i+1}\right\|^2e^{\beta s}ds,\\ &=2E\int_t^T\left(f\left(s,Y_s^i,Z_s^i\right)-f\left(s,Y_s^{i-1},Z_s^{i-1}\right),\overline{Y_s}^{i+1}\right)e^{\beta s}ds\\ &+E\int_t^T\left\|g\left(s,Y_s^i,Z_s^i\right)-g\left(s,Y_s^{i-1},Z_s^{i-1}\right)\right\|^2e^{\beta s}ds. \end{split}$$

Il existe $c, \gamma > 0$, tels que

$$\begin{split} &E\left(\left|\overline{Y_t}^{i+1}\right|^2\right)e^{\beta s} + \left(\beta - \gamma\right)E\int_t^T \left|\overline{Y_t}^{i+1}\right|^2 e^{\beta s}ds + E\int_t^T \left\|\overline{Z_s}^{i+1}\right\|^2 e^{\beta s}ds \\ &\leq E\int_t^T \left(c\left|\overline{Y_t}^i\right|^2 + \frac{1+\alpha}{2}\left\|\overline{Z_s}^i\right\|^2\right)e^{\beta s}ds. \end{split}$$

 $O\dot{u} \beta = \gamma + \bar{c}, et \bar{c} = \frac{2c}{1+\alpha},$

$$E\left(\left|\overline{Y_t}^{i+1}\right|^2\right)e^{\beta t} + E\int_t^T \left(\overline{c}\left|\overline{Y_s}^{i+1}\right|^2 + \left\|\overline{Z_s}^{i+1}\right\|^2\right)e^{\beta s}ds,$$

$$\leq \frac{1+\alpha}{2}E\int_t^T \left(c\left|\overline{Y_t}^i\right|^2 + \left\|\overline{Z_s}^i\right\|^2\right)e^{\beta s}ds.$$

Et par suite

$$E\int_{t}^{T}\left(\overline{c}\left|\overline{Y_{t}}^{i+1}\right|^{2}+\left\|\overline{Z_{s}}^{i+1}\right\|^{2}\right)e^{\beta s}ds\leq\left(\frac{1+\alpha}{2}\right)^{i}E\int_{t}^{T}\left(\overline{c}\left|Y_{s}^{1}\right|^{2}+\left\|Z_{s}^{1}\right\|^{2}\right)e^{\beta s}ds.$$

 $\begin{array}{l} \textit{Et comme} \ \ \frac{1+\alpha}{2} \ < \ 1, \ \left\{ (Y_t^i, Z_t^i) \right\}_{i=0,1,2,\dots} \ \textit{est une suite de Cauchy dans} \ M^2 \left(0, T; \mathbb{R}^k \right) \times \\ M^2 \left(0, T; \mathbb{R}^{k \times d} \right) . \textit{Et donc} \ \left\{ Y_t^i \right\}_{i=0,1,2,\dots} \ \textit{est de Cauchy dans} \ S^2 \left(\left[0, T \right]; \mathbb{R}^k \right) , \textit{et que} \end{array}$

$$\{(Y_t, Z_t)\} = \lim_{i \to \infty} \{(Y_t^i, Z_t^i)\}.$$

est la solution de l'équation (2.1). ■

Chapitre 3

Théorèmes de comparaison pour les EDDSR et applications

3.1 THÉORÈMES DE COMPARAISON:

Dans cette section , nous ne considérons que les EDDSR unidimensionnel, c'est-àdire que k=1. On considère les deux EDDSR suivantes :

$$Y_{t}^{1} = \xi^{1} + \int_{t}^{T} f^{1}(s, Y_{s}^{1}, Z_{s}^{1}) ds + \int_{t}^{T} g(s, Y_{s}^{1}, Z_{s}^{1}) dB_{s} - \int_{t}^{T} Z_{s}^{1} dW_{s}, \text{ pour tout } (0 \le t \le T)$$
(3.1)

$$Y_t^2 = \xi^2 + \int_t^T f^2(s, Y_s^2, Z_s^2) ds + \int_t^T g(s, Y_s^2, Z_s^2) dB_s - \int_t^T Z_s^2 dW_s, \quad \text{pour tout } (0 \le t \le T)$$
(3.2)

où les coefficients des EDDSR (3.1) et (3.2) satisfaisons les conditions de l'hypothèse (H.1). Supposond qu'il existe deux paires de processus (Y^1, Z^1) et (Y^2, Z^2) satisfaisons les EDDSR (3.1) et (3.2), respectivement et supposons de plus que :

$$(\mathbf{H2}) \begin{cases} \xi^1 \ge \xi^2 , & \text{a.s} \\ f^1(t, y, z) \ge f^2(t, y, z) & \text{a.s,} \forall (t, y, z) \in [0, T] \times \mathbb{R} \times \mathbb{R}^d. \end{cases}$$

Alors nous avons le théorème de comparaison suivant.

Théorème 3.1.1 Supposons que les EDDSR (3.1) et (3.2) satisfaisons les conditions de

le proposition (2.3), soient (Y^1, Z^1) et (Y^2, Z^2) deux solutions de (3.1) et (3.2), respectivement. Si (H2) est vérifié, alors $Y_t^1 \geq Y_t^2$, a.s pour tout $\forall t \in [0, T]$.

Preuve. Pour la simplification on suppose que l=d=1. Alors $(Y_t^1-Y_t^2,Z_t^1-Z_t^2)$ satisfait l'EDDSR suivante :

$$\begin{split} Y_t^1 - Y_t^2 &= \xi^1 - \xi^2 + \int_t^T [f^1(s, Y_s^1, Z_s^1) - f^2(s, Y_s^2, Z_s^2)] ds + \\ &+ \int_t^T [g(s, Y_s^1, Z_s^1) - g(s, Y_s^2, Z_s^2)] dB_s - \int_t^T \left(Z_s^1 - Z_s^2\right) dWs \quad , \quad 0 \le t \le T. \end{split}$$

On applique la formule d'Itô à $\left| \left(Y_s^1 - Y_s^2 \right)^- \right|^2$, on obtient

$$\begin{aligned} \left| \left(Y_t^1 - Y_t^2 \right)^{-} \right|^2 &= \left| \left(\xi^1 - \xi^2 \right)^{-} \right|^2 - 2 \int_t^T \left(Y_s^1 - Y_s^2 \right)^{-} \left[f^1(s, Y_s^1, Z_s^1) - f^2(s, Y_s^2, Z_s^2) \right] ds \\ &- 2 \int_t^T (Y_s^1 - Y_s^2)^{-} \left[g(s, Y_s^1, Z_s^1) - g(s, Y_s^2, Z_s^2) \right] dB_s \\ &+ \int_t^T 1_{\{Y_s^1 \le Y_s^2\}} \mid g(s, Y_s^1, Z_s^1) - g(s, Y_s^2, Z_s^2) \mid^2 ds \\ &+ 2 \int_t^T (Y_s^1 - Y_s^2)^{-} (Z_s^1 - Z_s^2) dW_s - \int_t^T 1_{\{Y_s^1 \le Y_s^2\}} \left| (Z_s^1 - Z_s^2) \mid^2 ds. \end{aligned} \tag{3.3}$$

De (**H2**),on a $\xi^1 - \xi^2 \ge 0$, alors

$$E\left|\left(\xi^{1} - \xi^{2}\right)^{-}\right|^{2} = 0.$$
 (3.4)

 $comme\ (Y^{1},Z^{1})\ et\ (Y^{2},Z^{2})\ sont\ dans\ S^{2}\left(\left[0,T\right];\mathbb{R}\right)\times M^{2}\left(\left[0,T\right];\mathbb{R}^{d}\right)\ ,\ il\ vient\ que$

$$E \int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{-} (Z_{s}^{1} - Z_{s}^{2}) dW_{s} = 0,$$
(3.5)

$$E \int_{1}^{T} (Y_{s}^{1} - Y_{s}^{2})^{-} \left[g(s, Y_{s}^{1}, Z_{s}^{1}) - g(s, Y_{s}^{2}, Z_{s}^{2}) \right] dB_{s} = 0.$$
 (3.6)

Soit

$$\Delta = -2 \int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{-} [f^{1}(s, Y_{s}^{1}, Z_{s}^{1}) - f^{2}(s, Y_{s}^{2}, Z_{s}^{2})] ds$$

$$= -2 \int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{-} [f^{1}(s, Y_{s}^{1}, Z_{s}^{1}) - f^{1}(s, Y_{s}^{2}, Z_{s}^{2})] ds$$

$$-2 \int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{-} [f^{1}(s, Y_{s}^{2}, Z_{s}^{2}) - f^{2}(s, Y_{s}^{2}, Z_{s}^{2})] ds$$

$$= \Delta_{1} + \Delta_{2},$$

où

$$\Delta_1 = -2 \int_t^T (Y_s^1 - Y_s^2)^- [f^1(s, Y_s^1, Z_s^1) - f^1(s, Y_s^2, Z_s^2)] ds$$

$$\Delta_2 = -2 \int_t^T (Y_s^1 - Y_s^2)^- [f^1(s, Y_s^2, Z_s^2) - f^2(s, Y_s^2, Z_s^2)] ds \le 0.$$

De (H.1) et l'inégalité de Young, on obtient que

$$\Delta \leq \Delta_{1} \leq 2c \int_{t}^{T} (Y_{s}^{1} - Y_{s}^{2})^{-} (|Y_{s}^{1} - Y_{s}^{2}| + |Z_{s}^{1} - Z_{s}^{2}|) ds$$

$$\leq (2c + \frac{c^{2}}{1-\alpha}) \int_{t}^{T} |(Y_{s}^{1} - Y_{s}^{2})^{-}|^{2} ds$$

$$+ (1-\alpha) \int_{t}^{T} 1_{\{Y_{s}^{1} \leq Y_{s}^{2}\}} |Z_{s}^{1} - Z_{s}^{2}|^{2} ds,$$

$$(3.7)$$

où c > 0 ne dépend que de la constante de Lipschitz C dans $(\mathbf{H.1})$. En utilisant l'hypothèse $(\mathbf{H.1})$, encore une fois, nous en déduisons

$$\int_{t}^{T} 1_{\{Y_{s}^{1} \leq Y_{s}^{2}\}} \left| g(s, Y_{s}^{1}, Z_{s}^{1}) - g(s, Y_{s}^{2}, Z_{s}^{2}) \right|^{2} ds$$

$$\leq \int_{t}^{T} 1_{\{Y_{s}^{1} \leq Y_{s}^{2}\}} \left[C \left| Y_{s}^{1} - Y_{s}^{2} \right|^{2} + \alpha \left| Z_{s}^{1} - Z_{s}^{2} \right|^{2} \right] ds$$

$$= C \int_{t}^{T} \left| (Y_{s}^{1} - Y_{s}^{2})^{-} \right|^{2} ds + \alpha \int_{t}^{T} 1_{\{Y_{s}^{1} \leq Y_{s}^{2}\}} \left| Z_{s}^{1} - Z_{s}^{2} \right|^{2} ds. \tag{3.8}$$

On prend l'espérence dans les deux côtés de l'équation (3.3) et par (3.4-3.8), on obtient

que

$$E\left|(Y_t^1 - Y_t^2)^-\right|^2 \le (C + 2c + \frac{c^2}{1 - \alpha}) \int_t^T E\left|(Y_s^1 - Y_s^2)^-\right|^2 ds.$$

Par l'inégalité de Gronwall, il tient que

$$E\left|(Y_t^1 - Y_t^2)^-\right|^2 = 0, \quad \forall t \in [0, T]$$

C'est-à-dire, $Y_t^1 \geq Y_t^2$, a.s pout tout $t \in [0,T]$. \blacksquare

3.1.1 Application du théorème de comparaison

EDDSR À COEFFICIENTS CONTINUS

Cette section est consacrée à l'étude des EDDSR à coefficients continu c'est une application du théorème de comparaison des EDDSR obtenu dans la section précedente

Théorème 3.1.2 Supposons que $f: \Omega \times [0,T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ et $g: \Omega \times [0,T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^l$ sont des fonctions mesurables et satisfons :

(1) Croissance linéaire : $\exists 0 < K < \infty$, telle que

$$|f(\omega, t, y, z)| \le K(1 + |y| + |z|), \forall (\omega, t, y, z) \in \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d;$$

- (2) Pour tout (ω, t) fixe $f(\omega, t, ...)$ est continu.
- (3) Il existe des constantes C > 0 et $0 < \alpha < 1$ telles que

$$\begin{split} \left|g\left(\omega,t,y^{1},z^{1}\right)-g\left(\omega,t,y^{2},z^{2}\right)\right|^{2} & \leq C\left|y^{1}-y^{2}\right|^{2}+\alpha\left|z^{1}-z^{2}\right|^{2} \\ ,\forall\left(\omega,t\right)\in\Omega\times\left[0,T\right],\left(y^{1},z^{1}\right)\in\mathbb{R}\times\mathbb{R}^{d},\left(y^{2},z^{2}\right)\in\mathbb{R}\times\mathbb{R}^{d}. \end{split}$$

Alors si $\xi \in L^2(\Omega, \mathcal{F}_T, P)$, l'EDDSR (2.1) a une solution $(Y, Z) \in S^2([0, T]; \mathbb{R}) \times M^2([0, T]; \mathbb{R}^d)$. De plus, il existe une solution minimale $(\underline{Y}, \underline{Z})$ de (2.1) dans le sens que, pour toute autre solution (Y, Z) de Éq. (2.1) alors $\underline{Y} \leq Y$. Pour la simplification

de notation, on suppose que l=d=1. Pour fixe (ω,t) , on définie la suite $f_n(\omega,t,y,z)$ associé à f,

$$f_n\left(\omega,t,y,z\right) = \inf_{y',z' \in Q} \left\{ f\left(\omega,t,y',z'\right) + n\left(\left|y-y'\right| + \left|z-z'\right|\right) \right\},\,$$

alors, pour $n \geq K$, f_n est une suite mesurable et uniformément de croissance linéaire par rapport a y, z de constante K. On définie la fonction.

$$F(\omega, t, y, z) = K(1 + |y| + |z|).$$

Soit $\xi \in L^2(\Omega, F_T, P)$, par le thèorème (2.3), il existe deux paires de processus (Y^n, Z^n) et (U, V), qui sont les solutions aux EDDSR (3.9) et (3.10), respectivement,

$$Y_t^n = \xi + \int_t^T f_n(s, Y_s^n, Z_s^n) ds + \int_t^T g(s, Y_s^n, Z_s^n) dB_s - \int_t^T Z_s^n dW_s,$$
 (3.9)

$$U_{t} = \xi + \int_{t}^{T} F(s, U_{s}, V_{s}) ds + \int_{t}^{T} g(s, U_{s}, V_{s}) dB_{s} - \int_{t}^{T} V_{s} dW_{s}.$$
 (3.10)

Du théorème 3.1 et du lemme 1 de [4], nous obtenons

$$\forall n \ge m \ge K, \quad Y^m \le Y^n \le U, \quad dt \otimes dP - as$$
 (3.11)

Lemme 3.1.1 Il existe une constante A > 0 ne dépend que de $K, C, \alpha, T,$ et ξ , tel que

$$\forall n \geq K, \quad ||Y^n||_{S^2} \leq A, \quad ||Z^n||_{M^2} \leq A,$$

 $||U||_{S^2} \leq A, \quad ||V||_{M^2} \leq A.$

Preuve. Tout d'abord, nous prouvons que $\|U\|_{S^2}$ et $\|V\|_{M^2}$ sont bornés. De (3.11), il existe une constante B qui dépend uniquement de K, C, α, T , et ξ , de telle sorte que

$$(E\int_0^T |Y_s^n|^2 ds)^{\frac{1}{2}} \le B, \quad (E\int_0^T |U_s|^2 ds)^{\frac{1}{2}} \le B, \quad \|V\|_{M^2} \le B.$$

On appliquer la formule d'Itô à $\left|U_{t}\right|^{2}$, on obtient que

$$|U_{t}|^{2} = |\xi|^{2} + 2 \int_{t}^{T} U_{s}.F(s, U_{s}, V_{s}) ds$$

$$+2 \int_{t}^{T} U_{s}.g(s, U_{s}, V_{s}) dB_{s} - 2 \int_{t}^{T} U_{s}.V_{s} dW_{s}$$

$$+ \int_{t}^{T} |g(s, U_{s}, V_{s})|^{2} ds - \int_{t}^{T} |V_{s}|^{2} ds.$$
(3.12)

De (H.1), pour tout $\alpha < \alpha' < 1$, il existe une constante $C(\alpha') > 0$ telle que

$$|g(t, u, v)|^2 \le C(\alpha')(|u|^2 + |g(t, 0, 0)|^2) + \alpha'|v|^2.$$
 (3.13)

De l'équation (3.12) et Eq. (3.13), il s'ensuit que

$$\begin{aligned} |U_{t}|^{2} + \int_{t}^{T} |V_{s}|^{2} ds &\leq |\xi|^{2} + 2K \int_{t}^{T} |U_{s}| \left(1 + |U_{s}| + |V_{s}|\right) ds \\ &+ C \left(\alpha'\right) \int_{t}^{T} \left(|U_{s}|^{2} + |g\left(s, 0, 0\right)|^{2}\right) ds + \int_{t}^{T} |V_{s}|^{2} ds \\ &+ 2 \int_{t}^{T} U_{s} \cdot g\left(s, U_{s}, V_{s}\right) dB_{s} - 2 \int_{t}^{T} U_{s} \cdot V_{s} dW_{s} \\ &\leq |\xi|^{2} + K^{2} \left(T - t\right) + C \left(\alpha'\right) \int_{t}^{T} |g\left(s, 0, 0\right)|^{2} ds \\ &+ \frac{1 + \alpha'}{2} \int_{t}^{T} |V_{s}|^{2} ds \\ &+ \left(1 + 2K + C \left(\alpha'\right) + \frac{2K^{2}}{1 - \alpha'}\right) \int_{t}^{T} |U_{s}|^{2} ds \\ &+ 2 \int_{t}^{T} U_{s} \cdot g\left(s, U_{s}, V_{s}\right) dB_{s} - 2 \int_{t}^{T} U_{s} \cdot V_{s} dW_{s}. \end{aligned}$$

Prenant le supremum et lespérence, nous obtenons par l'inégalité de Young que

$$||U||_{S^{2}}^{2} + \frac{1-\alpha}{2} ||V||_{M^{2}}^{2} \leq E(|\xi|^{2} + K^{2}T + C \int_{0}^{T} |g(s,0,0)|^{2} ds) + (1+2K+C(\alpha')\frac{2K^{2}}{1-\alpha'})E \int_{0}^{T} |U_{s}|^{2} ds + 2E \sup_{0 \leq t \leq T} \left| \int_{t}^{T} U_{s} \cdot g(s,U_{s},V_{s}) dB_{s} \right| + 2E \sup_{0 \leq t \leq T} \left| \int_{t}^{T} U_{s} \cdot V_{s} dW_{s} \right|.$$

$$(3.14)$$

Par l'inégalité de Burkholder-Davis-Gundy, on déduit que

$$E\left(\sup_{0 \le t \le T} \left| \int_{t}^{T} U_{s} \cdot g\left(s, U_{s}, V_{s}\right) dB_{s} \right| \right)$$

$$\leq cE\left(\int_{0}^{T} \left| U_{s} \right|^{2} \cdot \left| g\left(s, U_{s}, V_{s}\right) \right|^{2} ds\right)^{\frac{1}{2}}$$

$$\leq cE\left(\left(\sup_{0 \le t \le T} \left| U_{t} \right|^{2}\right)^{\frac{1}{2}} \left(\int_{0}^{T} \left| g\left(s, U_{s}, V_{s}\right) \right|^{2} ds\right)^{\frac{1}{2}}\right)$$

$$\leq 2c^{2}C\left(\alpha'\right) E\left(\int_{0}^{T} \left| U_{s} \right|^{2} ds + \int_{0}^{T} \left| g\left(s, 0, 0\right) \right|^{2} ds\right) + \frac{1}{8} \left\| U \right\|_{S^{2}}^{2} + 2c^{2}\alpha' \left\| V \right\|_{M^{2}}^{2}. \tag{3.15}$$

De la même manière, nous avons

$$E(\sup_{0 \le t \le T} \left| \int_{t}^{T} U_{s} \cdot V_{s} dW_{s} \right|) \le \frac{1}{8} \|U\|_{S^{2}}^{2} + 2c^{2} \|V\|_{M^{2}}^{2}.$$
(3.16)

De Eqs. (3.15), (3.16) et (3.14), il s'ensuit que

$$||U||_{S^{2}}^{2} + \frac{1-\alpha'}{2} ||V||_{M^{2}}^{2}$$

$$\leq 2(E|\xi|^{2} + K^{2}T + C(\alpha') (1 + 4c^{2}) E \int_{0}^{T} |g(s, 0, 0)|^{2} ds)$$

$$+ 2(1 + 2K + \frac{2K^{2}}{1-\alpha'} + C(\alpha') (1 + 4c^{2})) E \int_{0}^{T} |U_{s}|^{2} ds$$

$$+ 8c^{2} (1 + \alpha') ||V||_{M^{2}}^{2}$$

$$\leq 2(E|\xi|^{2} + K^{2}T + C(\alpha') (1 + 4c^{2}) E \int_{0}^{T} |g(s, 0, 0)|^{2} ds)$$

$$+ 2(1 + 2K + \frac{2K^{2}}{1-\alpha'} + C(\alpha') (1 + 4c^{2}) + 4c^{2} (1 + \alpha')) B^{2}$$

$$:= \frac{1-\alpha'}{2} (B')^{2},$$

alors

$$||U||_{S^2} \le B', \qquad ||V||_{M^2} \le B'.$$

De l'équation (3.11), il vient que

$$||Y^n||_{S^2} \le B'.$$

Ensuite, on montre que $\|Z^n\|_{M^2}$ est borné. On applique la formule d'Itô à $\|Y^n_t\|^2$, il s'ensuit que

$$\begin{aligned} |Y_t^n|^2 &= |\xi|^2 + 2 \int_t^T Y_s^n \cdot f_n(s, Y_s^n, Z_s^n) ds \\ &+ 2 \int_t^T Y_s^n \cdot g(s, Y_s^n, Z_s^n) dBs - 2 \int_t^T Y_s^n \cdot Z_s^n dWs \\ &+ \int_t^T |g(s, Y_s^n, Z_s^n)|^2 ds - \int_t^T |Z_s^n|^2 ds. \end{aligned}$$

On prend l'espérence, on obtient

$$E(|Y_t^n|^2) + E \int_t^T |Z_s^n|^2 ds = E |\xi|^2 + 2E \int_t^T Y_s^n \cdot f_n(s, Y_s^n, Z_s^n) ds + E \int_t^T |g(s, Y_s^n, Z_s^n)|^2 ds.$$

De l'inégalité bien de Young, il s'ensuit que

$$\begin{split} E(|Y_t^n|^2) + E \int_t^T |Z_s^n|^2 \, ds & \leq E \, |\xi|^2 + C' E \int_t^T |Y_s^n|^2 \, ds \\ & + \frac{1 - \alpha'}{2} E \int_t^T |Z_s^n|^2 \, ds + K^2 \, (T - t) \\ & + C \, (\alpha') \, E \int_0^T |g \, (s, 0, 0)|^2 \, ds \\ & + \alpha' E \int_t^T |Z_s^n|^2 \, ds, \end{split}$$

où $C' = 1 + 2K + C(\alpha') + \frac{2K^2}{1-\alpha'}$, et comme $0 < \alpha' < 1$ dans Éq. (3.13), alors

$$||Z^{n}||_{M^{2}}^{2} \leq \frac{2}{1-\alpha'} (C'T(B')^{2} + K^{2}T + E|\xi|^{2} + C(\alpha') E \int_{0}^{T} |g(s,0,0)|^{2} ds)$$
$$:= (A)^{2}.$$

La preuve est terminée.

Lemme 3.1.2 $\{(Y^n, Z^n)\}_{n=1}^{+\infty}$ converge dans $S^2([0, T]; \mathbb{R}) \times M^2([0, T]; \mathbb{R})$.

Preuve. Soit $n_0 \geq K$. comme $\{Y_n\}$ est croissante et bornée dans $S^2([0,T];\mathbb{R})$, on déduit par le théorème de convergence dominé que Y^n converge dans $S^2([0,T];\mathbb{R})$. On notera Y la limite de $\{Y^n\}$. On applique la formule d' Itô à $|Y_t^n - Y_t^m|^2$, on obtient que pour tout

 $n, m \geq n_0$,

$$\begin{split} &E(|Y_0^n-Y_0^m|^2)+E\int_0^T|Z_s^n-Z_s^m|^2\,ds\\ &=2E\int_0^T\left(Y_s^n-Y_s^m\right)\left(f_n(s,Y_s^n,Z_s^n)-f_m(s,Y_s^m,Z_s^m)\right)ds\\ &+E\int_0^T|g(s,Y_s^n,Z_s^n)-g(s,Y_s^m,Z_s^m)|^2\,ds\\ &\leq 2(E\int_0^T|Y_s^n-Y_s^m|^2\,ds)^{\frac{1}{2}}(E\int_0^T|f_n(s,Y_s^n,Z_s^n)-f_m(s,Y_s^m,Z_s^m)|^2\,ds)^{\frac{1}{2}}\\ &+E\int_0^T\left(C\left|Y_s^n-Y_s^m\right|^2+\alpha\left|Z_s^n-Z_s^m\right|^2\right)ds. \end{split}$$

Puisque f_n et f_m sont on croissance linéaire et que $\{Y^n, Z^n\}$ sont bornées , de même que dans le **lemme 3.1**, il existe une constante $\overline{K} > 0$ qui ne dépend que de K, C, α, T et ξ , de telle que

$$E(|Y_0^n - Y_0^m|^2) + E\int_0^T |Z_s^n - Z_s^m|^2 ds \le E\int_0^T (\overline{K}|Y_s^n - Y_s^m|^2 + \alpha ||Z_s^n - Z_s^m|^2) ds.$$

Alors

$$\|Z^n - Z^m\|_{M^2}^2 \le \frac{\overline{K}T}{1 - \alpha} \|Y^n - Y^m\|_{S^2}^2$$

Donc $\{Z^n\}$ est une suite de Cauchy dans $M^2([0,T];\mathbb{R})$.

Preuve. (du théorème 3.1.2). Pour tout $n \ge n_0 \ge K$, on ait que $Y^{n_0} \le Y^n \le U$, et $\{Y^n\}$ converge dans $S^2([0,T];\mathbb{R})$ $dt \otimes dP$ -a.s vers $Y \in S^2([0,T];\mathbb{R})$.

D'autre part, puisque Z^n converge dans $M^2([0,T];\mathbb{R})$ vers Z, alors il existe une sous suite de Z_n qu'on le noté aussi Z_n tel que $Z^n \to Z$, $dt \otimes dP - a.s$ et $\overline{G} = \sup_n |Z^n|$ est

 $dt \otimes dP$ intégrable. alors comme dans [4], on obtient que pour presque tous ω ,

$$f_n(t, Y_t^n, Z_t^n) - \to f(t, Y_t, Z_t), (n \to \infty) dt - a.e$$

$$|f_n(t, Y_t^n, Z_t^n)| \le K(1 + \sup_n |Y_t^n| + \sup_n |Z_t^n|)$$

$$= K(1 + \sup_n |Y_t^n| + \overline{G}_t) \in L^1([0, T]; dt).$$

Ainsi, pour presque tout ω et uniformément en t, on obtient que

$$\int_{t}^{T} f_{n}(s, Y_{s}^{n}, Z_{s}^{n}) ds \longrightarrow \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds, \qquad (n \to \infty).$$

par la propriétés de la continuité de l'intégrale stochastique, il s'ensuit que

$$\sup_{0 \le t \le T} \left| \int_t^T Z_s^n dW s - \int_t^T Z_s dW s \right| - \to 0 \qquad \text{en probabilit\'e},$$

$$\sup_{0 \le t \le T} \int_t^T g(s, Y_s^n, Z_s^n) dB_s - \int_t^T g(s, Y_s, Z_s) dB_s - \to 0 \qquad \text{en probabilit\'e}.$$

alors on peut chaoisir une sous suite qui converge P-a.s. Finalement,

$$|Y_{t}^{n} - Y_{t}^{m}| \leq \int_{t}^{T} \left| f_{n}(s, Y_{s}^{n}, Z_{s}^{n}) - \int_{t}^{T} f_{m}(s, Y_{s}^{m}, Z_{s}^{m}) \right| ds$$

$$+ \left| \int_{t}^{T} g(s, Y_{s}^{n}, Z_{s}^{n}) dB_{s} - \int_{t}^{T} g(s, Y_{s}^{m}, Z_{s}^{m}) dB_{s} \right|$$

$$+ \left| \int_{t}^{T} Z_{s}^{n} dW s - \int_{t}^{T} Z_{s}^{m} dW s \right|,$$

et en prenant la limites sur m et le supremum sur t, on obtient que

$$\sup_{0 \le t \le T} |Y_t^n - Y_t| \le \int_t^T \left| f_n(s, Y_s^n, Z_s^n) - \int_t^T f(s, Y_s, Z_s) \right| ds
+ \sup_{0 \le t \le T} \left| \int_t^T g(s, Y_s^n, Z_s^n) dB_s - \int_t^T g(s, Y_s, Z_s) dB_s \right|
+ \sup_{0 \le T \le T} \left| \int_t^T Z_s^n dW s - \int_t^T Z_s dW s \right|, \quad Pa.s.$$

il en résulte que Y^n converge uniformément vers Y (en particulier, Y est un processus continu). Par la monotonie de $\{Y^n\}$ alors la convergence est pour tout la suite . On prend la limite dans l'équation (3.9), on en déduit que (Y,Z) est une solution de l'équation (2.1). Soit $(\widehat{Y},\widehat{Z}) \in S^2([0,T];\mathbb{R}) \times M^2([0,T];\mathbb{R})$ une solution de l'équation. (2.1). Par le théorème 3.1.1, on obtient que $Y^n \leq \widehat{Y}, \forall n \in \mathbb{N}$ et donc $Y \leq \widehat{Y}$ prouvant que Y est la solution minimale.

Bibliographie

- [1] Alibert ,J.J.,Bahlali ,K, (2001) , Genericity in deterministic and stovhastic differential equation .
 - In Séminaire de Probabilités XXXV (220-240). Spunger.
- [2] Jeanblanc, M. (2006). Cours de calcul stochastique .Master 2IF EVRY. Lecture

 Notes, University of Evry. Availabla at http://www.maths.univ-evry.fr/
 pages perso/jeanblanc.
- [3] Lamberton, D. (1991). Introduction au calcul stochastique appliqué à la finance.
- [4] Lepeltier, J.-P., and J. San Martin. (1997). Backward stochastic differential equations with continuous coefficient. Statistic. Probab. Letters 32:425–430.
- [5] Pardaux, E.Peng,S.(1994), Backward doubly stochastic differential equations and systems of quasilinear SPDE's, Probab.
 - Theory Related Fields 98 (1994), no. 2, 209–227.
- [6] Yufeng, S., & Kai, L. (2005). Comparaison Theorems of Bakward Doubly stochastic Differential Equations and Applications (pp.100(3)-108).

Annexe A: Abréviations et

Notations

Les différentes abréviations et notations utilisées tout au long de ce mémoire sont expliquées ci-dessous.

EDSR : Equation différentielle stochastique rétrograde.

EDDSR : Equation différentielle doublement stochastique rétrograde.

P.p.s : La notation presque sûrement pour la mesure de probabilité P.

 (Ω, \mathcal{F}, P) : Espace de probabilité.

 $\left(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P\right)$: Espace de probabilité filtré.

 \mathcal{N} : L'ensemble des négligeable.

 L^2 : L'espace de Hilbert.

 $\mathbf{B}(\mathbb{R}^d)$: La tribu borélienne sur \mathbb{R}^d .

E : L'espérance par rapport à la probabilité.

Var : La variance.

 $\mathcal{N}(0,t)$: La loi Gaussienne centré et de variance t.

au : Temps d'arrêt.

 $(\mathcal{B}^2, \|.\|_0)$: Espace de Banach.

v.a : Variable aléatoire.

Cov: Covariance.

p.s: Presque sûrement.