
The People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University Mohamed khider – BISKRA

Faculty of Exact

Sciences and Sciences

of Nature and Life

Computer Science

department

Ordre :.

Serie :.

Project

Presented for the diploma of

Master in Computer Science

Option: Software Engineering and Distributed Systems

Title of Project :

Design and Implementation of a Graph
Transformation Engine

Presented in 06/07/2019

By Guerfi Maroua

Board of Examiners :

Mr. Bennaoui Hammadi Prof President

Mr. Guerrouf Fayçal MAA Supervisor

Mr. Kerdoudi Mohamed Lamine MCB Examiner

Abstract

Graphs are used in a wide range of computer science domain to express complex statuses

of systems. Graph transformation is used to model statuses changes of these systems.

There are many tools to transform graphs. These tools do not separate their graph

transformation engine from its graphical interface. This inhibits reuses their engine in

other software. The aim of our work is to develop a graph transformation engine easily

integrated into other software. Our engine follows the double pushout approach which is

an algebraic approach of graph transformation. To demonstrate the use of our work we

developed an application that uses the APIs and packages defined by our engine.

a

ACKNOWLEDGMENTS

I would first to thank ALLAH for giving me the strength, the audacity and, the endurance

to realize this work.

My special thanks and appreciation to my supervisor Mr.Guerrouf Fayçal for his

continuous encouragement, guidance and for his endless patience and precious advice.

Thank you very much.

I would like to express my deepest thanks to the members of the jury: Mr.Bennaoui

Hammadi and Mr.Kerdoudi Mohamed Lamine for reading and evaluating my dis-

sertation.

I never forget to thank all my teachers at the Computer Science Department at Biskra.

DEDICATION

First of all, I would like to thank Allah for having given me the strength to finish this

work.

I do offer my modest work to my parents, my brother and my sisters for their love,

moral support, and outstanding patience during this long journey. And also to all my

friends and classmates.

Lastly, I offer my regards and blessing to all those who supported me in one way or

another during the completion of this work.

Contents

Contents i

List of Figures iii

List of Tables iv

List of Algorithms v

List of Listings vi

General Introduction 1

1 Fundamentals of Graph Transformation 3

1.1 Introduction . 3

1.2 Graph Transformation . 3

1.3 Graph, Typed Graph, and Their Morphisms 4

1.3.1 Graph . 4

1.3.2 Graph Morphism . 5

1.3.3 Typed Graph . 6

1.3.4 Typed Graph Morphism . 7

1.4 Category . 8

1.5 Gluing Relation . 9

1.6 Pushout . 9

1.7 Graph Production . 10

1.8 Graph Match . 11

1.8.1 Constraint Satisfaction Problems 12

1.8.2 Graph Matching as a CSP . 13

1.9 Graph Transformation Systems . 14

1.9.1 graph transformation . 14

1.9.2 graph transformation system . 14

1.9.3 (Typed) graph grammar . 14

1.10 Construction of Graph Transformations . 15

i

1.10.1 Applicability of Productions . 15

1.10.2 gluing condition . 15

1.10.3 construction of direct (typed) graph transformations 16

1.11 Application Condition . 16

1.11.1 Application Condition . 16

1.11.2 Negative Application Condition . 17

1.11.3 application condition for a production 18

1.12 Related work . 18

1.12.1 Fujaba . 19

1.12.2 AGG . 19

1.12.3 VIATRA . 19

1.13 Conclusion . 19

2 System Design 20

2.1 Introduction . 20

2.2 Global Design . 20

2.2.1 Graph Grammar . 21

2.2.2 Graph Transformation . 22

2.3 Detailed Design . 23

2.3.1 Graph Grammar Class Diagram . 24

2.3.2 Direct graph transformation activity diagram 27

2.3.3 Non-deterministic Graph transformation activity diagram 27

2.3.4 Graph transformation by rule priority activity diagram 28

2.3.5 Find matches algorithm . 29

2.3.6 Check the applicability of rule algorithm 30

2.3.7 Double Pushout algorithm . 30

2.3.8 Conform Algorithm . 31

2.4 Conclusion . 31

3 Implementation 32

3.1 Introduction . 32

3.2 Development Tools and Languages . 32

3.2.1 Go programming language . 32

3.2.2 Visual Studio Code . 33

3.2.3 JavaScript Object Notation . 33

3.3 Implementation . 33

3.3.1 Data Structure . 34

3.3.2 Functions . 36

3.3.3 Usage of the APIs . 37

3.4 Conclusion . 39

ii

4 Use Case: Implementing A Graph Transformation Tool 40

4.1 Introduction . 40

4.2 REST architecture . 40

4.3 Global Design . 42

4.3.1 Front-end . 42

4.3.2 Back-end . 43

4.4 Detailed Design . 43

4.4.1 The sequence diagram of Single rule application 43

4.4.2 The sequence diagram of rule set application 44

4.4.3 List of APIs offered by the REST server 46

4.5 Example of Application . 48

4.6 Conclusion . 52

General Conclusion 53

iii

List of Figures

1.1 Rule-based modification of graphs[16, 6] 4

1.2 Graph [16, 6] . 4

1.3 Example of Graph . 5

1.4 Graph Morphism[16, 6] . 5

1.5 Example of Graph Morphism . 6

1.6 Example of Typed Graph . 7

1.7 Typed Graph Morphism . 7

1.8 Example of Typed Graph Morphism . 8

1.9 Pushout Diagram [16, 6] . 9

1.10 Example of pushout . 10

1.11 Example of Graph Production . 11

1.12 Example of Graph Match . 12

1.13 double pushout diagram . 14

1.14 Graph grammar example . 15

1.15 Applicability of productions . 15

1.16 Application condition . 17

1.17 Negative Application condition . 17

1.18 Negative application condition for a production example 18

2.1 Global architecture of the application . 21

2.2 Graph grammar use case diagram . 22

2.3 Graph transformation use case diagram . 23

2.4 Graph grammar class diagram . 26

2.5 Direct graph transformation activity diagram 27

2.6 Non-deterministic Graph transformation activity diagram 28

2.7 Graph transformation by rile priority activity diagram 29

4.1 Graph transformation tools global architecture 42

4.2 Sequence diagram of Single rule application 44

4.3 Sequence diagram of the graph transformation sequence 45

4.4 The sequence diagram of conform . 46

iv

List of Tables

1.1 Conditions for when to establish a constraint between two variables xi, xk

[14] . 13

4.1 List of APIs offered by the REST server 46

v

List of Algorithms

1 Find matches algorithm . 30

2 Check rule applicability algorithm . 30

3 Double pushout algorithm . 31

4 Conform Algorithm . 31

vi

List of Listings

1 Graph Grammar data structure . 34

2 Type graph data structure . 35

3 Typed graph data structure . 35

4 Rule data structure . 36

5 Morphism data structure . 36

6 Double Pushout Function . 37

7 Conform Function . 37

8 Usage of function IsValidMatch exemple 38

9 Usage of function Conform exemple . 39

10 Example of a JSON Response of requesting list of available graph grammars 48

11 Example of JSON response for requesting information about a specific

graph grammar . 49

12 Example of JSON response for requesting a list of graphs 49

13 Example of JSON response for requesting information about a specific graph 50

14 Example of JSON response for equesting list of nodes of a specific graph . 50

15 Example of JSON response for equesting list of arcs of a specific graph . . 51

16 Example of JSON response of requesting list of rules 51

17 Example of JSON response of requesting list of rules 52

18 Example of JSON response of applying a specific rule on a specific graph . 52

vii

General Introduction

In model-driven development (MDD), model transformation is used to save effort and

reduce errors of modifications of models by applying these modifications automatically.

The transformation is performed via a transformation engine, Usually, this later takes

as input one model and provides one model as output. The model transformation is

called either endogenous if the input and output models expressed in the same language,

or Exogenous if the input and output models expressed using different languages. It

specifies the meta-model to which a model must conform for specifying which models are

acceptable as input and if appropriate what models it may produce as an output.

Graph transformation is an approach of model transformation. Its main idea is the

rule-based modification of graphs. Graph transformation rules have an LHS and an RHS

graph. The LHS is matched in the graph which will be transformed and replaced by the

RHS. Each application of a graph rule leads to a graph transformation step. Moreover,

graphs can be used to model the states of all kinds of systems, and the state changes in

these systems are modeled by graph transformation.

There are several approaches to graph transformation, The algebraic approach [16] is

one of them. It is based on the notions of category theory. This last is used to represent

the graph transformation rules and rule application, and it helps to represent complex

states at a high level of abstraction. An advantage of this approach is that a great part

of the algebraic graph transformation theory is applicable to graphs, typed graphs, and

attributed graphs.

There are many tools implement the concepts of graph transformation such as AGG

[17], PROGRES [15], Fujaba [8], and VIATRA [2]. Every one of them offers various

facilities such as editing graphs and rules, and different analysis techniques, etc. Their

primary functionality is graph transformation, Therefore they came embedded with a

graph transformation engine.

Unfortunately, this integration with the graphical interface makes it impossible or very

hard to reuse these engines in other system.

To overcome this problem we propose in this project a new graph transformation

engine. Our engine is designed to be reused independently from any other components.

It is a library that defines and expose various APIs structured in different packages. These

APIs allow us to manipulate and command the various operation needed to perform graph

1

transformation. Furthermore, our engine is implemented using Go programming language

(a fast and easy language to learn designed by google).

Our engine implements Graph transformation following the double pushout approach

[4]. It can transform (typed) graphs using rules. The application of rules is restricted to

injective graph morphism. It supports two types of graph transformation:

• Non-deterministic: chooses randomly the rule to be applied.

• By rule priority: the rule with the elevated priority is applied first.

The remainder of this dissertation is organized as follows:

In the first chapter, we introduce all the basics and fundamentals concepts used in our

project and illustrate some of them through simple examples such as graph transformation

approaches, graphs, typed graphs, morphisms, graph match.

In the second chapter, we present the design of our engine. It is mainly two modules:

1. Graph Grammar: represent the structural part or a graph grammar and the oper-

ation related to it.

2. Graph Transformation: represent the operation that could be conducted on the

graphs.

In the third chapter, we detail the implementation of our engine. We start by in-

troducing the development tools and languages used. Then, we present its main data

structures and functions defined in our system. lastly, we explain the usage of the APIs

provided by our engine.

In the fourth chapter, we demonstrate how our engine is used as a library. Finally, we

conclude this graduation note with a general conclusion.

2

Chapter 1

Fundamentals of Graph

Transformation

1.1 Introduction

A wide range of fields in computer science and other areas of science and engineering use

graphs to explain complex states of their systems and use graph transformation to model

state changes of these systems [16]. The double pushout approach to graph transformation

is an algebraic approach. It is one of the well-known approaches to graph transforma-

tion. It uses notions of category theory to describe graph transformation rules and rule

application. The advantage of category theory is the high-level abstraction description of

complex situations [1].

In this first chapter, we present definitions related to graph transformation and illus-

trate them with some examples.

1.2 Graph Transformation

Graph transformation is a formal approach for structural modifications of graphs via

the application of transformation rules. A graph rule, also called production p = (L,

R), consists of a left-hand side graph L, a right-hand side graph R, and a mechanism

specifying how to replace L by R as shown schematically in figure 1.1 [6].

3

1.3 Graph, Typed Graph, and Their Morphisms Chapter 1

L R

P=(L,R)

Figure 1.1: Rule-based modification of graphs[16, 6]

There are several approaches to describe Graph Transformation (GT), differing on the

kinds of graphs that are used and how rules and their application are defined, which are :

1. Node label replacement approach.

2. Hyperedge replacement approach.

3. Algebraic approach.

4. Logical approach.

5. Theory of 2-structures.

6. Programmed graph replacement approach.

In our project, we focus on the algebraic approach more precisely the double pushout

approach. The interested reader is referred to [13] for more detail about other

approaches.

1.3 Graph, Typed Graph, and Their Morphisms

Because graph transformations operate on graphs, we need to clarify what graphs. We

consider directed graphs, Parallel edges and loops are allowed.

1.3.1 Graph

Conceptually, a graph is formed by nodes (or vertices) and edges connecting the nodes.

Formally,a graph H = (V,E, s, t) consists of a set V of nodes, a set E of edges, and two

functions s, t : E → V mapping to each edge its source and target node.[16, 6]

E V

src

dst

Figure 1.2: Graph [16, 6]

4

1.3 Graph, Typed Graph, and Their Morphisms Chapter 1

Example

The graph H = (V,E, s, t), with node set V = {a, b, c, d}, edge set E = {u, v}, source

function s : E → V : u, v → a and target function t : E → V : u, v → b, is visualized in

the following (figure 1.3):

Figure 1.3: Example of Graph

1.3.2 Graph Morphism

Given graphs H and G, a graph morphism f : H → G, f = (fV , fE), consists of two

functions fV : VH → VG, fE : EH → EG that preserve the source and target functions, i.e.

sG ◦ fE = fV ◦ sH and tG ◦ fE = fV ◦ tH .[16, 6]

EH

EG

VH

VG

srcH

dstH

fE fV

srcG

distG

Figure 1.4: Graph Morphism[16, 6]

A graph morphism f is injective (or surjective) if both functions fV , fE are injective

(or surjective, respectively); f is called isomorphic if it is bijective, which means both

injective and surjective [16, 6].

Given two graph morphisms f = (fV , fE) : G1 → G2 and g = (gV , gE) : G2 → G3 the

composition g ◦ f = (gV ◦ fV , gE ◦ fE) : G1 → G3 is again a graph morphism [16, 6].

5

1.3 Graph, Typed Graph, and Their Morphisms Chapter 1

Example

Given graphs H = (VH , EH , sH , tH) and G = (VG, EG, sG, tG), a graph morphism f : H →
G, as we show in figure 1.5 the morphism f map nodes as follow :

fV : a→ i; b→ j; c→ k.

Figure 1.5: Example of Graph Morphism

1.3.3 Typed Graph

A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are called

the vertex and the edge type alphabets, respectively [16].

A tuple (G, type) of a graph G together with a graph morphism type : G→ TG is called

a typed graph [16, 6].

Example

Consider the following type graph TG = (VTG, ETG, sTG, tTG) with VTG = {x, y}, ETG =

{e}, sTG : ETG → v : e → x, and ETG = {e}, tTG : ETG → v : e → y, and consider also

the graph H = (VH , EH , sH , tH), with node set VH = {a, b, c, d}, edge set EH = {u, v},
source function sH : EH → VH : u, v → a and target function tH : EH → VH : u, v → b.

The graph H and the morphism type = (typeV , typeE) : H → TG with typeV : VS →
VT : a, c → x; b, d → y and typeE : EH → ETG : u, v → e, is then a typed graph (typed

over TG).

6

1.3 Graph, Typed Graph, and Their Morphisms Chapter 1

Figure 1.6: Example of Typed Graph

1.3.4 Typed Graph Morphism

Given typed graphs H and G, a typed graph morphism f : H → G is a graph morphism

f : H → G such that type1 = type2 ◦ f .[16, 6]

TG

H G

type1

f

type2

Figure 1.7: Typed Graph Morphism

Example

Given typed graphs (H, type1), (G, type2), And type graph TG. The typed graph mor-

phism f : H → G is depicted in figure 1.8 by dashed yellow arrows.

7

1.4 Category Chapter 1

Figure 1.8: Example of Typed Graph Morphism

1.4 Category

A category is a mathematical structure that has objects and morphisms, with a compo-

sition operation on the morphisms and an identity morphism for each object.

Formally, a category C = (ObC ,MorC , ◦, id) is defined by [16, 6]:

• a class ObC of objects;

• for each pair of objects A,B ∈ ObC , a set MorC(A,B) of morphisms;

• for all objects A,B,C ∈ ObC a composition operation ◦(A,B,C) : MorC(B,C) ×
MorC(A,B) → MorC(A,C); and

• for each object A ∈ ObC , an identity morphism idA ∈MorC(A,A);

such that the following conditions hold:

1. Associativity:For all objects A,B,C,D ∈ ObC and morphisms f : A→ B, g : B →
C and h : C → D, it holds that (h ◦ g) ◦ f = h ◦ (g ◦ f).

2. Identity: For all objects A,B ∈ ObC and morphisms f : A → B,it holds that

f ◦ idA = f and idB ◦ f = f = f

It is important to note that graphs and graph morphisms define the category Graphs.

Also, typed graphs and typed graph morphisms define the category GraphTG.

8

1.5 Gluing Relation Chapter 1

1.5 Gluing Relation

A gluing relation ≡ in a Graph G in pair of equivalence relations ≡= (≡E⊆ GE×GE,≡V⊆
GV ×GV) such that te following compatibility condition are satisfied [10]:

1. They identify only objects of the same lable :

v1 ≡V v2 ⇒ nG(v1) = nG(v2)

e1 ≡E e2 ⇒ aG(e1) = aG(e2)

2. Tow edge are only idetified if thier source and target are identified :

e1 ≡E e1 ⇒ sG(e1) ≡ sG(e2) ∧ tG(e1) ≡ tG(e2)

1.6 Pushout

In the algebraic approach to graph transformation, the concept of pushout is used to

describe the glue graphs together along to a common sub-graph.

Given a category C = (ObC ,MorC , ◦, id)morphisms, objects A,B,C ∈ ObC , and

morphisms f : A → B and g : A → C ∈ MorC , a pushout (D, f ′, g′) over f and g is

defined by [16, 6]:

• a pushout object D and

• morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f

such that the following universal property is fulfilled: for all objects X with morphisms

h : B → X and k : C → X with k ◦ f , there is a unique morphism x : D → X such that

x ◦ g′ = h and x ◦ f ′ = k :

A B

C D

X

f

g g′

f ′

h

k

x

Figure 1.9: Pushout Diagram [16, 6]

9

1.7 Graph Production Chapter 1

It is important to note that the pushout object D is unique up to isomorphism ,and

the composition and decomposition of pushouts result again in a pushout.

Example

Given graphs A = (VA, EA, sA, tA), B = (VB, EB, sB, tB), C = (VC , EC , sC , tC). Let the

category Graph = (ObGraph,MorGraph, ◦, id), objects A,B,C ∈ ObGraph, and morphisms

f : A → B and g : A → C ∈ MorGraph, a pushout (D, f ′, g′) over f and g is defined

by the pushout object D ∈ ObGraph and morphisms f ′ : C → D and g′ : B → D with

f ′ ◦ g = g′ ◦ f

Figure 1.10: Example of pushout

1.7 Graph Production

A (typed) graph production also called rewriting rule (rule, for short) p = L
l←− K

r−→ R

consists of (typed) graphs L, K, and R, called the left hand side, gluing graph(or interface

graph), and the right-hand side respectively, and two (typed) total graph morphisms

l : K → L and r : K → R [10, 16].

All nodes and edges in L that are not in the image of l are called obsolete. Similarly,

all nodes and edges in R that are not in the image of r are called fresh [9].

10

1.8 Graph Match Chapter 1

Example

The rule r = L
l←− K

r−→ R (see figure 1.11) consists of:

• The graph L = (VL, EL, sL, tL), with node set VL = {a, b}, edge set EL = {u},
source function sL : EL → VL : u→ a and target function tL : EL → VL : u→ b.

• The graph R = (VR, ER, sR, tR), with node set VR = {a, b}, edge set ER = {v},
source function sR : ER → VR : v → a and target function tR : ER → VR : v → b.

• The graph K = (VK , EK , sK , tK), with node set VK = {a, b}, edge set EK = ∅.

• The graph morphism l : K → L is represented by dashed red arrows.

• The graph morphism r : K → R is represented by dashed blue arrows.

The obsolete element in graph r is the edge u, and the fresh element is the edge v.

Figure 1.11: Example of Graph Production

1.8 Graph Match

In order to apply a rule r = L→ R on a graph H, we need to identify the match of rule’s

left side graph L into the graph H. To do so, the match is identified by the (total) graph

morphism m = L → H. The match m is used to define nodes and edges of graph H

which shall be delete and another one which should be kept after the application of the

rule p.

Example We consider the graph H and the graph rule p presented in figure 1.3 and figure

1.11 respectively.

the match of rule’s left side graph L into the graph H is identified by the (total) graph

morphism m : L→ H which depicted by dashed green arrows in figure 1.12

11

1.8 Graph Match Chapter 1

Figure 1.12: Example of Graph Match

There are several techniques to find a graph into another such as constraint satisfaction

problem (CSP) [14], Nauty algorithm [11], Backtracking algorithm [18], VF2 algorithm

[3]. In our project we use constraint satisfaction problem (CSP) to find the graph maching.

1.8.1 Constraint Satisfaction Problems

A constraint satisfaction problems (CSP) consists of[14]:

• a finite set of variables X = {x1, ..., xn},

• a finite and discrete domain Di of possible values for every variable xi ∈ X, and

• a finite set R of constraints on the variables of X.

In the following we will define some concepts related to CSP.

Constraint [14]:

A constraint CS on a tuple of variables S = (x1, ..., xr) is a relation on these variables’

domains: CS ⊆ D1 × ...×Dr.

The number r of variables a constraint is defined upon is called arity of the constraint.

Instantiation of Variables [14]:

LetX = {x1, ..., xn} be a set of variables with their respective domains Di, i ∈ {1, ..., n}.

12

1.8 Graph Match Chapter 1

Then any n-tuple Γ = (a1, ..., an), ai ∈ Di denotes an instantiation of each variable xi

with the corresponding value ai. We also write Γ(xi) = ai for the value of xi under an

instantiation Γ.

Satisfied Constraint [14]:

A constraint CS on a tuple of variables S = (x1, ..., xr) is satisfied by an instantiation Γ

if (Γ(x1), ...,Γ(xr)) ∈ CS.

Solution of a CSP [14]:

An instantiation Γ is a solution of a CSP if it satisfies all the constraints of the problem.

1.8.2 Graph Matching as a CSP

Given two graphs L = (LV , LE, LL, sL, tL, lL) and G = (GV , GE, LG, sG, tG, lG).

In the following the main steps to obtain an equivalent CSP for a given graph matching

problem [14]:

• take the objects of the graph to be matched as the CSP’s set of variables:

X = LV ∪ LE = {x1, ..., xn}, n = |X|

• take the objects of the graph to be matched into as the variables’ domain:

Di =

{
GV , whenxi ∈ LV

GE, otherwise
, i ∈ {1, ..., n}.

• find a proper translation of the restrictions that apply to a graph morphism into a

set of constraints:

The constraint set R is built according to table 1.1 whenever a condition listed in the

left column of the table holds for a given pair of variables (xi, xk), the corresponding

constraint is to be included in R.

Condition ←→ Constraint ∈ R
xi = xk Ctype

xi
= {d ∈ Di | lL(xi) = lG(d)}

xi ∈ LE, xk ∈ LV , sL(xi) = xk Csrc
xi,xk

= {(di, dk) ∈ Di ×Dk | sG(di) = dk}
xi ∈ LE, xk ∈ LV , tL(xi) = xk Ctar

xi,xk
= {(di, dk) ∈ Di ×Dk | sG(di) = dk}

Table 1.1: Conditions for when to establish a constraint between two variables xi, xk [14]

13

1.9 Graph Transformation Systems Chapter 1

H

L K

G

R

D H

(1) (2)

l r

m k n

f ′ g

Figure 1.13: double pushout diagram

1.9 Graph Transformation Systems

1.9.1 graph transformation

Given a (typed) graph production p = L
l←− K

r−→ R and a (typed) graph G with a (typed)

graph morphism m = L → G, called the match, a direct (typed) graph transformation

G⇒p,m H from G to a (typed) graph H is given by the following double-pushout (DPO)

diagram, where (1) and (2) are pushouts [16].

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct (typed) graph transformations is called a

(typed) graph transformation and is denoted by G0
∗

=⇒ Gn For n=0 , we have the identical

(typed) graph transformation G0
id
=⇒ G0

1.9.2 graph transformation system

A typed graph transformation system GST = (TG, P) consists of a type graph TG and

a set of typed graph productions P.[16]

1.9.3 (Typed) graph grammar

A (typed) graph grammar GG = (GTS, S) consists of GTS and start graph S [16].

The generated language L of GG consists of all graphs G that are derivable from the

initial graph S via successive application of the rules in P . The (typed) graph language

L of GG is defined by

L = {G | ∃(typed) graph transformation system S ⇒∗ G}

Example

The figure 1.14 illustrates an example of graph grammar GG=(P,S). This grammar con-

sists of the start graph S and rules P . The start graph consists of a single node x.

Rules p = {Newnode, Setrelation,Removerelation}. The rule Newnode adds new node

14

1.10 Construction of Graph Transformations Chapter 1

x. The rule Setrelation generates a new edge y between two existing nodes. The rule

Removerelation removes an edge y exists between two existing nodes.

Figure 1.14: Graph grammar example

1.10 Construction of Graph Transformations

1.10.1 Applicability of Productions

A (typed) graph production p = L
l←− K

r−→ R is applicable to a (typed) graph G via the

match m if there exists a context graph D such that (1) is a pushout [16].

L K R

G D

(1)

l r

m k

f

Figure 1.15: Applicability of productions

1.10.2 gluing condition

Given a (typed) graph production p = L
l←− K

r−→ R ,a (typed) graph G, and a match

m : L→ G with X = (VX , EX , sX , tX) for all X = {L,K,R,G},we can state the following

definitions[16]:

• The gluing points GP are those nodes and edges in L that are not deleted by p, i.e.

GP = lV (VK) ∪ lE (EK) = l (K)

15

1.11 Application Condition Chapter 1

• The identification points IP are those nodes and edges in L that are identified by m,

i.e. IP = {v ∈ VL | ∃w ∈ VL, w 6= v : mV (v) = mV (w)} ∪ {e ∈ EL | ∃f ∈ EL, f 6=
e : mE(e) = mE(f)}

• The dangling points DP are those nodes in L whose images under m are the source

or target of an edge in G that does not belong to m(L), i.e. DP = { v ∈ VL | ∃ e ∈
EG \mE(EL) : sG (e) = mV (v) or tG (e) = mV (v) } .

p and m satisfy the gluing condition if all identification points and all dangling

points are also gluing points, i.e.IP ∪DP ⊆ GP

In is important to note that for a (typed) graph production p =
(
L

l←− K
r−→ R

)
, a

(typed) graph G, and a match m : L → G , the context graph D with the PO (1) exists

if and only if the gluing condition is satisfied.

1.10.3 construction of direct (typed) graph transformations

Given a (typed) graph production p = L
l←− K

r−→ R and a match m : L → G such that

p is applicable to a (typed) graph G via m, the direct (typed) graph transformation can

be constructed in two steps[6]:

1. Delete those nodes and edges in G that are reached by the match m, but keep the

image of K, i.e. D = (G \m (l (K))). More precisely, construct the context graph

D and pushout (1) such that G = L +K D.

2. Add those nodes and edges that are newly created in R, i.e. H = D](R \ r (K)),where

the disjoint union] is used to make sure that we add the elements of R \ r (K) as

new elements. More precisely, construct the pushout (2) of D and R via K such

that H = R +K D.

1.11 Application Condition

Application conditions, similarly to the gluing condition, allow us to restrict the applica-

tion of productions. Now we introduce application conditions for a match m : L → G,

where L is the left-hand side of a (typed) graph production p. The idea is that the

production cannot be applied at m if m violates the application condition.

1.11.1 Application Condition

An atomic application condition over a (typed) graph L is of the form P (x,∧i∈Ixi) where

x : L→ G and xi : X → Ci with i ∈ I for some index set I are (typed) graph morphisms.

An application condition over L is a Boolean formula over atomic application condi-

tions over L. This means that true and every atomic application condition are application

16

1.11 Application Condition Chapter 1

conditions, and, for application conditions acc and acci with i ∈ I, ¬acc, ∧i∈Iacci, and

∨i∈Iacci are application conditions.

L X Ci

G

x f

= =

m p
qi

Figure 1.16: Application condition

A (typed) graph morphism m : L→ G satisfies an application condition acc, written

m � acc, if

• acc = true;

• acc = P (x,∨i∈Ixi)and, for all injective (typed) graph morphisms p : X → G with

p◦x = m there exists an i ∈ I and an injective (typed) graph morphism qi : Ci → G

with qi ◦ xi = p;

• acc = ¬acc′ and m does not satisfy acc′;

• acc = ∧i∈Iacci and m satisfies all acci with i ∈ I ;

• acc = ∨i∈Iacci and m satisfies some acci with i ∈ I .

1.11.2 Negative Application Condition

A simple negative application condition is of the form NAC(x), where x : L → X is a

(typed) graph morphism . A (typed) graph morphism. m : L → G satisfiesNAC(x) if

there does not exist an injective (typed) graph morphism p : X → G with p ◦ x = m[16].

L X

G

+

x

m
p

Figure 1.17: Negative Application condition

17

1.12 Related work Chapter 1

1.11.3 application condition for a production

Given a (typed) graph production p = (L
l←− K

r−→ R), and an application condition A(p)

for p over L.

A direct (typed) graph transformation G
p,m−−→ H satisfies the application condition

A(p) if m � AL .

Example We consider the graph H and the rule r and the match m : L→ H present in

the figure1.12.

Let NAC(x) be a negative application condition for the production r,, the morphism

x : Y → x presented be purple dashed arrows.

The rule r is not applicable into the graph H because exists an injective morphism

p : L→ H presented by yellow dashed arrows in the figure 1.18.

Figure 1.18: Negative application condition for a production example

1.12 Related work

There are many graph transformation tools that are available for many different purposes.

In this section, we describe some of them briefly.

18

1.13 Conclusion Chapter 1

1.12.1 Fujaba

The Fujaba [8] [12] environment aims to provide round-trip engineering support for UML

and Java. The main distinction to other UML tools is its tight integration of UML class

and behavior diagrams to a visual programming language.

1.12.2 AGG

AGG [17]is a general development environment for algebraic graph transformation sys-

tems. Its special power comes from a very flexible attribution concept. AGG graphs are

allowed to be attributed by any kind of Java objects.

1.12.3 VIATRA

The VIATRA (VIsual Automated model TRAnsformations) [5] framework is a transformation-

based verification and validation environment for improving the quality of systems de-

signed within the Unified Modeling Language by automatically checking consistency,

completeness, and dependability requirement.

1.13 Conclusion

In this chapter, we defined the main concepts related to graph transformation used in our

project such as the concept of category, graphs, typed graph and, graph production.

In the next chapter, we will present the design of our system. We will see how these

theoretical concepts are transformed into components and modules.

19

Chapter 2

System Design

2.1 Introduction

The objective of this project is the creation of a graph transformation engine by imple-

menting the Double-Pushout approach which is one of the most well-known approaches

to graph transformation.

In the current chapter, we present the design of our engine. In the first section, we

provide an overall view of our project, in which we give the general architecture as a

diagram of the different inter-connected element of the system. In the second section,

we present the detailed design of our engine. We start by modeling the static part by

the class diagram. Then, we describe the dynamic part by using the activity diagram.

Finally, we present the most important algorithms we implemented in our system.

2.2 Global Design

As illustrated in figure 2.1, our system can be seen as two main components. These latter

allow as to cover the modeling part represented by the module Graph Grammar and the

action of transformation part represented by the module Graph Transformation.

In the following, we explain each part of our system, its utility, and its provided

functions.

20

2.2 Global Design Chapter 2

Figure 2.1: Global architecture of the application

2.2.1 Graph Grammar

This module is used to model a graph grammars, this later can be used to generate graph

languages similar to Chomsky grammars in formal language theory. a graph grammar

consists of a type graph, a start graph and a set of graph rules. A graph is used to model

the states of systems. A rule is used to describe the way how to transform graphs. The

start graph and Graph rules are taken as input in the next step.

Hereinafter, we will illustrate in figure 2.2 the various functions offered by this module

using “UML use case diagram“. These functions are used to create and manipulate graph

grammars.

The important actions offered by this module are:

• Create graph grammar: this action creates new graph grammar;

• Create type graph: this action creates new type graph;

• Create graph: this action creates new typed graph;

• Create rule: this action creates new rule;

• Add rule: this action adds to the graph grammar a new rule;

• Add graph: this action adds to the graph grammar a new typed graph;

• Remove graph: this action removes a specific graph from the listed graphs;

• Remove rule: this action removes a specific rule from the listed rules;

21

2.2 Global Design Chapter 2

• Select graph: this action chooses a graph from the listed graphs;

• Select rule: this action chooses a rule from the listed rules;

• Check the type graph level: this action checks if the level of the type graph is

respected or not by a typed graph.

Figure 2.2: Graph grammar use case diagram

2.2.2 Graph Transformation

Graph transformation is used to model state changes in systems. This module presents

the action of transformation of graphs. It takes as input a start graph and a set of rules

and generates the resulting graph from the start graph. This transformation is based on

the application of The set of rules, that describes the transformation of elements from the

start graph to elements in the resulting graph. The application of a single rule is called

a direct graph transformation and the application of a set of rules is a sequence of direct

graph transformation, and it called graph transformation as we see in chapter 1 section

1.9.1. The application of a single rule or a set of rules leads to the resulting graph, These

later is taken as input in graph grammar.

Hereinafter, we illustrate in figure 2.3 the various functions offered by this module

using “UML use case diagram“.

22

2.3 Detailed Design Chapter 2

Graph transformation is the application of a set of rules on a graph. It has two

kinds, the first is graph transformation non-deterministic that chosen randomly rules to

be applied, and the second is graph transformation by rules priority that chosen by priority

the rules to be applied. It includes direct graph transformation that is an application of

one rule on a graph by applying the double pushout.

The important actions provided by this module are:

• Direct graph transformation: this action applies one rule on a graph by applying

the double pushout.

• Graph transformation by priority: this action applies a set of rule. The rule

with the elevated priority is applied first.

• Graph transformation non-deterministic: this action applies a set of rules. It

chooses randomly the rule to be applied.

Figure 2.3: Graph transformation use case diagram

2.3 Detailed Design

In this section, we specify the important part of our engine. To do so, we have used

UML (Unified Modeling Language) class diagram that shows the structural components

of the graph grammar. And we have also used activity diagrams that show the dynamic

aspect of graph transformation. We also present the various algorithms that we have to

be implemented in order to release our engine.

23

2.3 Detailed Design Chapter 2

2.3.1 Graph Grammar Class Diagram

The figure 2.4 shows graph grammar class diagram. In this diagram, most of the classes

have a unique identifier and name. In the following we will explain each class:

• GraphGrammar: this class is the main class in our diagram. It contains an array

of rules, a start graph that is an instance of TypedGraph class, and finally, a type

graph.

• TypedGraph: this class is an important class, each graph is an instance of this

class. It contains tow arrays the first of nodes and the second of arcs, that tow lasts

are an instance of classes TypedNode and TypedArc respectively. Any instance of

this class must conform to the type graph.

• TypedNode: this class has an attribute called type that is an instance of the class

TypeNode. The instance of this class represents a node in a typed graph.

• TypeArc: this class has the type that is an instance of the class TypeArc. And

it has also the attributes source and destination which are instances of the class

TypedNode. the instance of this class represents an arc in a typed graph.

• TypeGraph: This class contains tow arrays the first of nodes and the second of

arcs, that tow lasts are instances of classes TypeGraphNode and TypeGraphArc

respectively. The current class has the attribute types that is an instance of the

class TypeSet. The last attributes represent a set of types, which can be used to

assign a type to the nodes and edges of a graph. This class has also the attribute

typeGraphLevel that used to check if the type graph is respected by typed graphs,

this attribute can take the following values:

– Disabled : means disable the type graph.

– Enabled : means enable type graph and no multiplicity.

– EnabledMin: means enable type graph and min multiplicity.

– EnabledMax : means enable type graph and max multiplicity.

– EnabledMaxMin: means enable type graph and max and min multiplicity.

• TypeGraphNode: this class has an attribute called type that is an instance of the

class TypeNode, and It has also the attribute multiplicity that is an instance of the

class Multiplicity. An instance of this class represents a node in a type graph.

• TypeGraphArc: this class has an attribute called type that is an instance of the

class TypeArc. And it has attributes source and destination which are instances of

the class TypeGraphNode. And it has also the attributes sourceMult and destina-

tion that are instances of the class Multiplicity. The attribute sourceMult represent

24

2.3 Detailed Design Chapter 2

the number of nodes, those nodes have a specific type and they are allowed to be the

source of an arc has a specific type. And the attributes destinationMult represent

the number of nodes, those nodes have a specific type and they are allowed to be

the destination of an arc has a specific type. An instance of this class represents an

arc in a type graph.

• Multiplicity: this class has two integer attributes called min, max. those attributes

represent the minimal and the maximal values of the multiplicity

• TypeSet: this class contains two arrays TypeNodeSet and TypeArcSet that are

instances of classes TypeNode and TypeArc respectively. An instance of this class

represents a set of types defined by a type graph, the set of types used to assign

a type to graph nodes and edge. The typing itself is done by a graph morphism

between the graph and the type graph (see section 1.3.3).

• TypeArc: The class has a unique identifier a name, it used to represent the type

of arcs.

• TypeNode: The class has a unique identifier, a name. it is used to represent the

type of nodes.

• Rule: this class has an attribute called priority, and it contains LHS, RHS, and

morphism. LHS and RHS are instances of the class TypedGraph but morphism is

an instance of the class Morphism. LHS and RHS represent the right and the left

graph of the rule respectively.

• Morphism: this class is used to represents the morphism between two graphs.

This class has attributes domain and co-domain that are instances of the class

TypedGraph, And it contains two arrays nodeMapSet and ArcMapSet that are

instances of the classes ModeMap and ArcMap respectively.

• NodeMap: this class is used to represents the mapping between two nodes, this

class has attributes called original and image that are instances of the class TypedNode.

• ArcMap: this class is used to represents the mapping between two arcs, this class

has attributes called original and image that are instances of the class TypedArc.

25

2.3 Detailed Design Chapter 2

Figure 2.4: Graph grammar class diagram

26

2.3 Detailed Design Chapter 2

2.3.2 Direct graph transformation activity diagram

The figure 2.5 shows the direct graph transformation activity diagram.That is the appli-

cation of a rule r=(L,R) on a graph G.

We start by checking the applicability of rule on the host graph. Than if the rule is

applicable, we apply the double pushout, else we stop.

1. find all matches of rule’s left graph L in the host graph G.

2. check if rule has matches in the graph G,

3. If no more match go to the step7, else go to the next step.

4. choose randomly one match to apply the rule.

5. Check the application condition of a rule into the chosen match. If It is satisfied go

to the next step, else go to the step 2.

6. Apply the rule r into the host graph G. then go to the step 7

7. Finish.

Figure 2.5: Direct graph transformation activity diagram

2.3.3 Non-deterministic Graph transformation activity diagram

he figure 2.6 shows the activity diagram of non-deterministic Graph transformation.

27

2.3 Detailed Design Chapter 2

The non deterministic graph transformation is a kind of graph transformation based

on choosing randomly the rule which we will be applied. In the following the main steps

for applying the non-deterministic graph transformation:

1. check if the rule set is not empty;

2. if the rule set is empty, we stop.

3. choose randomly from the set of rules the rule that will be applied;

4. apply the direct graph transformation by applying the selected rule on a graph;

5. if the the direct graph transformation was not applied than remove the chosen rule

from the set of rule the go to the step 1;

6. if the direct graph transformation applied then reset all rules by restoring all the

remove rules and go to the step 3.

Figure 2.6: Non-deterministic Graph transformation activity diagram

2.3.4 Graph transformation by rule priority activity diagram

The figure 2.7 shows the graph transformation by rule priority activity diagram.

Graph transformation by rule priority is a kind of graph transformation we apply the

rule with the elevated priority first, such that when rules have the same priority we choose

randomly the rule to be applied.

28

2.3 Detailed Design Chapter 2

Figure 2.7: Graph transformation by rile priority activity diagram

2.3.5 Find matches algorithm

To find the graph match (see 1.8) of a rule’ left graph in a host graph we use a technique

called constraint satisfaction problems (see 1.8.1). To do so, we follow the next steps:

1. tack nodes and arcs of the left graph of a rule as to disjoint domains.

2. tack element of the host graph as variables and assign to each variable its suitable

domain.

3. tack constrains that used to restrict

4. gets a set of constraint correspond to variable.

5. solve the CSP to find the list of all matches.

29

2.3 Detailed Design Chapter 2

Algorithm 1 Find matches algorithm

1: \\ GN is a Domain which contains all nodes of LHS
2: GN ← Domain nodes(rule’s left graph)
3: \\ GE is a Domain which contains all arcs of LHS
4: GE ← Domain Arcs(rule’s left graph)
5: \\ vars is an array of variables
6: vars ← Variables(host Graph, GN, GE)
7: constraints ← Constraints(vars)
8: \\ is an array which contains the matches of the LHS into the host graph.
9: solutions = Solve(vars, constraints)

2.3.6 Check the applicability of rule algorithm

According to figure 2.5, checking the applicability of a rule is necessary to apply the

double pushout, to say that a rule is applicable it must satisfy two application condition.

the first condition is the dandling condition, and the second is the negative application

condition.

The algorithm 2 shows Check rule applicability algorithm. that returns true if the

specified rule is satisfied the dangling 1.10.2 and the negative application conditions 1.11.2

at the specified graph by the specified matching, returns false otherwise.

Algorithm 2 Check rule applicability algorithm

1: \\ IsDandlingConditionSatisfied returns true if the dangling condition is satisfied,
returns false otherwise

2: isDandlingSatisfied←IsDandlingConditionSatisfied(rule, hostGraph, match)
3: \\ IsNACsSatisfied returns true if all negative application conditions are satisfied,

returns false otherwise
4: is NACsSatisfied←IsNACsSatisfied(rule, hostGraph ,match)
5: if isDandlingSatisfied ∧ NACsSatisfied then
6: return true
7: end if
8: return false

2.3.7 Double Pushout algorithm

Applying a double pushout consists of applying two pushouts which are pushout1 and

pushout2. The pushout1 is used to construct the context graph by deleting the absolute

elements(the absolute elements are the elements exist in the left graph of a rule that do

not exist in the right graph of this rule). The pushout2 is used to construct the resulting

graph by adding the fresh elements (the fresh elements are the elements exist in the right

graph of a rule that do not exist in the left graph of this rule) to the context graph.

30

2.4 Conclusion Chapter 2

Algorithm 3 Double pushout algorithm

1: function ApplyDoublePushout (rule, graph, match)
2: contextGraph ← ApplyPushout1(rule,graph,match)
3: if contextGraph 6= nil then
4: resultingGraph ← ApplyPushout2(rule,contextGraph)
5: return resultingGraph
6: end if
7: return nil
8: end function

2.3.8 Conform Algorithm

In the algorithm 4, we verify if typed graph conforms the type graph according to the

type graph level, If the type graph level respected return true, return false otherwise.

Algorithm 4 Conform Algorithm

1: if type Graph Level respected then
2: return true
3: end if
4: return false

2.4 Conclusion

In this chapter, we presented the design of our engine. In first section, we have described

the global architecture. In second section, we have explained the detailed design. We use

class diagram to model structure of graph grammar and activity diagrams to model direct

graph transformation, non-deterministic graph transformation, and graph transformation

by rule priority. Then we present the main implemented algorithms.

31

Chapter 3

Implementation

3.1 Introduction

After the design step that is mentioned in the previous chapter, we pass to the next step,

which is the step of implementation.

This chapter includes two sections. The first section introduces briefly the development

tools and languages that we have used them in the realization of our engine. The second

section aims to implement the algorithms that we have studied in chapter 2 and explain

the APIs provided by our engine.

3.2 Development Tools and Languages

In this section, we present different tools and languages, that help us during the develop-

ment of our engine.

3.2.1 Go programming language

Go (also called GoLang) is programming language developed by Google engineers that

we have used it in the implementation of our system. It is easy to learn and easy to use.

It is easy to learn, because it is flexible, and its syntax is not hard to learn. Go is an open

32

3.3 Implementation Chapter 3

source and typed programming language. It is available for all these operating system

(Windows, LINUX, Mac OS).

3.2.2 Visual Studio Code

Visual Studio Code is a lightweight but powerful source code editor developed by Mi-

crosoft. It has a rich ecosystem of extensions for many languages (such as C++, C, Java,

Python, PHP, Go). It is available for all these operating system (Windows, LINUX, Mac

OS).

3.2.3 JavaScript Object Notation

JSON (JavaScript Object Notation) is a data-interchange format. It is easy to read and

write. It is easy for machines to parse and generate. It is based on a subset of the

JavaScript Programming Language.

3.3 Implementation

In this section, we will present the main data structure that our engine is defined, then

we will present the most important APIs that our engine provide, and explain how they

are used.

33

3.3 Implementation Chapter 3

3.3.1 Data Structure

In the following we list the main data structure that our engine is defined.

• Graph grammar: According to the listing1 a graph grammar is defined by:

– id: is the identifier of graph grammar.

– name: is the name of graph grammar.

– typeGraph: is the type graph, all graphs exists in the graph grammar must

be conform to the type graph.

– graphs: is the full set of graphs exists in graph grammar.

– rules: is the full set of rules exists in graph grammar.

Listing 1 Graph Grammar data structure

type grammar struct {

id int64

name string

typeGraph graph.TypeGraph

graphs map[int64]graph.TypedGraph

rules map[int64]rule.Rule

}

• Type graph: According to the listing2 a type graph is defined by:

– id: is the identifier of a type graph.

– name: is the name of a type graph.

– typeGraphLevel: is the level of a type graph, it can be one of the following

constants values:

∗ Disabled: disable type graph.

∗ Enabled: enable type graph and no multiplicity.

∗ EnabledMin: enable type graph and min multiplicity.

∗ EnabledMax: enable type graph and max multiplicity.

∗ EnabledMaxMin: enable type graph and max and min multiplicity.

– types: is a types set for nodes and arcs.

– nodes: is a set of nodes, each node has a specific type exists only one time.

– from: associates to each node the set of its incoming arcs.

– to: associates to each node the set of its outgoing arcs.

34

3.3 Implementation Chapter 3

Listing 2 Type graph data structure

type typeGraph struct {

id int64

name string

typeGraphLevel int

types TypeSet

nodes map[int64]TypeGraphNode

from map[int64]map[int64]TypeGraphArc

to map[int64]map[int64]TypeGraphArc

}

• Typed graph: According to the listing3 a type graph is defined by:

– id: is the identifier of a typed graph.

– name: is the name of a typed graph.

– kind: is the kind of a typed graph, it can be Host, LHS, RHS, or NAC.

– nodes: is a set of nodes of a typed graph.

– from: associates to each node the set of its incoming arcs.

– to: associates to each node the set of its outgoing arcs.

– itstype: is the type graph that must be respected during the construction of

a typed graph.

Listing 3 Typed graph data structure

type typedGraph struct {

id int64

name string

kind int

nodes map[int64]Node

from map[int64]map[int64]Arc

to map[int64]map[int64]Arc

itstype TypeGraph

}

• Rule: According to the listing4a rule is defined by:

– id: is the identifier of a rule.

– name: is the name of rule.

– lhs: is the left side graph of a rule.

– rhs: is the right side graph of a rule.

35

3.3 Implementation Chapter 3

– ruleMorphism: is morphism from the left side graph into the right side graph

of a rule.

– nacs: is the set of negative application conditions of a rule.

– priority: is the priority of a rule.

Listing 4 Rule data structure

type rule struct {

id int64

name string

lhs graph.TypedGraph

rhs graph.TypedGraph

ruleMorphism morphism.Morphism

nacs []morphism.Morphism

priority int

}

• Morphism: According to the listing5 a morphism is defined by:

– name: is the name of a morphism.

– domain: is the domain of a morphism.

– codomain: is the codomain of a morphism.

– nodeMapSet: is the set of node map of a morphism.

– arcMapSet: is the set arc map of a morphism.

Listing 5 Morphism data structure

type morphism struct {

name string

domain graph.TypedGraph

codomain graph.TypedGraph

nodeMapSet map[int64]NodeMap

arcMapSet map[int64]ArcMap

}

3.3.2 Functions

In this following, we will view how the algorithms presented in chapter 2 have been

implemented in our engine according to the Go programming language.

36

3.3 Implementation Chapter 3

Double Push Out

The listing 6 shows the function DoublePushOut. The visibility of this function is public.

It starts by calling the function PushOut1 to construct the context graph, if PushOut1

returns a nil err which means that the context graph has been constructed, then it passes

to call the function PushOut2 to construct the target graph, and then it returns nil.

Listing 6 Double Pushout Function

func (d *doublePushOut) DoublePushOut() error {

err := d.PushOut1()

if err != nil {

d.PushOut2()

return nil

}

return err

}

Conform

The listing 7 present the function IsConform, it used to check if a specific typed graph is

conform to its type graph. this function returns nil if the level of type graph is disabled,

else it passes to check if the type graph structure is satisfied, if not then it returns an

error message, else if the type graph level is enabled then it returns nil, else it check if

type graph multiplicity is satisfied, if yes it returns nil, else it returns error message.

Listing 7 Conform Function

func (g *typedGraph) IsConform() error {

if g.Type().TypeGraphLevel() == Disabled {

return nil

}

err := IsTypeGraphStructureStisfied()

if err == nil{

if g.Type().TypeGraphLevel() > Enabled {

err = IsTypeGraphMultiplicitySatisfied()

}

}

return err

}

3.3.3 Usage of the APIs

In the following, we list some APIs that our engine provide and explain how they are

used.

37

3.3 Implementation Chapter 3

• Func IsValidMatch

func (m *match) IsValidMatch() bool

it is Called by a match. It is used to check if this match is valid (checking if the

gluing condition and the full set of negative application conditions are satisfied).

It has no parameters. It returns true if this match is a valid match, otherwise, it

returns false.

Example

– Code:

Listing 8 Usage of function IsValidMatch exemple

xmlReader := xmlfile.NewReader()

grammar := xmlReader.Read("Lovers_Graph.ggx")

graph := grammar.Graph(7)

rule := grammar.Rule(27)

matches := match.NewMatches(rule, graph)

if matches.FindMatches() != 0 {

match := matches.ChooseMatch()

if match != nil {

if match.IsValidMatch() {

println("This match is valid")

println(match)

println("This is not a valid match")

}

}

}

if matches.PossibleMatches() == 0 {

println("No valid match")

}

– Output: This match is valid

• IsConform:

func (g *typedGraph) IsConform() bool

This function is called to check if it is conform to the type graph.

Example

– Code:

38

3.4 Conclusion Chapter 3

Listing 9 Usage of function Conform exemple

xmlReader := xmlfile.NewReader()

grammar := xmlReader.Read("Lovers_Graph.ggx")

graph := grammar.Graph(7)

err:=graph.IsConform()

if err == nil{

println("This graph is conform to the type graph")

}

println(err)

– Output: This graph is conform to the type graph.

3.4 Conclusion

In this chapter, we have presented the development tools and languages that we have used

to develop our engine. We have also explained the different data structures and functions

defined in our engine, then, we give some illustrative example to explain the usage of the

important APIs provided by our engine.

39

Chapter 4

Use Case: Implementing A Graph

Transformation Tool

4.1 Introduction

In this chapter, we demonstrate the usability and the utility of our engine. To do so, we

will create an application that uses and exploits the various packages and APIs (Appli-

cation Programming Interface) that we have defined. Our application is designed follow-

ing the concept of REST (REpresentational State Transfer) architecture. We start this

chapter by an overview of REST architecture, and then we illustrate the design of our

application in two levels (global and detailed design).

4.2 REST architecture

REST is an architectural style defined to help create and organize distributed systems.

The term representational state transfer was introduced and defined in 2000 by Roy

Fielding in his doctoral dissertation [7].

The specific constraints that compose the REST style are [7]:

• Client-Server:

The first constraints is the client-server architectural style. A server component,

offering a set of services, listens for requests upon those services. A client component,

desiring that a service be performed, sends a request to the server via a connector.

The server either rejects or performs the request and sends a response back to the

client.

The main principle behind this constraint is the separation of concerns.

• Stateless:

Communication between client and server must be stateless, meaning that each

40

4.2 REST architecture Chapter 4

request done from the client must have all the information required for the server

to understand it, without taking advantage of any stored data.

• Cache-able:

Cache constraints require that the data within a response to a request be implicitly

or explicitly labeled as cacheable or non-cacheable. If a response is cacheable, then

a client cache is given the right to reuse that response data for later, equivalent

requests.

The advantage of adding cache constraints is that they have the potential to par-

tially or completely eliminate some interactions, improving efficiency, scalability,

and userperceived performance by reducing the average latency of a series of inter-

actions. The trade-off, however, is that a cache can decrease reliability if stale data

within the cache differs significantly from the data that would have been obtained

had the request been sent directly to the server.

• Uniform Interface:

One of REST’s main characteristics and winning points when compared to other

alternatives is the uniform interface constraint. By keeping a uniform interface be-

tween components, you simplify the job of the client when it comes to interacting

with your system. Another major winning point here is that the client’s implemen-

tation is independent of yours, so by defining a standard and uniform interface for

all of your services, you effectively simplified the implementation of independent

clients by giving them a clear set of rules to follow.

• Layered System:

REST was designed with the Internet in mind, which means that an architecture

that follows REST is expected to work properly with the massive amount of traffic

that exists in the web of webs.

In order to achieve this, the concept of layers is introduced. By separating compo-

nents into layers, and allowing each layer to only use the one below and to commu-

nicate its output to the one above, you simplify the system’s overall complexity and

keep component coupling in check. This is a great benefit in all type of systems,

especially when the complexity of such a system is ever-growing (e.g., systems with

massive amounts of clients, systems that are currently evolving, etc.).

The main disadvantage of this constraint is that for small systems, it might add

unwanted latency into the overall data flow, due to the different interactions between

layers.

• Code-on-Demand:

Code-on-demand is the only optional constraint imposed by REST, which means

41

4.3 Global Design Chapter 4

that an architect using REST can choose whether or not to use this constraint, and

either gains its advantages or suffers its disadvantages. With this constraint, the

client can download and execute code provided by the server (such as Java applets,

JavaScript scripts, etc.). In the case of REST APIs (which is what this book focuses

on), this constraint seems unnecessary, because the normal thing for an API client

to do is just get information from an endpoint, and then process it however needed;

but for other uses of REST, like web servers, a client (i.e., a browser) will probably

benefit from this constraint.

After this overview of REST, in the following sections, we present the different aspects

and design of our application. We will start with the global design in which we specify the

different parts of our application and discuss the various relations between them. Then

we present the detailed design in which we explain each part in detail.

4.3 Global Design

The general architecture of our application is depicted by the Figure 4.1.

Figure 4.1: Graph transformation tools global architecture

Our application consists of two parts interacting between them through http protocol.

These two parts are: the front-end and the back-end.

4.3.1 Front-end

The front-end represents the client-side, it consists of two components: the interface and

the client.

42

4.4 Detailed Design Chapter 4

1. Interface: The interface manage the different interactions between the user and

the client application. It displays the graph grammar and its different components,

and it tacks the orders from the user and transfer them to the client application,

and display the results offered by the client to the user.

2. Client: The client plays the role of mediator between the rest server and the

interface. In one hand, it tacks orders offered by the interface, then sends it to

the server using the various URIs offered by the Rest server, In the other hand, it

receives the responses from the server which will be displayed by the interface.

4.3.2 Back-end

The back-end represents the server-side, it consists of two components: the Rest server

and the Engine.

1. Rest server: The REST server implements the server part of the REST architec-

ture. It exposes a set of function that we defined in our engine as a set of URI

to the client part. It receives requests from the client application, and then, it

analyses this URI to identify the corresponding function in the engine and extract

a set of parameters to invoke the identified API. After that, it returns the result

offered by the engine to the client application in the form of JSON data. we can say

that the rest server manages the transport part between the client and the graph

transformation engine.

2. Engine: As we explained in a detailed way in chapters 2 and 3, our engine exposes a

set of APIs that can be used to manage the different aspect of graph transformation.

these APIs are also exposed themselves by the REST server to the client through

the different URIs.

4.4 Detailed Design

Our application has several components and different kind of interaction. In this section,

we will detail the most important ones.

As we did in chapter 2, We use the UML (Unified Modeling Language) to describe

the design of our application. specifically, we use a sequence diagram that shows the

convenient interactions between elements of our application.

4.4.1 The sequence diagram of Single rule application

The interaction scenario, depicted in figure 4.2 is explained as follows:

43

4.4 Detailed Design Chapter 4

1. The client invokes the Rest server by sending the identifier of a rule which will be

applied, and of a graph which will be transformed by this rule.

2. The server invokes the engine by sending the corresponding rule and graph to the

received identifier.

3. The engine check the applicability of the rule.

4. Making a test: if the specific rule is not applicable the engine returns an error to

the server, and the server in his turn returns an error to the client.

5. else the engine returns the resulting graph to the server. And the server in his turn

returns the resulting graph as JSON file.

Figure 4.2: Sequence diagram of Single rule application

4.4.2 The sequence diagram of rule set application

The interaction scenario, depicts in figure 4.3 is explained as follows:

• the client invokes the Rest server by sending the identifier of the graph which will

be transformed.

• the server selects the corresponding graph and sends it to Engine.

• while the time is not out and there is a rule applicable the Engine select a rule

then applies this rule on our graph. it applies this the selected rule as long as it is

applicable.

• if there no rule applicable the Engine returns an error message which explains the

problem, else it returns the resulting graph to the server,

44

4.4 Detailed Design Chapter 4

• then the server returns it as JSON file.

Figure 4.3: Sequence diagram of the graph transformation sequence

The sequence diagram of conform

Figure 4.4 presents the sequence diagram of conform, the client sends the identifier of the

graph which we will check if it conforms to the type graph or not, then the server sends

the corresponding graph and the type graph if the type graph level is not disabled the

Engine checks if the graph conforms to the type graph, if it conforms, it returns true else

it returns an error message which explains the problem.

45

4.4 Detailed Design Chapter 4

Figure 4.4: The sequence diagram of conform

4.4.3 List of APIs offered by the REST server

Table 4.1 describes APIs offered by the REST server.

Table 4.1: List of APIs offered by the REST server

Number API Description

1 /grammars returns a full list of graph grammar

2 /grammars/:name returns information of a specific

graph grammar

3 /type/nodes returns a full list of type nodes of a

specific graph grammar

4 /type/arcs returns a full list of type arcs of a

specific graph grammar

5 /type/graph returns the type graph of a specific

graph grammar

6 /type/graph/nodes returns the list of nodes of type

graph exists in a specific graph

grammar

7 /type/graph/arcs returns the list of arcs of type graph

exists in a specific graph grammar

8 /graphs returns a full list of graphs exist in

a specific graph grammar

46

4.4 Detailed Design Chapter 4

Table 4.1 – List of APIs offered by the REST server

Number API Description

9 /graphs/:id returns information of a specific

graph

10 /graphs/:id/nodes returns a full list of nodes of a spe-

cific graph

11 /graphs/:id/arcs returns a full list of arcs of a specific

graph

12 /rules returns a full list of rules exist in a

specific graph grammar

13 /rules/:id returns a specific rule

14 /rules/:id/left returns the left graph of a specific

rule

15 /rules/:id/right returns the right graph of a specific

rule

16 /rules/:id/left/nodes returns a full list of nodes of the left

graph of a specific rule

17 /rules/:id/left/arcs returns a full list of arcs of the left

graph of a specific rule

18 /rules/:id/morphism returns the morphism that is exists

between the left and the right graph

of rule

19 /rules/:id/nacs returns a full list of negative appli-

cation conditions of a specific rule

20 /rules/:id/nacs/:name returns information of a specific neg-

ative application conditions

21 /transform/:ruleID/graphID returns the result graph of the appli-

cation of a specific rule into a specific

graph

22 /applicable/:ruleI :graph cheDID/ck if a specific rule

is applicable into a specific graph, if

the rule is applicable it returns true,

returns false otherwise.

23 /transform/:graphID returns the result graph of the appli-

cation of a list of rules into a specific

graph

24 /conform/graphs/:id/ check if a specific graph conform the

type graph

47

4.5 Example of Application Chapter 4

4.5 Example of Application

To explain our example, we assume that our server is running locally, therefore to access

it, we use this address � http://localhost/�. For every defined APIs to be executed we

just concatenate the API with the address of the server.

The objective of this example is to show a scenario of transforming a specific graph

by a specific rule.

1. Requesting list of available graph grammars:

To request the list of available graph grammars the client use this endpoint ”/gram-

mars”. The server response to this request by returning the list of available graph

grammars by using JSON format. In our example, there are two available graph

grammar the first called lovers graph and the second called statecharts as shown in

the listing. We can access the information of the first and the second by using the

URIs ”/grammars/Lovers Graph” and ”/grammars/statecharts” respectively.

Listing 10 Example of a JSON Response of requesting list of available graph grammars

{

"GraphGrammar":[{

"name": "Lovers_Graph",

"uri": "/grammars/Lovers_Graph"

}

{

"name": "statecharts",

"uri": "/grammars/statecharts"

}

]

}

2. Requesting information about a specific graph grammar:

To get information about a specific graph grammar the client use the URI ”gram-

mars/Lovers Graph”. The server response to this request by returning the identifier

and the name of this graph grammar, and also URIs corresponding to its type nodes,

type arcs, type graph, graphs, and rules.

48

4.5 Example of Application Chapter 4

Listing 11 Example of JSON response for requesting information about a specific graph
grammar

{

"ID": "I1",

"name": "Lovers_Graph",

"Types": {

"NodeType": {

"uri": "type/nodes"

},

"EdgeType": {

"uri": "type/arcs"

},

"Graph": {

"uri": "type/graphs"

}

},

"Graph": {

"uri": "/graphs"

},

"Rule": {

"uri": "/rules"

}

}

3. Requesting a list of graphs:

To get the list of graphs exists in a specific graph grammar the user use the URI:

”/graphs”. And the server returns the list of existing graphs. In our case, the

specified graph grammar has just one graph named ”HostGraph”.

Listing 12 Example of JSON response for requesting a list of graphs

{

"Graph": [{

"ID": "I7",

"name": "HostGraph"

}]

}

4. Requesting information about a specific graph:

To request information about a specific graph the client use the URI: ”/graphs/I17”.

The server responses by returning the identifier, the kind, and the name of the

specified graph, and returns also URIs corresponding to its nodes and arcs.

49

4.5 Example of Application Chapter 4

Listing 13 Example of JSON response for requesting information about a specific graph

{

"Graph": {

"ID": "I7",

"kind": "HOST",

"name": "HostGraph",

"Node": {

"uri": "/graphs/I7/nodes"

},

"Edge": {

"uri": "/graphs/I7/Edges"

}

}

}

5. Requesting list of nodes of a specific graph:

to get the list of nodes of a specific graph, the client uses the URI ”/Graph/I17/nodes”.

The server returns the list of nodes of this graph and returns for each node its iden-

tifier and its type.

Listing 14 Example of JSON response for equesting list of nodes of a specific graph

{

"Node": [{

"ID": "I29",

"type": "I2"

},

{

"ID": "I30",

"type": "I2"

}

]

}

6. Requesting list of arcs of a specific graph:

to get the list of arcs of a specific graph, the client use the URI ”/Graph/I17/arcs”.

The server returns the list of arcs of this graph and returns for each arc its identifier

and its type.

50

4.5 Example of Application Chapter 4

Listing 15 Example of JSON response for equesting list of arcs of a specific graph

{

"Edge": [{

"ID": "I29",

"type": "I2"

},

{

"ID": "I30",

"type": "I2"

}

]

}

7. Requesting list of rules:

To get the list of rules, the client uses the URI ”/rules”. The server response to this

request by returning the list of rules and returning for each rule its identifier, name,

and the URI used to get information about each rule. In this example our graph

grammar has three rules named ”NewPerson”, ”SetRelation”, ”RemoveRelation”.

Listing 16 Example of JSON response of requesting list of rules

{

"Rule": [{

"ID": "I15",

"name": "NewPerson",

"uri": "/rules/I15"

},

{

"ID": "I19",

"name": "SetRelation",

"uri": "/rules/I19"

},

{

"ID": "I27",

"name": "RemoveRelation",

"uri": "/rules/I27"

}

]

}

8. Check the applicability of a specific rule on a specific graph:

To check the applicability of a specific rule on a specific graph, The client uses the

URI ”transformation/I15/I7”. In this example the specified rule is applicable on

the specified graph, so the server returns true.

51

4.6 Conclusion Chapter 4

Listing 17 Example of JSON response of requesting list of rules

{

"Graph":"I7",

"Rule":"I15",

"applicable":true

}

9. Apply a specific rule on a specific graph:

To apply a specific rule on a specific graph. The client uses the URI ”transforma-

tion/I15/I7”. If the specified rule is applied. The server returns true, and sets of

added and removed elements. In this example, the application of the rule ”NewPer-

son” leads to the addition of one element to the graph ”HostGraph” which is the

node that has the identifier ”I35”.

Listing 18 Example of JSON response of applying a specific rule on a specific graph

{

"Graph": "I7",

"Rule": "I15",

"applied": true,

"Graph": {

"uri": "/graphs/I17"

},

"Added": [{

"ID": "I35"

}],

"Deleted": null

}

4.6 Conclusion

In this chapter, we have presented the design of the application that we used to demon-

strate the use of our library. Because our application is developed according to the REST

architecture, we have started this chapter a brief definition of the REST architecture.

52

General Conclusion

In this project we proposed a solution to the problem (reusing and decoupling the engine

from the graphical interface) of existing tools implementing the graph transformation

concepts.

Our engine is developed taking into account the reuse. It is a library that defines

and expose a set of APIs. They are of two types, the first one is for graph grammar

manipulation such as add, remove, and find element. And the second one is for graph

transformation such as find matches,check rule applicability, apply transformation, and

so more.

These APIs can be used directly or indirectly to perform graph transformation inde-

pendently from the calling client. Our engine is developed using go programming language

(golang) which is fast and easy to use.

In its current state, the graph transformation engine may be used directly using golang.

For other languages, a binding is required to be defined. For the indirect use case, we have

shown how simple it is to use our engine in chapter 4. We have developed an application

following the REST architecture style. The engine decoupled from the graphical interface

is executed in a server side, and the interface in the client side. Both the client and the

server are communicating through HTTP protocol.

Our engine has the following characteristic:

• implements the graph transformation following the double push out approach (DPO)

• the graphs used in the transformation are typed graphs.

• Rules can have NACs (negative application condition).

• the selection of rules to be executed is either random or with priority.

perspective

What we have developed in our project is a core that can be enriched with many features.

therefore we have defined the following perspective:

1. Add attributed graphs, PACs (positive application conditions), graph constraints,

and critical pair analysis to the capabilities of the engine.

53

4.6 Conclusion Chapter 4

2. The development of a rich graphical user editor.

3. Define bindings for other languages such as c\c++.

54

Bibliography

[1] Guilherme Grochau Azzi, Jonas Santos Bezerra, Leila Ribeiro, Andrei Costa,

Leonardo Marques Rodrigues, and Rodrigo Machado. The verigraph system for graph

transformation. In Graph Transformation, Specifications, and Nets, pages 160–178.

Springer, 2018.

[2] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F Korth. Semantics and

implementation of schema evolution in object-oriented databases, volume 16. ACM,

1987.

[3] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph

isomorphism algorithm for matching large graphs. IEEE transactions on pattern

analysis and machine intelligence, 26(10):1367–1372, 2004.

[4] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,

and Michael Löwe. Algebraic approaches to graph transformation–part i: Basic con-

cepts and double pushout approach. In Handbook Of Graph Grammars And Com-

puting By Graph Transformation: Volume 1: Foundations, pages 163–245. World

Scientific, 1997.

[5] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza,

and Dániel Varró. Viatra-visual automated transformations for formal verification

and validation of uml models. In Proceedings 17th IEEE International Conference

on Automated Software Engineering,, pages 267–270. IEEE, 2002.

[6] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and Model

Transformation. Springer, 2015.

[7] Roy T Fielding and Richard N Taylor. Architectural styles and the design of network-

based software architectures, volume 7. University of California, Irvine Doctoral

dissertation, 2000.

[8] Steven Kelly and Juha-Pekka Tolvanen. Visual domain-specific modelling: Bene-

fits and experiences of using metacase tools. In International Workshop on Model

Engineering, at ECOOP, volume 2000. Citeseer, 2000.

55

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Barbara König, Dennis Nolte, Julia Padberg, and Arend Rensink. A Tutorial on

Graph Transformation, pages 83–104. Springer International Publishing, Cham,

2018.

[10] Alfio Martini, Hartmut Ehrig, and Daltro José Nunes. Graph Grammars: An Intro-

duction to the Double-pushout Approach. Technische Universität Berlin, Fachbereich

13, Informatik, 1996.

[11] Brendan D McKay et al. Practical graph isomorphism. Department of Computer

Science, Vanderbilt University Tennessee, USA, 1981.

[12] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The fujaba environment. In Proceed-

ings of the 22nd international conference on Software engineering, pages 742–745.

ACM, 2000.

[13] Grzegorz Rozenberg. Handbook of Graph Grammars and Comp., volume 1. World

scientific, 1997.

[14] Michael Rudolf. Utilizing constraint satisfaction techniques for efficient graph pattern

matching. In International Workshop on Theory and Application of Graph Transfor-

mations, pages 238–251. Springer, 1998.

[15] Andy Schürr. Specification of graph translators with triple graph grammars. In

International Workshop on Graph-Theoretic Concepts in Computer Science, pages

151–163. Springer, 1994.

[16] G Taentzer, U Prange, K Ehrig, and H Ehrig. Fundamentals of algebraic graph

transformation. with 41 figures (monographs in theoretical computer science. an eatcs

series), 2006.

[17] Gabriele Taentzer. Agg: A graph transformation environment for modeling and

validation of software. In International Workshop on Applications of Graph Trans-

formations with Industrial Relevance, pages 446–453. Springer, 2003.

[18] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM

(JACM), 23(1):31–42, 1976.

56

	 Contents
	 List of Figures
	 List of Tables
	 List of Algorithms
	 List of Listings
	 General Introduction
	1 Fundamentals of Graph Transformation
	1.1 Introduction
	1.2 Graph Transformation
	1.3 Graph, Typed Graph, and Their Morphisms
	1.3.1 Graph
	1.3.2 Graph Morphism
	1.3.3 Typed Graph
	1.3.4 Typed Graph Morphism

	1.4 Category
	1.5 Gluing Relation
	1.6 Pushout
	1.7 Graph Production
	1.8 Graph Match
	1.8.1 Constraint Satisfaction Problems
	1.8.2 Graph Matching as a CSP

	1.9 Graph Transformation Systems
	1.9.1 graph transformation
	1.9.2 graph transformation system
	1.9.3 (Typed) graph grammar

	1.10 Construction of Graph Transformations
	1.10.1 Applicability of Productions
	1.10.2 gluing condition
	1.10.3 construction of direct (typed) graph transformations

	1.11 Application Condition
	1.11.1 Application Condition
	1.11.2 Negative Application Condition
	1.11.3 application condition for a production

	1.12 Related work
	1.12.1 Fujaba
	1.12.2 AGG
	1.12.3 VIATRA

	1.13 Conclusion

	2 System Design
	2.1 Introduction
	2.2 Global Design
	2.2.1 Graph Grammar
	2.2.2 Graph Transformation

	2.3 Detailed Design
	2.3.1 Graph Grammar Class Diagram
	2.3.2 Direct graph transformation activity diagram
	2.3.3 Non-deterministic Graph transformation activity diagram
	2.3.4 Graph transformation by rule priority activity diagram
	2.3.5 Find matches algorithm
	2.3.6 Check the applicability of rule algorithm
	2.3.7 Double Pushout algorithm
	2.3.8 Conform Algorithm

	2.4 Conclusion

	3 Implementation
	3.1 Introduction
	3.2 Development Tools and Languages
	3.2.1 Go programming language
	3.2.2 Visual Studio Code
	3.2.3 JavaScript Object Notation

	3.3 Implementation
	3.3.1 Data Structure
	3.3.2 Functions
	3.3.3 Usage of the APIs

	3.4 Conclusion

	4 Use Case: Implementing A Graph Transformation Tool
	4.1 Introduction
	4.2 REST architecture
	4.3 Global Design
	4.3.1 Front-end
	4.3.2 Back-end

	4.4 Detailed Design
	4.4.1 The sequence diagram of Single rule application
	4.4.2 The sequence diagram of rule set application
	4.4.3 List of APIs offered by the REST server

	4.5 Example of Application
	4.6 Conclusion

	 General Conclusion

