
Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Mohamed Khider - BISKRA
Faculty of Exact Sciences, Natural Sciences and Life

Computer Science Department

Order Number: GLSD2/M2/2019

Thesis
Presented to obtain the diploma of academic Master in

Computer Science
Option: Software Engineering and Distributed Systems

A Tool for Modeling and Simulating
High Level Petri Nets

By:
Merabti Samah

Defended the 07/07/2019, in front of the jury composed of:

Djaber Khaled MAA President

Kahloul Laid MCA Supervisor

Bendahmane Asma MAA Examiner

University Year: 2018/2019

Acknowledgements

Praise to ALLAH, the Compassionate, the Merciful. Peace and blessing on the Messenger
of Allah, Muhammad the prophet (Peace Be Upon Him). I wish to express my gratitude to
ALLAH for His blessing and inspiration leading me to finish this work.

My special thanks and appreciation to my supervisor Dr. Kahloul Laid for his continu-
ous encouragement, guidance and for his endless patience and precious advice.

I would like to express my deepest thanks to the members of the jury for reading and
evaluating my dissertation.

I never forget to thank all my teachers And my colleagues at Computer Science Department
especially amina and saouab .

Finally, my gratitude is deeply paid to my mother and my father, my sister and my
brother, and specially to my late dear friend ”imane” and to all my friends and members of
my family.

Abstract

The Reconfigurable Object Petri Nets (RONs) are formal models of High-Level modeling

for dynamic systems. In recent years, the model has been proposed and used for modeling

several reconfigurable systems ; however, it suffers like most high-level formalism from the

lack of implementation. There have been some attempts to provide tools to bridge this

gap. Nevertheless, the proposed tools are not effective, as they often contain bugs or simply

unavailable for developers. The objective of this project is to provide a tool to model, to

simulate and to verify the RON formalism.

Résumé

Les RdPs objets reconfigurables sont des modèles formels de haut niveau pour la modélisation

des systèmes dynamiques. Ce modèle proposé depuis quelques années a été utilisé pour la

modélisation de plusieurs systèmes reconfigurables, cependant il souffre comme la majorité

des formalismes de haut niveau du manque au niveau des implémentations. Il existe quelques

tentatives pour offrir des outils pour combler à ce manque, cependant les outils proposés

ne sont pas efficaces, contiennent souvent des bugs ou tout simplement indisponibles aux

développeurs. L’objectif de ce projet est de réaliser un outil pour modéliser, simuler et

vérifier le formalisme RONs.

Contents

Contents iii

list of tables iv

list of figures vi

Introduction vii

I State of the art 1

1 Low Level Petri Nets 3

Introduction . 3

1.1 Informal definition . 3

1.2 Formal definition . 3

1.3 Execution semantics . 4

1.3.1 Enabled transition . 4

1.3.2 Firing a transition . 5

1.4 Analysis . 6

1.4.1 Mathematical properties of Petri net 6

1.4.1.1 Examples of properties . 6

1.4.2 Dynamic analysis methods . 6

1.5 Petri Net models of key characteristics . 11

1.5.1 Parallel process . 11

1.5.2 Synchronisation . 12

1.5.3 Shared ressources . 12

1.5.4 Precedence relation . 12

Conclusion . 12

2 Reconfigurable Object Nets 14

Introduction . 14

2.1 Object Nets . 14

2.2 Reconfigurable Object Nets . 15

2.3 Transformation techniques . 16

2.4 Morphisms over P/T nets . 17

i

2.5 Union P/T nets as a pushout . 18

2.6 Rules and transformations . 19

2.7 Avaible tools . 20

2.7.1 Tina . 20

2.7.2 PIPE . 20

2.7.3 ReConNet . 20

Conclusion . 20

II A Tool for Reconfigurable Petri Nets 21

3 Analysis and Design 26

Introduction . 26

3.1 Analysis . 26

3.2 Design . 26

3.2.1 Global Design . 27

3.2.2 Detailed Design . 27

Conclusion . 31

4 Implementation 33

Introduction . 33

4.1 Development Tools and Languages . 33

4.1.1 Python programming language . 33

4.1.2 PyCharm Programming Editor . 33

4.1.3 Tool Kit Interface “Tkinter” Package 34

4.1.4 XML . 34

4.1.5 PNML . 34

4.1.6 Graphviz . 34

4.1.7 Document Preparation System LATEX 34

4.1.8 Typesetting Editor (TEX MAKER) 34

4.2 Implementation . 35

4.2.1 Application Home . 35

4.2.1.1 Menu Bar . 36

4.2.1.2 Tool Bar . 37

4.2.2 Application features . 37

4.2.2.1 P/T nets editor . 37

4.2.2.2 Morphism editor . 40

4.2.2.3 Pushout editor . 42

4.2.2.4 RON editor . 44

4.2.2.5 Reachability graph . 46

4.2.2.6 Test . 49

Conclusion . 52

Conclusion x

Bibliography xii

List of Tables

4.1 Software/Hardware versions . 35

iv

List of Figures

1.1 Petri Net example . 4

1.2 A Petri Net with an enabled Transition . 5

1.3 Firing a Transition . 5

1.4 Reachability tree of Petri nets . 8

1.5 Example 1 Petri net . 9

1.6 (a) The coverability tree of the net shown in Figure1.5.(b) The coverability

graph of the net shown in Figure1.5 . 10

1.7 Two Petri nets having the same coverability tree. (a) A live Petri net. (b) A

non-live Petri net [Mur89] . 10

1.8 The coverability tree for both Petri nets shown in Figure1.7(a) and (b)[Mur89]. 11

1.9 Petri Net specifying Parallel Process . 11

1.10 A Petri net specifying synchronization process 12

1.11 A Petri net specifying shared ressources . 12

1.12 A Petri Net specifying precedence relation 12

2.1 Example of a Fire transition . 16

2.2 Example of Transform transition . 16

2.3 Example of Morphism . 18

2.4 Pushout diagram [Kö18] . 19

2.5 Example of gluing [Kö18] . 19

2.6 Double pushout [Kah16] . 20

3.1 Global Architecture of the application . 27

3.2 Class Diagram (P/T nets) . 28

3.3 Class Diagram (Morphism) . 29

3.4 class Diagram (Rule) . 29

3.5 class Diagram (RON) . 30

3.6 class Diagram (Graph) . 31

4.1 Application Home . 36

4.2 Menu Bar . 37

4.3 Toolbar . 37

4.4 Exporting/Importing in Tina . 38

4.5 Petri net editor . 39

v

4.6 Petri net editor(simulation) . 39

4.7 Morphism editor . 40

4.8 Morphism editor verifying morphism valid 41

4.9 Verification if morphism strict . 41

4.10 Verification if morphism injectif . 42

4.11 Verification if morphism inclusif . 42

4.12 Pushout editor . 43

4.13 Pushout editor(enter the P/T nets) . 43

4.14 Pushout editor(enter the morphisms) . 44

4.15 RON editor(transform transition) . 44

4.16 RON editor(fire transition) . 45

4.17 RON editor(edit net place) . 45

4.18 RON editor(edit rule place) . 46

4.19 PN editing with our tool . 46

4.20 Reachability graph of PN . 47

4.21 PN editing with our tool . 47

4.22 Reachability graph of PN represented in Figure 4.22 47

4.23 PN shown in Figure 4.19 after making reachability graph 48

4.24 Reachability graph of PN . 48

4.25 gv file of reachability graph . 49

4.26 Petri net editing with our tool . 49

4.27 analyzing result . 52

Introduction

C
omputer, science is growing up since the last 50 years and one of it’s major branches is

the verification [K.J00]. The most objective of verification is to help the development

of systems reliably, to carry out verification, we first realize a model of the system that is

a mathematical presentation in which we reason, verify and check properties which interest

us. Formal modeling of a system can be used as a basis for simulating, analyzing and ensure

it’s good functioning. There is different systems to model like reconfigurable systems which

are systems with dynamic and open structure that can be changed or reconfigured instead of

being replaced. Such a model is realized with a formalism of modeling like Petri nets. There

are two classes of Petri nets :low level and high level Petri Nets. RONs is an extension of

high level Petri net which can model and specify reconfigurable systems.

There are tools that automate modeling and simulation of RONs but these are confronted

with bugs and shortcomings like lack of analysis. The goal of this work to realize a tool for

modeling, simulation and analysis of RONs.

This thesis starts with an introduction that presents the problem, then it is composed

of two parts, the first part focuses on the theoretic level(State of the art), the second part

shows our contribution in this work.

Part I is divided into two chapters:

chapter 1 Review some basic definitions describing Petri nets, their analysis and the

properties that can be modeled with this approach. Finally, it is realized that the low level

PNs are not sufficiently expressive and that a high-level extension will be needed to model

the systems that can be reconfigured.

chapter 2 In this chapter we will introduce an extension of high level PNs that allows

the modeling of transformation system and gives the basic concepts of Reconfigurable Object

Nets, and the introduce the steps followed to the appearance of this formalism.

Part II This part concentrates on the development of our tool for modeling, simulation

and analysis of High Level Petri Nets, it contains two chapters.

chapter 3 Illustrates the design of our application in the two levels (the global and the

detailed design)

vii

chapter 4 This chapter is the last chapter. it introduces the tools and techniques used

to develop this project and the tool realized by specifying its interface and its functionalities.

The thesis ends with a general conclusion that evaluates the result, and discuss some

perspectives of this work.

Part I

State of the art

1

Chapter 1:

Low Level Petri Nets

Chapter 1

Low Level Petri Nets

Introduction

Petri nets are a graphical and mathematical modeling tool applicable to many systems

[Mur89]. There are two classes of Petri nets: Low and High level Petri nets. Low level Petri

nets are used to represent systems in a simple way. They are called Place/Transition nets

(P/T nets) [Wol08]. P/T nets are a mathematical modeling language for the description of

distributed systems. In this chapter we will give a formal and informal definition of P/T net,

it’s execution semantics, the analysis of the properties of petri net and what can we model

with P/T nets.

1.1 Informal definition

A Petri net is a directed bipartite graph, in which the nodes represent places(i.e., con-

ditions, represented by circles) and transitions (i.e., events that may occur, represented by

bars). The directed arcs describe which places are pre- and/or post conditions for which

transitions (modeled by arrows).

1.2 Formal definition

The following is the formal definition of a Petri net [Mur89] [Rei85] [CL09].

Definition 1. A Petri net is a five-tuple:(P ,T ,A,W ,M0) where:

•P is a finite set of places

•T is a finite set of transitions

•A ⊆ (P × T) ∪ (T × P): is a set of arcs

•W : A→
{

1, 2, 3, . . .
}

: is a weight function

•M0 : P → z+ :is the initial marking

3

CHAPTER 1. LOW LEVEL PETRI NETS 4

Figure 1.1: Petri Net example

Definition 2. (Marking) The marking Mi of a place Pi ∈ P is a non-negative quantity

representing the number of tokens in the place Pi at a given state of the Petri net. The

marking of the Petri net is defined as the function:

M : P−→z+

that maps the set of places to the set of non-negative integers. It is also defined as a vector:

Mj = (m1,m2, . . . ,mn)

where: mi = Mj(pi) which represents the jth state of the net. Mj contains the marking of

all the places and the initial marking is denoted by M0.

Definition 3. (Incidence matrices)

Pre incidence matrix:

Pre(p, t) =

{
w(p, t), if p ∈◦t

0, otherwise

}

Post incidence matrix:

Post(p, t) =

{
w(t, p), if p ∈ t◦

0, otherwise

}

Incidence matrix

C = Post− Pre

1.3 Execution semantics

1.3.1 Enabled transition

A transition t is enabled (it may fire) in M if there are enough tokens in its input places ◦t

for the consumptions to be possible, it means that the number of tokens in input places of

transition t are greater or equal t◦ the weight of output arcs of places ◦t.

CHAPTER 1. LOW LEVEL PETRI NETS 5

Definition 4. Formally a transition t is enabled in M if:

∀p ∈◦ t : M(p) ≥ W (p, t)

where :

-M(p) is the marking of place p

-W (p, t):the weight of arc between t and its input place p

Figure 1.2: A Petri Net with an enabled Transition

1.3.2 Firing a transition

•Firing a transition t in a marking M consumes W (p, t) tokens from each of its input

places p, and produces W (t, p) tokens in each of its output places s.

-removing w(p, t) tokens from each p ∈◦ t
-adding w(t, p) tokens to each p ∈ t◦ where:

t◦: is the set of output places of t.

•Firing a transition leads to a new marking that enables another transitions.

Figure 1.3: Firing a Transition

Definition 5. Firing a transition t from a marking M to M ′ is formalized by:

∀(p)M ′(p) = M(p)− pre(p, t) + post(p, t)

CHAPTER 1. LOW LEVEL PETRI NETS 6

1.4 Analysis

One thing makes Petri net interesting is that they provide a balance between modeling

power and analyzability. The analysis of Petri nets consists in checking some properties on

the model. There are two methods of analysis: static analysis and dynamic analysis.

1.4.1 Mathematical properties of Petri net

Two types of properties are generally distinguished: the behavioral properties, related to a

Petri net marked initially, and structural properties related to a Petri net independently of

any initial marking [Mor02].

1.4.1.1 Examples of properties

Liveness: A transition t is said live if it can always be made enabled starting from any

reachable marking, i.e.,∀M ∈ R(M0), ∃ M’ ∈ R(M) such that M ′(t >

A Petri net is said live if all transitions are live.

Reversibility: A Petri net is said reversible if the initial marking remains reachable from

any reachable marking, i.e., M0 ∈ R(M),∀M ∈ R(M0)

Deadlock-free: A marking M is said a deadlock or dead marking if no transition is en-

abled at M .

A Petri net is said deadlock-free if it does not contain any deadlock.

Boundness: A Petri net P is k-bounded if there exists a positive integer k, such that for

every marking M and for every place p of P :

M(p) < k

Safety: A Petri net is safe if it is 1-bounded. [VAL78]

1.4.2 Dynamic analysis methods

The dynamic analysis of petri net may classified into the following: coverability(reachability)

tree/graph method.

CHAPTER 1. LOW LEVEL PETRI NETS 7

Definition 6. (Reachability tree:) The reachability tree, also called marking graph, of a

Petri net (N, M0) is a graph in which nodes corresponds to reachable markings from an

initial marking, arcs correpond to feasible transitions.

We use the Algorithm 1 below to draw reachability tree:

Algorithm 1 Reachability Tree

Algorithm ReachabilityTree Root←M0 while ∃t ∈ T : M0
t−→M do

Calculate M : M0
t−→M

Add M to tree nodes

Add (M0
t−→M to tree arcs)

ReachabilityTree(M0);

end

Definition7. (Reachability graph): If the reachability tree is infinite but the accessible

marking finite(loop case), it is necessary to draw reachability graph to hqve a finite repres-

entation. We use the Algorithm 2 below to draw reachability graph:

Algorithm 2 Reachability Graph

Algorithm ReachabilityGraph

Root←M0

while ∃t ∈ T : M0
t−→M do

if M /∈ to the set of nodes then
Add M to the set of nodes

Add (M
t−→M) to graph’s arcs

ReachabilityGraph(M);

else

Add (M
t−→M) to graph’s arcs

end

end

If this graph is calculable all properties becomes decidable

CHAPTER 1. LOW LEVEL PETRI NETS 8

Figure 1.4: Reachability tree of Petri nets

Definition 8. (Coverability tree): [Mur89] Given a Petri net (N,MO), from the initial

marking MO, we can obtain many “new” markings as the number of the enabled transitions.

From each new marking, we can again reach more markings. This process results in a tree

representation of the markings. Nodes represent markings generated from MO (the root)

and its successors, and each arc represents a transition firing, which transforms one marking

to another.

For bounded PN coverability tree is a reachability graph since it contains all possible

reachable markings.

The above tree representation, however, will grow infinitely large if the net is unbounded.

To keep the tree finite, we introduce a special symbol ′w′, which can be thought of as

”infinity.” It has the properties that for each integer n, w > n,w + n = wandw − n = w.

The coverability tree for a Petri net (N,M0) is constructed by the following algorithm:

1: Label the initial marking M0 as the root and tag it ”new”

2: While “new” markings exist, do the following:

2.1: Select a new marking

2.2: If M is identical to a marking on the path from the root to M, then tag M “old“ and

go to another new marking.

2.3: If no transitions are enabled at M , tag M ”dead-end”.

2.4: While there exist enabled transitions at M , do the following for each enabled transition

t at M :

2.4.1: Obtain the marking M ′ that results from firing t at M .

2.4.2: On the path from the root to M if there exists a marking M” such that M ′(p) ≥M”(p)

for each place p and M ′ 6= or 6= M”, i.e., M” is coverable, then replace M ′(p) by w for each

p such that M ′(p) > M”(p).

2.4.3: introduce M ′ as a node, draw an arc with label t from M to M ′, and tag M ′ “new.“

CHAPTER 1. LOW LEVEL PETRI NETS 9

Examples: Consider the net shown in the figure below :

Figure 1.5: Example 1 Petri net

For the initial marking MO = (1,0,0), the two transitions t1, and t3 are enabled. Firing t1,

transforms MO to M1 = (0,0,1), which is a “dead-end“ node, since no transitions are enabled

at M1. Now, firing t3 at MO results in M ′
3 = (1,1,0), which covers MO = (1,0,0).Therefore,

the new marking is M3= (1,w, O), where two transitions t1 and t3 are again enabled. Firing

t1 transforms M3 to M4 = (0 w 1), from which t2 can be fired, resulting in an “old” node

M5=M4. Firing t3 at M3 results in an “old” node M6=M3. Thus, we have the coverability

tree of Petri net in figure1.5 shown in figure1.6

CHAPTER 1. LOW LEVEL PETRI NETS 10

Figure 1.6: (a) The coverability tree of the net shown in Figure1.5.(b) The coverability graph
of the net shown in Figure1.5

Consider the two nets shown in the figure below :

Figure 1.7: Two Petri nets having the same coverability tree. (a) A live Petri net. (b) A

non-live Petri net [Mur89]

CHAPTER 1. LOW LEVEL PETRI NETS 11

The two different Petri nets shown in Figure1.7 (a) and (b) have the same coverability as

shown in Figure 1.8. The net shown in Figure1.7(a) is a live Petri net, while the net shown

in Figure1.7 (b) is not live since no transitions are enabled after firing t1,t2, and t3.

Figure 1.8: The coverability tree for both Petri nets shown in Figure1.7(a) and (b)[Mur89].

1.5 Petri Net models of key characteristics

Due to P/T net we can model: parallel process, Synchronisation, Shared ressources, Preced-

ence relation... [CL09]

1.5.1 Parallel process

It represents the possibility that many processes are evolving together within the same

system.

Figure 1.9: Petri Net specifying Parallel Process

CHAPTER 1. LOW LEVEL PETRI NETS 12

1.5.2 Synchronisation

Synchronize the operations of two or more processes.

Figure 1.10: A Petri net specifying synchronization process

1.5.3 Shared ressources

Within the same system serval processes share the same resource.

Figure 1.11: A Petri net specifying shared ressources

1.5.4 Precedence relation

Represent the precedence relation between activities in the same system.

Figure 1.12: A Petri Net specifying precedence relation

Conclusion

Petri nets are well known low-level formalism very limited for modelling and verifying

distributed and concurrent systems. The major drawback of low level Petri nets formalism is

their inability to represent complex data which influences the behavior of the system, because

it can model and specify only systems with discrete events systems with less expressivity,

CHAPTER 1. LOW LEVEL PETRI NETS 13

but it does not offer a direct way to address some modeling issues like dynamic changes.

This interest will be the aim of the next chapter 2 when we will present a particular class of

high level Petri nets which can specify systems with dynamic and changeable structure.

Chapter 2

Reconfigurable Object Nets

Chapter 2

Reconfigurable Object Nets

Introduction

The evolution in software and hardware systems from classical systems with rigid struc-

tures to open, dynamic, and flexible structures has inspired the extension of Petri nets to

reconfiguration. The idea of reconfiguring Petri nets was launched in the early nineties and

since then has been developed by several researchers at different levels of formalization.

Researchers in this field have achieved a large amount of theoretical results and practical

applications.As we know petri nets (which presented in chapter 1) are a formalisms to

model, analyze, simulate, control and evaluate the behavior of distributed and concurrent

systems [Wol08], but this formalism does not offer a direct way to model reconfigurable

systems, then we have to use an extension of petri nets called reconfigurable petri nets

(RONs). Reconfigurable petri nets are proposed to make a very frequent changes in the

model itself, there are many variants of reconfigurable PNs, and in this part we will focus on

reconfigurable object nets (RONs or RdPORs in French). RONs are high-level nets with two

types of tokens: object nets (place/transition nets) and net transformation rules (a dedicated

type of graph transformation rules).

This chapter is composed of two parts: a first theoretical part which begin by defining

the concept of net objects (also called net within nets), then introduce the concept of graph

transformation applied to the PNs, a second part which mentions some avaible tools that

were proposed for the simulation of these high level formalisms.

2.1 Object Nets

Tokens in a Petri net place can be interpreted as objects. Object nets or Nets-Within-Nets

[Val04] are well suited for the modelling of distributed systems under the particular aspects

14

CHAPTER 2. RECONFIGURABLE OBJECT NETS 15

of: hierarchy1, mobility2, encapsulation3 with Petri nets, the Nets-Within-Nets paradigm

provides an innovative modelling technique by giving tokens themselves the structure of

a Petri net. These nets, called token nets or object nets, also support the object oriented

modelling technique. In Nets-Within-Nets, one can distinguish between two levels in the Net:

the system level and the token level. Tokens are two kinds: token-net and ordinary-token .

In system level places can contain tokens in form of P/T nets it called token Net, and in

token level places contains tokens as ordinary tokens like in(chapter 1). In many applications

objects not only belong to a specific environment but are also able to switch to a different one,

and this what made the nets-within-nets very useful for modeling interesting applications in

many domains as in the field of mobile agents [PBM06] [Pad08].

2.2 Reconfigurable Object Nets

Reconfigurable object nets [Bie08] are high level Petri nets and a type of reconfigurable nets

which enriched Petri nets with the concepts of orientation, encapsulation and reconfiguration.

RONs4 have two types of tokens: net and rule tokens. In RON not only the follower marking

can changed but also the structure can be changed by rule application to obtain a new P/T

net. Net places are a P/T nets which can move from a place to another place in the system,

where it can change its marking and structure also, rule places are production by double

pushout rules and it will never be changed or move in the system it just uses by transform

transition to made changes in the token net, and rules are based on a partial morphism

between left-hand and right-hand side of the rule. Transitions in the system level decide

about the movement of token-net from one place to another. These transitions decide if

the marking or the structure of a token-net must be changed. To change the marking of

a token-net, the transition in the system level triggers a transition in the token-net level.

However, to change the structure of a token-net, a transition, in the system level requires

a token-rule. The token-rule decides how the structure of the token-net must be changed

when some transition, in the system level is fired. In RONs, reconfiguration of the structure

concerns only the token-net and not the system level. This reconfiguration is defined by a

set of token rules, based on the graph transformation techniques.

The two examples in the figures below explain the difference between fire and transform

transition. The figure 2.1 explain the fire transition where in token-net1 (Token level ”a P/T

net ”) the transition T1 is enabled, so the fire Transition in the system level will fired T0 and

provide the same object with new marking of Token-net1

1dividing the net into a number of sub-nets to break down the complexity of a large model.
2The object net moved inside the system
3encapsulation consists of masking the details of the implementation of an object, by defining an interface.
4Reconfigurable Object Nets.

CHAPTER 2. RECONFIGURABLE OBJECT NETS 16

Figure 2.1: Example of a Fire transition

Figure 2.2 explain the Transform transition where Token-net1 (in token level ”P/T net”)

in place P0 corresponds to token-rule1 in place P1, so the Transform transition in system

level will transform the token-net1 according to token-rule1 and provide a new Token-net in

place P2 with different structure.

Figure 2.2: Example of Transform transition

2.3 Transformation techniques

Transformation techniques [Kö18] are inspired from graph transformation of two basic

constructions: union and transformation on Place/Transition nets (P/T nets). The union

construction takes two Nets N1 and N2 and yields another net N3, but the transformation

CHAPTER 2. RECONFIGURABLE OBJECT NETS 17

construction takes one P/T net N1 and yields another net N2. These two constructions are

the two basic reconfigurable techniques for P/T nets. Union and transformation are based

on morphism concept defined over P/T nets.

Definition 6.(Graph)

A graph G is a tuple G = (V,E, s, t, l), where:

•V is a set of nodes,

•E is a set of edges,

•s: E −→V is the source function

•t: E −→ V is the target function

•l: E −→ V is the labelling function

Given a graph G, we denote its components by V G,EG, sG, tG, lG Given an edge e ∈ EG,

the nodes sG(e), tG(e) are called incident to e.

Central notion in graph rewriting5 is a graph morphism. Just as a function is a mapping

from a set to another set, a graph morphism is a mapping from a graph to a graph. It maps

nodes to nodes and edges to edges, while preserving the structure of a graph. This means

that if an edge is mapped to an edge, there must be a mapping between the source and

target nodes of the two edges. Furthermore, labels must be preserved. Graph morphisms

are needed to identify the match of a left-hand side of a rule in a (potentially larger) host

graph. As we will see below, they are also required for other purposes, such as graph gluing

and graph transformation rules

Definition 6.(Graph transformation) A graph transformation system is a tuple G =

(G0, R) where:

– G0 is an initial graph or start graph

– R is a set of graph transformation rules.

2.4 Morphisms over P/T nets

Net morphisms are given as a pair of mappings for the places and the transitions preserving

the structure and the marking. Given two P/T nets:

N1(P1, T1, P re1, Post1,M1) and N2(P2, T2, P re2, Post2,M2), morphism f between the two

nets N1 and N2 is a function f : (N1 → N2). We have: f = (fP , fT), such that: fT (T1 → T2),

and fP (P1 → P2) are two morphisms which:

Map transitions into transition and places into places, respectively. fP and fT t satisfy:

(1) ∀ p′1 ∈ ot′ =⇒ ∃p1 ∈ ot : fP (p1) = p′1and ∀ p′1 ∈ t′o =⇒ ∃p1 ∈ to : fP (p1) = p′1

(2) fP (M1(p)) ≤ M2(fp(p))

5Graph transformation

CHAPTER 2. RECONFIGURABLE OBJECT NETS 18

The labels and the capacity need to remain the same when mapping one net to another.

Example(Morphism) In the example below we have two P/T nets PN1 with blue color

and PN2 in red color, T ′1 is the image of T1 and the source of T ′1 is P ′1 which is in PN2 the

image of P1 the source of T1 in PN1, also the target of T ′1 is P ′2 in PN2 which is the image

of P2 the target of T1 in PN1 .

Figure 2.3: Example of Morphism

2.5 Union P/T nets as a pushout

Based on the morphisms on P/T nets, it is possible to define a specific construction

which is the pushout (or union) of two P/T nets [KCD+14]. Let N1(P1, T1, P re1, Post1) and

N2(P2, T2, P re2, Post2) be two nets, with the two morphisms:

f : I → N1 and g : I → N2. The net I is said a common interface between N1 and N2.

The union of N1 and N2 is the Net N(P, T, Pre, Post) defined using the two morphisms:

f ′ : N1 → N and g′ : N2 → N . We write N = N1 + I N1. The operator +I is called the

pushout construction or the gluing (union) operator. [KCD+14]

CHAPTER 2. RECONFIGURABLE OBJECT NETS 19

Figure 2.4: Pushout diagram [Kö18]

Example Below (Figure 2.5), an example of a gluing6 construction.

Let the two graph morphisms:

ϕ1I → G1 and ϕ2 : I → G2 given, since the interface I is present in both graphs G1 and G2,

we can glue the two graphs together to construct a graph G1 + IG2.

Figure 2.5: Example of gluing [Kö18]

2.6 Rules and transformations

Based on the P/T gluing construction, the P/T transformation is constructed as a DPO 7.

Let L,K,R and C be four P/T nets. A transformation f : N1 → N2 transforms the P/T

net N1 to the P/T net N2 using the rule r = (L,K,R) and the match m : L → N1 and we

write f = (r,m), below in(Figure 2.6) an example of double pushout, k1, k2,m, c, and n are

morphisms. The P/T net C is called the context of transformation.[Kah16].

6Union
7Double pushout

CHAPTER 2. RECONFIGURABLE OBJECT NETS 20

Figure 2.6: Double pushout [Kah16]

2.7 Avaible tools

2.7.1 Tina
Tina (TIme petri Net Analyzer)is a toolbox for the editing and analysis of Petri

Nets, with possibly inhibitor and read arcs, Time Petri Nets, with possibly pri-

orities and stopwatches, and an extension of Time Petri Nets with data handling

called Time Transition Systems. TINA has been developed in the OLC, then

VerTICS, research groups of LAAS/CNRS [thpb].

2.7.2 PIPE
PIPE(Platfome Independent Petri net Editor)is an open source, platform in-

dependent tool for creating and analysing Petri nets including Generalised

Stochastic Petri nets. Petri nets are a popular way for modelling concurrency

and synchronisation in distributed systems.

PIPE2 began life in 2002/3 as an MSc. Group Project at the Department of Computing,

Imperial College London called ”The Platform Independent Petri net Editor PIPE” [thpa].

2.7.3 ReConNet
ReConNet(ReCongurable Net)is a visual editor for the Reconfigurable Petri net,

it was implemented on Java 6 by ten students from the year 2010 and nine stu-

dents In 2011, these students were working with the Double-Pushout approach

but with another construction technique called Cospan where the left side and

the right side of the rule are integrated in the interface (L K R). The ReConNet

tool has been developed to model and simulate the reconfigurable networks is

handled appropriately [Mar12].

Conclusion

This chapter introduced the new extension of high level Petri nets, which is Reconfigur-

able Object Nets(RONs), that can modify their own structures by rewriting some of their

components, so that it can model and specify the dynamic of the reconfigurable systems. IT

gives some basic concepts to finally give the complete definition RONs.

In the next chapter we will use RONs to develop a tool that can model and specify

reconfigurable nets and explain the different steps to realise this tool.

Part II

A Tool for Reconfigurable Petri Nets

21

Chapter 3

Analysis & Design

Chapter 3

Analysis and Design

Introduction

After having learned the necessary theoretical points, we specify the aim of our project

which is to realize a tool for the modeling, simulation and analysis of the RONs, we pass to

the application development.

This chapter is composed of three sections. The first section of analysis specify our needs.

In the second section, the global design is raised, in which we show an abstract solution that

satisfied our needs and specifies functionalities of the tool we are trying to achieve. The

third part present the detailed design in which we detail our solution with UML1 diagrams.

3.1 Analysis

As we see in the first part, the reconfiguration can make systems more complex and impose

new kinds of errors and anomalies, so we need a sophisticated verification process to ensure

reliability of these systems.

Knowing that there is some tools to model, analyze and simulate these kind of systems

but stills limit, complex, not suitable neither sufficient and specially a lack of analysis.

For this reason we decided to develop a tool which can model, simulate and analyze the

reconfigurable systems more easy than others with reconfigurable object nets(Rons) already

presented in (chapter 2 part I).

3.2 Design

After studying the project aims, we have to identify the global architecture of the applic-

ation, the set functionalities, and the relation between them in a detailed way.

1The Unified Modeling Language is a general-purpose, developmental, modeling language in the field of
software engineering, that is intended to provide a standard way to visualize the design of a system.

26

CHAPTER 3. ANALYSIS AND DESIGN 27

3.2.1 Global Design

Figure 3.1 illustrates the global architecture of the application in the figure below .

Figure 3.1: Global Architecture of the application

According to the global design, the user can create and edit Petri nets graphically, and at

the same time these graphs will be automatically transformed into data structures (.pnml2,

.mml3, .poml4, .xml5) in order to store it and import it in other tools or on the same tool

and import files with these extentions from other tools also when he wants. The user can

also analyze,simulate and display the data structure with the same tool or by using other

tools like PIPE, TINA.

3.2.2 Detailed Design

In order to release our application, we used object oriented method for the design and

modeling of the different modules of our system for more expressivity and details we introduce

some class diagrams with UML.

2Petri Nets Markup Language
3Morphisms Markup Language
4Pushouts Markup Language
5Extensible Markup Language

CHAPTER 3. ANALYSIS AND DESIGN 28

Figure 3.2: Class Diagram (P/T nets)

The figure 3.2 shows the main classes that are needed to make a P/T net, The Class

PN represent the P/T net model it contains all the necessary attributes which needed to

define a P/T net, a list of places object, a list of transitions objects and a list of arcs

objects with the necessary operations that needed to model the Petri net, addition and

remove of different components.The Place class contains the two positions PosX and PosY

which indicate where the object will be drawn, a reference on a oval object (a graphical

object that represent a place), a list of inArcs and outArcs plus the main methods to add

or remove in and out arcs.The same with Transition class except the reference is on a

rectangle object. The Arc Class represent the the link between two objects place-transition

or transition-place it contains the following attribute: PosX1, PosY1, PosX2 and PosY2

represent the graphical position of the line, source object(Place/Transition), and the target

object (Place/Transition).

CHAPTER 3. ANALYSIS AND DESIGN 29

Figure 3.3: Class Diagram (Morphism)

The previous figure 3.3 shows the main classes that are needed to edit morphisms over P/T

nets, Morphism class contains two objects of class PN and list of object of class ArcMorphism.

Figure 3.4: class Diagram (Rule)

The previous figure 3.4 shows the main classes needed for creation a Pushout, a Double-

Pushout and a production rule p = (L,K,R). The Pushout class contains four attributes

that represent morphisms (class Morphism defined in the previous figure3.3) and the neces-

sary methods for adding, deletion, verification, export and import under file (.PNML). The

Double-Pushout class contains two attributes that represent two pushouts as well as adding,

CHAPTER 3. ANALYSIS AND DESIGN 30

deleting, importing and exporting under file (.dpml) methods. The Rule class contains two

objects of the Morphism class, three objects of PN class with adding, deleting, and verifying

methods.

Figure 3.5: class Diagram (RON)

The previous figure 3.5 contains the principle class which we needed to create and edit

Reconfigurable object nets, it contain Ron class which compose of list of places which can

be an object of class NetPlace or RulePlace, list of transitions which can be an object of

class Fire or Transform transition and list of arcs with some methods add and delete place,

transition and arc, import and export files, simulation and analysis. NetPlace class contain

a list of object from the class PN, RulePlace class contain a list of object from the class

Rule.

CHAPTER 3. ANALYSIS AND DESIGN 31

Figure 3.6: class Diagram (Graph)

The previous figure 3.6 contain the primary classe to create a reachability graph of a petri

net. Graph class contain a list of arcs, nodes and marking states. Node class contains two

object of class arc and a reference to a oval object(graphic object that represents a node).

Arc class contains two object of class node source and target nodes.

Conclusion

In this chapter, we have presented analysis that has directed us to design our tool. Then,

we passed to the conception phase which is divided in two steps (global conception, and the

detailed conception). The first step illustrates a global design of our application. The second

step presented a detailed description of the coding/decoding techniques of process plan to

move to the next stage.

The next steps of the project are an implementation of the proposed design, testing and

discussing some experimental results. These steps will be the aim of the next chapter4 which

is the last chapter.

Chapter 4

Implementation

Chapter 4

Implementation

Introduction

After analysis and design steps that are mentioned in the previous chapter (chapter 3),

we have to pass to the next steps of the project, which are coding and test. These phases

aim to implement a tool for modeling and simulation of reconfigurable object nets.

This chapter includes two sections. The first section introduces briefly the development

tools and languages that we have learned and exploit them in the realisation of our project.

The second section presents the main implementation results of our final application.

4.1 Development Tools and Languages

In this section, we present different tools and languages, that help us during the realisation

of our project in the two levels (programming level, and theoretical level).

4.1.1 Python programming language

Python is an intelligent programming language that we have used it in the

implementation of our application. It is easy to learn, because it is flexible,

and its syntax doesn’t hard to learn. A Python program is short than other

languages’ programs, because of the availability of many implemented func-

tions. Python is an open source and untyped programming language. It is

available for all these operating system (Windows, LINUX, Mac OS).

4.1.2 PyCharm Programming Editor

PyCharm is an open source Integrated Development Environment (IDE),

used for python programming. It is a powerful coding assistant, it can high-

light errors and introduces quick fixes based on an integrated Python debug-

ger. It is a suitable editor for writing and testing many lines of code and

classes, since it offers a structural project view, and a quick files navigation.

33

CHAPTER 4. IMPLEMENTATION 34

4.1.3 Tool Kit Interface “Tkinter” Package

Tool Kit Interface in short “Tkinter” [?], it is an open source Graphical User

Interface (GUI) package. It is intended for Python programming language.

We have preferred the Tkinter toolkit for developing GUIs of our application,

because it is simple to learn it , and it is a powerful toolkit. It is available on

both operating systems (Windows, Linux, and Mac OS).

4.1.4 XML

(Extensible Markup Languge)XML is a file extension for an Extensible Markup Language

(XML) file format used to create common information formats and share both the format and

the data on the World Wide Web, intranets, and elsewhere using standard ASCII text. We

used this language to store our files (P / T, Morphisms, Rules, Pushout, Double-Pushouts,

RON, Reachability Graphs) from our tool.

4.1.5 PNML

(Petri Net Markup Language) PNML is a proposal of an XML-based interchange format

for Petri nets. Originally, the PNML was intended to serve as a file format for the Java

version of the Petri Net Kernel . But, it turned out that currently several other groups are

developing an XML-based interchange format too. So, the PNML is only one contribution

to the ongoing discussion and to the standardization efforts of an XML-based format.

4.1.6 Graphviz

(for Graph Visualization Software) is a package of open-source tools initiated

by ATT Labs Research for drawing graphs specified in DOT language scripts.

It also provides libraries for software applications to use the tools. Graphviz

is free software licensed under the Eclipse Public License.

4.1.7 Document Preparation System LATEX

LATEX [1] is a powerful and flexible typesetting system for producing high quality technical

and scientific papers. It based on the tags language. It follows the design philosophy of

separating presentation from content, thus authors focus on what they are writing, not on

what is displayed, because the appearance is handled by LATEX. The appearance incl+udes

many aspects, document structure (part, chapter, section, ..etc), figures, cross-references

and bibliographies. It is more familiar to a computer programmer, because it follows the

code-compile-execute cycle.

4.1.8 Typesetting Editor (TEX MAKER)

TEX MAKER [?] is a free and open source editor for drafting papers, based

on LATEX system. It supports a powerful spell-checker, code auto-completion,

and a pdf displayer. We have used TEX MAKER to draft our report and

make our presentation, because it produces high quality papers and talks.

CHAPTER 4. IMPLEMENTATION 35

4.2 Implementation

Moreover mentioned above (section 1.4), we used the oriented object programming (OOP)

paradigm to implement our tool, and using a set of software and hardware which are sum-

marized in the following table 4.1.

Software/Hardware Version

OS Microsoft Windows 10 Home, 64bits

CPU Intel(R) Pentium(R) CPU 3525U@1.90GHz

RAM 4.00Go

Python Interpreter 3.5.0

PyCharm 2018.3.3

Tkinter 8.6

Table 4.1: Software/Hardware versions

4.2.1 Application Home

After having followed several stages of development, we have implemented a graphical

tool that allows to model, simulate and verify Reconfigable Petri nets using Double-Pushout

approach. This tool is not only for the RONs but it also allows the modeling and simulation

of the low level petri nets (P / T nets). It allows the editing and the verification of the

different properties and conditions of morphisms, Pushouts and DoublePushouts, as well as

the ability to export them to XML files with a specific grammar we’ve proposed to which

extensions have been given (.MML, .PML, DPML). The tool has been designed to be easy

to use with simple interface (see Figure 4.1). It consists of a menu bar, a toolbar, a drawing

area with scrollbars and a status bar. A menu bar contains the different publishers that

can operate independently of each other. The options for a new creation are: New P / T

Net, New Morphism, New Pushout, New Double Pushout and New RON. The options for

opening files (also called import) are: Open a P / T net, Open a morphism, Open a Pushout,

Open a Double-Pushout, Open a RON.

Figure 4.1 depicts our final application.

CHAPTER 4. IMPLEMENTATION 36

Figure 4.1: Application Home

4.2.1.1 Menu Bar

We developed many GUIs (Graphical User Interface) to facilitate the use of the application.

The application contains a menu bar with three menus (File, Edit and Help), the main menu

is the file menu.

We will give the description of the principle menu ”File menu”.Figure 4.2 illustrate file

menu and its commands.

File Menu:

File menu contains two sub menus: new and open menu. The sub menu new allows the user

to open new drawing area for Petri net, Morphism, Pushout, Double Pushout and RON. The

sub menu open allows user to recover his models for editing and simulation. If the user click

at the exporte1 label in the master menu, it’s allows to save their models, in their extensions

(.pnml, .pml, .dpml), but export2 allows to save P/T nets in the extention .pnml with two

new properties in transitions time and cost.

CHAPTER 4. IMPLEMENTATION 37

Figure 4.2: Menu Bar

4.2.1.2 Tool Bar

The toolbar in figure4.3, the button , used to draw places (P / T nets), the button ,

used to draw transition (P / T nets), the button , used to create arcs between places and

transition in the drawing low level net or RON, the button is used to drag the model of

petri net or reconfigurable object nets in the drawing area, delete button , is used to delete

a graphical object from the drawing area, run simulation button , use to run simulator; for

Petri net model; or Rons models, move button , used to drag or move the graphical object

in drawing area, the button , used to draw fire transition in the ron editor, the button

using to draw transform transition in the ron editor, the button used to draw rule-place

for ron, the button used to draw net-place in the drawing area of the ron editor. The

last four buttons run just in the drawing area of the RON,stop simulation button

Figure 4.3: Toolbar

4.2.2 Application features

Our tool consists of four modules: P/T net editor, Morphism editor, Pushout editor, Double-

Pushout editor that has been made independently. Below is the description of the features

of each editor.

4.2.2.1 P/T nets editor

This editor allows the creation and modification of a Petri net in the drawing area using the

toolbar. Eventually, the net P / T editor can generate a PNML code that can be exported

CHAPTER 4. IMPLEMENTATION 38

to other tools, or compiled and displayed as a P/T graph net.

Figure 4.4: Exporting/Importing in Tina

Figure 4.4 represent in the left side a P/T net editing with our tool and in the right side

the same model exported in PNML form and re-imported it in Tina tool.

With our tool we can always see the enabled transitions,in which if there is an enabled

transition, it will represented with green color but with Tina We noticed that it does not

be colored as To in PN shown in figure 4.4.In transition also we noticed that the is no

information with Tina tool while with our tool we can define the time and the cost.

CHAPTER 4. IMPLEMENTATION 39

Figure 4.5: Petri net editor

The P/T nets editor can also simulate P/T nets, the transition T0 and T2 in figure 4.5

are enabled, and in the figure4.6 shows the PN after firing the two transitions.

Figure 4.6: Petri net editor(simulation)

In figure 4.6 the two transitions T0 and T2 become not enabled while T5 become an

enabled transition. We can’t modify the PN only when the simulation is stopped by the

user by pressing in stop simulation button and back to the initial marking and reactive

the toolbar again.

CHAPTER 4. IMPLEMENTATION 40

4.2.2.2 Morphism editor

This tool allows to create, modify and verify morphism between two P/T nets, and generate

a mml code to export and re-import it other time.

Figure 4.7: Morphism editor

To create a morphism we need two P/T nets (the blue and yellow PNs) and then connect

them with arcs between nodes(place or transition) of the first P/T net with their images in

the second P/T net.The arcs with red color represent Fp function and whose with purple

color represent Ft function. The morphism editor allows to verify if the morphism is valid

or not and display a message which indicates why. The same thing with the verification if

is a injectif ,strict or inclusif morphism.Figure4.8 represent the verification if the morphism

is valid or not. As shown in figures 4.8 4.9

CHAPTER 4. IMPLEMENTATION 41

Figure 4.8: Morphism editor(verifying morphism valid)

The same thing with The verification of morphism inclusif, strict or injectif. As shown in

figure 4.9, 4.10, 4.11

Figure 4.9: Verification if morphism strict

CHAPTER 4. IMPLEMENTATION 42

Figure 4.10: Verification if morphism injectif

Figure 4.11: Verification if morphism inclusif

4.2.2.3 Pushout editor

This tool allows the construction of morphisms to give a pushout then generate a POML

code to export and re-import it in the tool.

CHAPTER 4. IMPLEMENTATION 43

Figure 4.12: Pushout editor

Figure 4.12 represent the creation of a new pushout. The user have to enter four morphisms

and P/T nets according to the schema by pressing in the blue text to add P/T net and in

the red text to add a morphism and it will be shown in other window(see figures 4.13, 4.14)

Figure 4.13: Pushout editor(enter the P/T nets)

CHAPTER 4. IMPLEMENTATION 44

Figure 4.14: Pushout editor(enter the morphisms)

4.2.2.4 RON editor

The tool can also create a high level Petri net, it has two type of places: Net Place with

black circle and Rule Place with red circle, and two types of transitions Fire transition with

black rectangle and transform transition with red rectangle.

Figure 4.15: RON editor(transform transition)

CHAPTER 4. IMPLEMENTATION 45

Figure 4.16: RON editor(fire transition)

Figure 4.17: RON editor(edit net place)

CHAPTER 4. IMPLEMENTATION 46

Figure 4.18: RON editor(edit rule place)

4.2.2.5 Reachability graph

The tool can also make the reachability graph of a Petri net where in contains of a set of

nodes which represent the makring of each state and a set of arcs connect between graph

nodes.

The reachability graph of the PN represented in Figure 4.19, 4.21 shown figures 4.20, 4.22re-

spectively.

Figure 4.19: PN editing with our tool

CHAPTER 4. IMPLEMENTATION 47

Figure 4.20: Reachability graph of PN in Figure 4.19

Figure 4.21: PN editing with our tool

Figure 4.22: Reachability graph of PN represented in Figure 4.21

CHAPTER 4. IMPLEMENTATION 48

Figure 4.23: PN shown in Figure 4.19 after making reachability graph

Figure 4.24: PN shown in Figure4.21 after making reachability graph

XML file of graph

After showing the reachability graph we can save in ih form xml.

<?xml version=” 1 .0 ” encoding=” utf−8”?>

<graph id=” a751fda4−971e−11e9−9685−9457a5e6b569”>

<Node id=” a751fda4−971e−11e9−9685−9457a5e6b569”>

<name>N0</name>

<Marking s t a t e> [1 , 0]</Marking s t a t e>

</Node>

<Node id=” a751fda4−971e−11e9−9685−9457a5e6b569”>

<name>N1</name>

<Marking s t a t e> [0 , 1]</Marking s t a t e>

</Node>

</graph>

Gv file of graph

After showing the reachability graph we can save it in gv form too.

CHAPTER 4. IMPLEMENTATION 49

Figure 4.25: gv file of reachability graph

4.2.2.6 Test

To test the analysis of P/T nets created with our tool, we start by modeling a P/T net

(see figure 4.26).

Figure 4.26: Petri net editing with our tool

The PN in previous figure 4.26 is exported as a file (.pnml) shown in the next xml files

one with time and cost in transition and the other without.

<?xml version=” 1 .0 ” encoding=” utf−8”?>

<pnml xmlns=” ht tp : //www. pnml . org / vers ion −2009/grammar/pnml”>

<net id=” aa6fcade−9509−11e9−8e38−9457a5e6b569” type=” ht tp : //

pipe2 . s o u r c e f o r g e . net /tpn”>

<name>

<t ex t>aa6fcade−9509−11e9−8e38−9457a5e6b569</ text>

</name>

<page id=” net 1 ”>

<p lace id=”ad64eed8−9509−11e9−b8c0−9457a5e6b569”>

<name>

<t ex t>P0</ text>

CHAPTER 4. IMPLEMENTATION 50

<graph i c s>

<o f f s e t x=”153” y=”22”/>

</ graph i c s>

</name>

< i n i t i a l M a r k i n g>

<t ex t>1</ text>

</ i n i t i a l M a r k i n g>

<graph i c s>

<p o s i t i o n x=”173” y=”42”/>

</ graph i c s>

</ p lace>

<t r a n s i t i o n id=”b1cb7870−9509−11e9−8bb9−9457a5e6b569”>

<name>

<t ex t>T0</ text>

<graph i c s>

<o f f s e t x=”155” y=”98”/>

</ graph i c s>

</name>

<graph i c s>

<p o s i t i o n x=”175” y=”118”/>

</ graph i c s>

</ t r a n s i t i o n>

<arc id=”b7744746−9509−11e9−aa90−9457a5e6b569”

source=”ad64eed8−9509−11e9−b8c0−9457a5e6b569”

t a r g e t=”b1cb7870−9509−11e9−8bb9−9457a5e6b569”/>

</page>

</ net>

</pnml>

<?xml version=” 1 .0 ” ?>

<pnml xmlns=” ht tp : //www. pnml . org / vers ion −2009/grammar/pnml”>

<net id=” aa6fcade−9509−11e9−8e38−9457a5e6b569” type=” ht tp : // pipe2

. s o u r c e f o r g e . net /tpn”>

<name>

<t ex t>aa6fcade−9509−11e9−8e38−9457a5e6b569</ text>

</name>

<page id=” net 1 ”>

<p lace id=”ad64eed8−9509−11e9−b8c0−9457a5e6b569”>

<name>

<t ex t>P0</ text>

<graph i c s>

CHAPTER 4. IMPLEMENTATION 51

<o f f s e t x=”153” y=”22”/>

</ graph i c s>

</name>

< i n i t i a l M a r k i n g>

<t ex t>1</ text>

</ i n i t i a l M a r k i n g>

<graph i c s>

<p o s i t i o n x=”173” y=”42”/>

</ graph i c s>

</ p lace>

<t r a n s i t i o n id=”b1cb7870−9509−11e9−8bb9−9457a5e6b569”>

<name>

<t ex t>T0</ text>

<graph i c s>

<o f f s e t x=”155” y=”98”/>

</ graph i c s>

</name>

<Time>

<t ex t>0</ text>

</Time>

<Cost>

<t ex t>0</ text>

</Cost>

<graph i c s>

<p o s i t i o n x=”175” y=”118”/>

</ graph i c s>

</ t r a n s i t i o n>

<arc id=”b7744746−9509−11e9−aa90−9457a5e6b569” source=”

ad64eed8−9509−11e9−b8c0−9457a5e6b569” t a r g e t=”

b1cb7870−9509−11e9−8bb9−9457a5e6b569”/>

</page>

</ net>

</pnml>

The first (.pnml) file (without time and cost) is analyzed with Tina tool.

CHAPTER 4. IMPLEMENTATION 52

Figure 4.27: analyzing result

Conclusion

In this chapter we have presented we have presented the tools that we have used to release

our application, then the results of our implementation as a set of graphical user interfaces

(GUIs) and the realisation steps of a tool. This tool allow to create and edit graphically P/T

nets, morphisms, pushout, double-pushout and Ron.Every module is created independently

of the others.Each module has it’s own structure to save it (pnml, poml, mml, dpml, roml).

This work can be improved by adding properties analysis.

Conclusion

In the last few years there has been a growing interest in reconfigurable systems (RSs), and

in order to be able to model this kind of systems, low level Petri nets have been developed

and known many new extentions.High level Petri Nets supply the ability to design these

systems and to analyse their properties with Reconfigurable Object Nets(RONs). RONs are

Petri net with two kind of tokens:token net and token rule.

The global objective, of our work, is to build a formal approach that can be used to specify,

simulate, and analyse reconfigurable systems. The approach uses the Reconfigurable Object

Nets (RONs) formalisms [EHMTH05] as a formal model. For this purpose we have presented

in this thesis a process of producing a tool for RONs.

During the project realisation, we have learned knowledges about:

1. High level Petri nets.

2. Exploitation of this knowledge to make a tool for RONs.

3. Python language programing.

As future work we intend to concentrate on addressing other questions which remain to

resolve, some of which are:

• complete the tool by adding other functionalities like analysis of RONs.

x

Bibliography

[1] TEXMAKER (2019). https://www.xm1math.net/texmaker/ on june 1 2019.

[Bie08] Modica T. Biermann, E. ” Independence analysis of firing and rule-based net

transformations in reconfigurable object nets”. Electronic Communications of

the EASST, 10:1–13, 2008.

[CL09] C. Cassandras and S. Lafortune. ” Introduction to Discrete Event Systems”.

Springer Science Business Media, 2009.

[EHMTH05] K. Ehrig H. Mossakowski T Hoffmann. High-level nets with nets and rules as

tokens. In International Conference on Application and Theory of Petri Nets.

Springer, Berlin, Heidelberg, pages 268–288, 2005.

[Kah16] Bourekkache S. Djouani K. Kahloul, L. ” Designing reconfigurable manufac-

turing systems using reconfigurable object Petri nets”. International Journal

of Computer Integrated Manufacturing,, 29(8):889–906, 2016.

[KCD+14] L Kahloul, A Chaoui, K Djouani, S Bourekkache, and O Kazar. ” Using high

level nets for the design of reconfigurable manufacturing systems”. in Z., Li

and M., Khalgui, ed., 1st International Workshop on Petri Nets for Adaptive

Discrete-Event Control Systems, 1161:1–19, 2014.

[K.J00] Rozenberg K.Jensen, G. Application and Theory of Petri Nets. International

series of monographs on physics. 2000.

[Kö18] Nolte D. Padberg J. Rensink A. König, B. ”A Tutorial on Graph Transform-

ation.In Graph Transformation, Specifications, and Nets ”. Springer, Cham.,

pages 83–104, 2018.

[Mar12] Hoffmann K. Gerhard O. Julia P Marvin, E. A tool for modeling and simu-

lating with reconfigurable place/transition nets. Hochschule fur Angewandte

Wissenschaften Hamburg, Gemany, 2012.

[Mor02] Yann Morère. ” Cours de réseaux de Petri”. 2002.

[Mur89] T Murata. ” Petri nets: Properties, analysis and applications”. Proceedings of

the IEEE, 77(4):541–580, 1989.

xi

[Pad08] Julia Padberg. ” Petri Net Transformations”. 2008.

[PBM06] K. Hoffmann P. Bottoni, F. De Rosa and M. Mecella. ” Applying Algebraic

Approaches for Modeling Workflows and their Transformations in Mobile Net-

works.Mobile Information Systems”. 2(1):51—76, 2006.

[Rei85] W. Reisig. ” Petri nets, An Introduction”. vol. 4 of EATCS: Monographs on

Theoretical Computer Science. Springer-Verlag, 1985.

[thpa] PIPE tool home page. http://pipe2.sourceforge.net. on 1 june 2019.

[thpb] TINA tool home page. http ://projects.laas.fr/tina. on 1 june 2019.

[VAL78] R. VALETTE. ” Analysis of Petri Nets by Stepwise Refinements ”. Lnborntoire

d’dutomatique et d’dnalyse des Systimes du Centre National de la Rechwche

,Scientifique,7, avenue du Colonel Roche, 31400 Toulouse, France, Received

August 22, 1977; revised May 26, 1978.

[Val04] R Valk. ” Object Petri Nets Using the Nets-within-Nets Paradigm. In : Jrg

Desel, Wolfgang Reisig, and G.R. (ed.) Advances in Petri Nets : Lectures

on Concurrency and Petri Nets”. Springer-Verlag, Berlin, Hei- delberg, New

York,USA, 3098:819–848, 2004.

[Wol08] Petri Carl Adam; Reisig Wolfgang. ”Petri net”. Scholarpedia, 3(4):6477, 2008.

	Contents
	list of tables
	list of figures
	Introduction
	I State of the art
	Low Level Petri Nets
	Introduction
	Informal definition
	Formal definition
	Execution semantics
	Enabled transition
	Firing a transition

	Analysis
	Mathematical properties of Petri net
	Examples of properties

	Dynamic analysis methods

	Petri Net models of key characteristics
	Parallel process
	Synchronisation
	Shared ressources
	Precedence relation

	Conclusion

	Reconfigurable Object Nets
	Introduction
	Object Nets
	Reconfigurable Object Nets
	Transformation techniques
	Morphisms over P/T nets
	Union P/T nets as a pushout
	Rules and transformations
	Avaible tools
	Tina
	PIPE
	ReConNet

	Conclusion

	II A Tool for Reconfigurable Petri Nets
	Analysis and Design
	Introduction
	Analysis
	Design
	Global Design
	Detailed Design

	Conclusion

	Implementation
	Introduction
	Development Tools and Languages
	Python programming language
	PyCharm Programming Editor
	Tool Kit Interface ``Tkinter'' Package
	XML
	PNML
	Graphviz
	Document Preparation System LaTeX
	Typesetting Editor (TeX MAKER)

	Implementation
	Application Home
	Menu Bar
	Tool Bar

	Application features
	P/T nets editor
	Morphism editor
	Pushout editor
	RON editor
	Reachability graph
	Test

	Conclusion

	Conclusion
	Bibliography

