
Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Mohamed Khider - BISKRA
Faculty of Exact Sciences, Natural Sciences and Life

Computer Science Department

Order Number: GLSD1/M2/2018

Report
Presented to obtain the diploma of academic Master in

Computer Science
Option: Software Engineering and Distributed Systems

A Tool for Modeling and Simulating
with

Reconfigurable Object Nets

By:
Ben Terki Aboubaker Seddiq

Defended the 24/06/2018, in front of the jury composed of:

Bennaoui Hammadi MCA President

Kahloul Laid MCA Supervisor

Zernadji Tarek MCB Examiner

University Year: 2017/2018

Acknowledgements

Praise to ALLAH, the Compassionate, the Merciful. Peace and blessing on the Messenger
of Allah, Muhammad the prophet (Peace Be Upon Him). I wish to express my gratitude to
ALLAH for His blessing and inspiration leading me to finish this work.

My special thanks and appreciation to my supervisor Dr. Kahloul Laid for his continuous
encouragement, guidance and for his endless patience and precious advice.

I would like to express my deepest thanks to the members of the jury: Dr. Zernadji Tarek
and Dr. Bennaoui Hammadi for reading and evaluating my dissertation.

We want to thank Pr. Claudia Ermel Technische Universität Berlin, Germany for her
guidance and for her endless patience and precious advice.

I never forget to thank all my teachers at Computer Science Department who taught me
the basic principles of computer science.

Finally, my gratitude is deeply paid to my mother and my father, and to all members of my
family.

Abstract

In this report, we present a tool for modelling and simulation with reconfigurable
Petri nets. Applying the idea of algebraic graph transformations to object nets we
obtain reconfigurable object nets whose net structure can be changed dynamically.
The rule-based change of the net structure enables the adequate modelling of
complex and dynamic structures as for example reconfigurable manufacturing
systems. The tool we developed uses reconfigurable object nets that are extended
by various annotations. The transformation approach is based on the well-known
algebraic transformation approach as DPO (Double PushOut).

Résumé

Dans ce rapport, nous présentons un outil de modélisation et de simulation avec
des réseaux de Petri reconfigurables. L’application de l’idée des transformations
de graphes algébriques sur les réseaux de Petri a donné lieu aux réseaux d’objets
reconfigurables dont la structure peut être changée dynamiquement. La modifi-
cation de la structure du réseau basée sur des règles permet une modélisation
adéquate de structures complexes et dynamiques, par exemple des systèmes
de fabrication reconfigurables. L’outil que nous avons développé utilise des
réseaux de Petri reconfigurable étendus par diverses annotations. L’approche
de transformation est basée sur l’approche de transformation algébrique bien
connue en tant que DPO (Double PushOut).

Contents

List of Tables ix

List of Figures xi

Introduction xiii

I Background 1

1 Petri Nets and Graph Grammar 3
Introduction . 3

1.1 Petri Nets (Definitions) . 3

1.1.1 Basic Petri net . 4

1.1.2 Reachability tree . 4

1.1.3 Reachability graph . 4

1.1.4 Incidence matrix . 5

1.2 Behaviour and Properties of Petri Nets . 5

1.2.1 Properties of Petri Nets . 5

1.2.2 Behaviour of nets and examples 6

1.3 Graph Grammars and Graph Transformation 8

1.3.1 What is Graph Transformation? 9

1.3.2 Overview of Different Approaches 9

1.3.3 The Main Ideas of the Algebraic Graph Transformation Approach . 11

1.3.4 Graphs and Graph Morphisms . 11

1.3.5 Graph Productions . 13

1.3.6 Graph Transformation . 13

Conclusion . 14

vi Contents

2 Reconfigurable Petri Nets 16
Introduction . 16
2.1 Correspondence of Notions between Petri Nets and Graph Grammars . . . 16
2.2 Reconfigurable Petri Nets . 18

2.2.1 Basic Concepts . 18
2.2.2 Definition (P/T Morphism) . 18
2.2.3 Definition (Gluing Condition) . 19
2.2.4 Definition (P/T System Rule) . 19
2.2.5 Definition (Reconfigurable P/T Systems) 20
2.2.6 Types of Reconfigurable Petri Nets 21
2.2.7 Application of Reconfigurable Petri Nets 21
2.2.8 Tools . 22

2.3 Reconfigurable Object Nets . 22
2.3.1 Definition RON : . 22

Conclusion . 24

II A Tool for Reconfigurable Petri Nets 25

3 Analysis and Design 27
3.1 Introduction . 27
Introduction . 27
3.2 Analysis . 27
3.3 Global Design . 28
3.4 Class Diagram . 29
Conclusion . 30

4 Implementation 33
Introduction . 33
4.1 Development Tools and Languages . 33

4.1.1 Python programming language . 33
4.1.2 PyCharm Programming Editor . 34
4.1.3 Tool Kit Interface “Tkinter” Package 34
4.1.4 Document Preparation System LATEX 34
4.1.5 Typesetting Editor (TEX MAKER) 34

4.2 Implementation . 34
4.2.1 Application Home . 35

vi

Contents vii

4.2.2 Application features . 37
Conclusion . 51

Conclusion xv

Bibliography xvii

vii

List of Tables

2.1 Correspondence of Notions . 18

4.1 Software/Hardware versions . 35

ix

List of Figures

1.1 A Petri net with corresponding reachability graph and reachability tree . . . 5
1.2 A state machine and an event graph . 6
1.3 Contact in Petri Nets . 6
1.4 Backwards Conflict . 7
1.5 Forwards Conflict . 7
1.6 Causality in Petri Nets . 8
1.7 Concurrency in Petri Nets . 8
1.8 Rule-based modification of graphs . 9
1.9 pointfview . 10
1.10 DPO-Graph Transformation . 12
1.11 Directed Labeled Graph G . 12
1.12 Graph Morphism . 12
1.13 Graph Transformation with Pushouts (1) and (2) 13
1.14 A Sample Graph Transformation . 14

2.1 Transition Firing as Token Game . 16
2.2 Transition Firing as Double Pushout . 17
2.3 Cyclic net with rules . 20
2.4 Application of rule r1 to N . 20
2.5 Example Transform Transition . 23
2.6 Example Fire transition . 24

3.1 Global architecture of the application . 28
3.2 Class Diagram (P/T nets) . 29
3.3 Class Diagram (P/T nets) . 30

4.1 Application Home . 35
4.2 New Menu 1. 36
4.3 New Menu 2. 36

xi

xii List of Figures

4.4 Toolbar . 37
4.5 Module Petri net . 38
4.6 Edit Transition . 38
4.7 Edit Place . 39
4.8 Pnml File . 39
4.9 Petri Net using our Application . 40
4.10 Petri Net using TINA . 40
4.11 Run Simulation . 41
4.12 Before and After Firing Transition T0. 41
4.13 Create Rule . 42
4.14 RULE FILE . 43
4.15 Check Morphism 1 . 43
4.16 Check Morphism 2 . 44
4.17 Check Morphism 3 . 44
4.18 Check Morphism 4 . 45
4.19 A RON model . 46
4.20 ADD NETS . 47
4.21 File RON . 47
4.22 ADD RULES . 48
4.23 Apply fire Transition 1 . 49
4.24 Apply fire Transition 2 . 49
4.25 Apply Transform Transition 1 . 50
4.26 Apply Transform Transition 2 . 50
4.27 Apply Transform Transition 3 . 51

xii

Introduction

Today the aim of every field in engineering science is to use the formal modelling
language to describe, analyze or diagnose the systems, in order to allow the reliability

of systems. Software engineering is one of these sciences which have a big family of formal
modelling language; Petri nets, automata, pi-calculus, etc. In this family, Petri nets have
been developed to model and analyze the systems. In Petri nets there is one category that
can describe the reconfiguration of systems called reconfigurable Petri nets nets. These last
ones are based on the algebraic approach DPO1 , developped in graph grammar and graph
transformation.

The characteristic feature of reconfigurable Petri nets and their types (high level or
low level), consisting of a Petri net and a set of rules that can modify it, is the possibility
to discriminate between different levels of change. They provide powerful and intuitive
formalism to model dynamic software or hardware systems that are executed in dynamic
infrastructures. These infrastructures are dynamic since they are subject to change as well
and since they support various applications that may share some resources. Such dynamic
software or hardware systems have become increasingly more common but are difficult to
handle. Modelling and simulating dynamic systems require a tool, for modelling, simulating
and analyzing easily the reconfigurable Petri nets.

The aim of our project is to provide a tool for Modeling and Simulating with the Recon-
figurable object nets (RONs).

This rapport starts with an introduction that presents the problem and a proposed solution,
then it is composed of two parts, the first part focuses on the theoretic level (background),
the second part shows our contribution in this work.

Part I is divided into two chapters. Chapter 1 describes and gives the basic concepts
of Petri nets, graph grammar and graph transformation. Chapter 2 gives the relationship
between graph grammar and Petri nets and gives an overview of reconfigurable Petri nets.
The last section in this chapter gives a theoretical framework for Reconfigurable object Nets.

1Double-pushout

Part II concentrates on the development of our solution, it contains two chapters. Chapter
3 illustrates the design of our application in the two levels (the global and the detailed design),
and chapter 4 is introduced as manual to describe the use of our tool.

The thesis ends with a conclusion that evaluates the results and discusses some future
works.

Part I

Background

Chapter 1

Petri Nets and Graph Grammar

Chapter 1

Petri Nets and Graph Grammar

Introduction

In this chapter, we review some basic definitions describing Petri nets, graph grammar and
graph transformation. We shall begin by defining basic Petri nets and their properties. After
that we give some information about graph grammar. These will form the basis of the net
transformation to be presented in the following chapter.

1.1 Petri Nets (Definitions)

A Petri net (also known as a place/transition net or P/T net) is one of several mathematical
representations of discrete distributed systems. As a modeling language, it graphically
depicts the structure of a distributed system as a directed bipartite graph with annotations.
As such, a Petri net has place nodes, transition nodes, and directed arcs connecting places
with transitions.Petri nets were invented in 1962 by Carl Adam Petri in his Ph.D thesis.

A Petri net consists of places, transitions, and directed arcs. Arcs link between places and
transitions - not between places and places or transitions and transitions. The places from
which an arc runs to a transition are called the input places of the transition; the places to
which arcs run from a transition are called the output places of the transition.

Places may contain any number of tokens. A distribution of tokens over the places of
a net is called a marking. Transitions act on input tokens by a process known as firing. A
transition is enabled if it can fire, i.e., there are tokens in every input place. When a transition
fires, it consumes the tokens from its input places, performs some processing task, and places
a specified number of tokens into each of its output places.[Mur89]

Page 3

4 Petri Nets and Graph Grammar

1.1.1 Basic Petri net

A Petri net is a five-tuple,(B,E,• (−),(−)•,M0),where :

• B is the set of conditions of the net,

• E is the set of events of the net, disjoint from B,

• •(−) is the precondition map,•(−) : E→ Pow(B),

• (−)• is the postcondition map,(−)• : E→ Pow(B),and

• M0 is the initial marking of the net, M0 ⊆ B.

A marking is a set of conditions, representing the global state of a net by indicating
which conditions hold. Thus, an initial marking corresponds to the set of conditions that hold
in the initial state.

The set of preconditions of an event e is written as •e and its set of postconditions is e•.

Its neighbourhood is the union of these two sets,

•e• =• e∪ e•.

1.1.2 Reachability tree

The reachability tree of a Petri net (G,M0) is a tree with nodes in N|P| which is obtained as
follows:
the initial marking M0 is the root node of this tree; for each E enabled in M0, the marking
M obtained by firing E is a new node of the reachability tree; arcs connect nodes which are
reachable from one to another in one step; this process is applied recursively from each such
M.

1.1.3 Reachability graph

The reachability graph is obtained from the reachability tree by merging all nodes corres-
ponding to the same marking into a single node. Take as an example the Petri net depicted in
Figure 1.1. The initial marking is (1, 1, 1, 1). Both transitions are enabled. If q1 fires first,
the next marking is (1, 1, 0, 2).If q2 fires instead, the marking becomes (1, 1, 2, 0). From (1,
1, 0, 2), only the initial marking can be reached immediately by firing q2 ; starting from (1, 1,
2, 0), only q1 can fire, which also leads to the initial marking. Thus it has been shown that
there are three different markings in the reachability graph of (1, 1, 1, 1).

Page 4

1.2 Behaviour and Properties of Petri Nets 5

Note : A basic net is safe if there is no contact in any reachable marking.

Figure 1.1 A Petri net with corresponding reachability graph and reachability tree

1.1.4 Incidence matrix

For a Petri net with n events and m conditions, the incidence matrix G = (Gi j) is an nm matrix
of integers -1, 0 and +1. The entry Gi j is defined by

Gi j = Gout
i j −Gin

i j

where Gout
i j = 1resp.0 if there is an (resp. no) arc from Bi to E j and Gin

i j = 1(resp.0) if there
is an (resp. no) arc from B j to Ei . Matrices Gin and Gout are defined as Gout = (Gout

i j) and
Gin = (Gin

i j), respectively.

1.2 Behaviour and Properties of Petri Nets

In this section we introduce some Properties of Petri nets, for using later to analyse reconfig-
urable petri nets.

1.2.1 Properties of Petri Nets

Definition (Event graph and State machine) A Petri net is called an event graph if each
place has exactly one upstream and one downstream transition.
A Petri net is called a state machine if each transition has exactly one upstream and one
downstream place.

Page 5

6 Petri Nets and Graph Grammar

Figure 1.2 A state machine and an event graph

Bounded and Safe Nets A Petri net, with initial marking M0, is said to be k-bounded if the
number of tokens in each place does not exceed a finite number k for any marking reachable
from M0. Instead of 1-bounded Petri nets, one speaks of safe Petri nets.

Live net A Petri net is said to be live for the initial marking M0 if for each marking M
reachable from M0 and for each transition b∈ B, there exists a marking Mi which is reachable
from M and such that b is enabled on Mi. A Petri net which is not live is called deadlocked.

1.2.2 Behaviour of nets and examples

Through specifying events by their actions on local components of state, the behaviour of
nets gives rise to several phenomena.

Contact In the following net, the event e1 in the net N1 cannot occur in the marking drawn
due to contact: one of its postconditions still holds a token once its preconditions are un-
marked. The event e2 in the net N2 does not have contact since the event can occur according
to the definition.

Figure 1.3 Contact in Petri Nets

Page 6

1.2 Behaviour and Properties of Petri Nets 7

Conflict Conflict describes how the occurrence of one event can inhibit the occurrence of
another in a marking. There are two forms of conflict: forwards and backwards. Backwards
conflict occurs where events compete to consume a condition. In the following net, only one
of the events can occur from the marking drawn since the occurrence of one will consume
the only token, causing the other not to have concession.

Figure 1.4 Backwards Conflict

Forwards conflict is where events compete to place a token in a condition - they compete
on their post-conditions. In the following net, only one of the events can occur. The other
will not be able to occur in the resulting marking due to contact.

Figure 1.5 Forwards Conflict

Causality The causal relationships between the occurrences of events can also be extracted
from nets. For example, in the net below the event e2 can only occur once the event e1 has
occurred. This is due to the requirement that the condition b be marked for the occurrence of
e2, and b can only be marked through the occurrence of e1.

Page 7

8 Petri Nets and Graph Grammar

Figure 1.6 Causality in Petri Nets

Concurrency The final important concept in the behaviour of processes represented by
nets is that independent events are allowed to occur concurrently. Independence of events is
derived from their operation on non-overlapping sets of conditions. For events e and e′ , we
write eIe′ defined as:

eIe′⇔ •e•
⋂•e′• = /0.

For example, the events e and e′ drawn below are independent:

Figure 1.7 Concurrency in Petri Nets

1.3 Graph Grammars and Graph Transformation

Graph Grammar and Graph Transformation represent a discipline in computer science which
dates back to the 1970s by Ehrig and the result of application has been study and applied
in many fields of computer science. A detailed presentation of various graph grammar
approaches and application areas of graph transformation is given in the three volumes
of the Handbook of Graph Grammars and Computing by Graph Transformation[Roz97,
EEHJG99, HHJUG99]. In this section we give the basic concepts of graph grammar and
graph transformation and the algebraic approach of graph transformation double push out
DPO; The latter will be the basis of Reconfigurable Petri Nets.

Page 8

1.3 Graph Grammars and Graph Transformation 9

1.3.1 What is Graph Transformation?

There are many root to define graph transformation:

• from Chomsky grammars on strings to graph grammars;

• from term rewriting to graph rewriting;

• from textual description to visual modeling.

For giving a simple way to comprise the concept of graph grammars and graph rewriting, we
use the notion of graph transformation. In any case, the main idea of graph transformation is
the rule-based modification of graphs, as shown in Fig. 1.8.

Figure 1.8 Rule-based modification of graphs

The core of a rule or production, p = (L, R) is a pair of graphs (L, R), called the left-hand
side L and the right-hand side R. Applying the rule p = (L, R) means finding a match of L in
the source graph and replacing L by R, leading to the target graph of the graph transformation.
The main technical problems are how to delete L and how to connect R with the context in
the target graph. In fact, there are several different solutions to how to handle these problems,
leading to several different graph transformation approaches, which are summarized below.

1.3.2 Overview of Different Approaches

From an operational point of view, a graph transformation from G to H, written G⇒ H,
usually contains the following main steps, as shown in Fig.1.9:

1. Choose a production p : L⇒ R with a left-hand side L and a right-hand side R, and
with an occurrence of L in G.

2. Check the application conditions of the production.

Page 9

10 Petri Nets and Graph Grammar

3. Remove from G that part of L which is not part of R. If edges dangle after deletion
of L, either the production is not applied or the dangling edges are also deleted. The
graph obtained is called D.

4. Glue the right-hand side R to the graph D at the part of L which still has an image in D.
The part of R not coming from L is added disjointly to D. The resulting graph is E.

5. If the production p contains an additional embedding relation, then embed the right-
hand side R further into the graph E according to this embedding relation. The end
result is the graph H.

Figure 1.9 Graph transformation from an operational point of view

Graph transformation systems can show two kinds of nondeterminism:
first, several productions might be applicable and one of them is chosen arbitrarily; and
second, given a certain production, several matches might be possible and one of them has to
be chosen. There are techniques available to restrict both kinds of choice. Some kinds of
control flow on rules can be defined for applying them in a certain order or by using explicit
control constructs,priorities, layers, etc. Moreover, the choice of matches can be restricted by
specifying partial matches using input parameters.

The main graph grammar and graph transformation approaches developed in the literature
so far are presented in Volume 1 of the Handbook of Graph Grammars and Computing by
Graph Transformation[Roz97]:

1. The node label replacement approach, developed mainly by Rozenberg,Engelfriet, and
Janssens, allows a single node, as the left-hand side L,to be replaced by an arbitrary
graph R. The connection of R with the context is determined by an embedding relation
depending on node labels.For each removed dangling edge incident with the image of
a node n in L, and each node n′ in R, a new edge (with the same label) incident with n′

is established provided that (n, n′) belongs to the embedding relation.

2. The hyperedge replacement approach, developed mainly by Habel,Kre-owski, and
Drewes, has as the left-hand side L a labeled hyperedge, which is replaced by an
arbitrary hypergraph R with designated attachment nodes corresponding to the nodes

Page 10

1.3 Graph Grammars and Graph Transformation 11

of L. The gluing of R to the context at the corresponding attachment nodes leads to the
target graph without using an additional embedding relation.

3. The algebraic approaches are based on pushout and pullback constructions in the
category of graphs, where pushouts are used to model the gluing of graphs. The
double pushout approach, mainly developed by Ehrig, Schneider and the Berlin- and
Pisa-groups.

4. The logical approach, developed mainly by Courcelle and Bouderon, allows graph
transformation and graph properties to be expressed in monadic second-order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht, as a framework
for the decomposition and transformation of graphs.

6. The programmed graph replacement approach of Schürr combines the glu- ing and
embedding aspects of graph transformation. Furthermore, it uses programs in order to
control the nondeterministic choice of rule applica tions.

1.3.3 The Main Ideas of the Algebraic Graph Transformation Approach

As mentioned above, the algebraic graph transformation approach is based on pushout
constructions, where pushouts are used to model the gluing of graphs. In the algebraic
approach, initiated by Ehrig, Pfender, and Schneider in [EMH73].The main idea is to model
graph transformation by two gluing constructions for graphs and each gluing construction by
a pushout. Roughly spoken, a production is given by p = (L, K, R), where L and R are the
left and right hand side graphs and K is a common interface of L and R. Given a production
p = (L, K, R) and a context graph D, which includes also the interface K, the source graph
G of a graph transformation G⇒ H via p is given by the gluing of L and D via K, written
G = L + kD, and the target graph H by the gluing of R and D via K, written H = R + kD.
More precisely we will use graph morphisms K→ L, K→ R and K→ D to express how K
is included in L, R, and D respectively. This allows to define the gluing constructions G =
L +kD and H = R + kD as pushout constructions (1) and (2) leading to a double pushout in
Figure 1.10.
Before we present the essentials of the Algebraic Approach of the DPO-approach

1.3.4 Graphs and Graph Morphisms

1. Let C = (CA,CN) be a pair of sets, called pair of color alphabets for arcs and nodes
respectively,which will be fixed in the following.

Page 11

12 Petri Nets and Graph Grammar

Figure 1.10 DPO-Graph Transformation

2. A (colored) graph G = (A , N , s , t , mA , mN) consists of sets A , N , called set of
arcs and nodes respectively, and mappings s : A→ N ,t : A→ N,called source resp.
target map, mA : A→CA,mN : N→CN , called arc resp. node coloring map. These
data can be summarized in the diagram

Figure 1.11 Directed Labeled Graph G

3. A graph G is called discrete if AG is empty.

4. Graph G′ is called subgraph of G if A′ ⊆ A,N′ ⊆ N and all the mappings s′, t ′,mA′ and
mN′ are restrictions of the corresponding ones from G.

5. Given tow graphs G and G′ a graph morphism f : G→ G′, f orG→ G′ for short
is pair of maps f = (fA : A→ A′, fN : N → N′) such that fN ◦ s = s′ ◦ fA, fN ◦ t =
t ′ ◦ fA,mA′ ◦ fA = mAandmN′ ◦ fN = mN, i.e. the following diagram commutes for
source and target mappings separately:

Figure 1.12 Graph Morphism

A graph morphism f = (fA, fN)is called injective resp. surjective if both fA and fN are
injective resp. surjective mappings. If f : G –* G I f : G→G′is injective and surjective
it is called an isomorphism, and there is also an inverse isomorphism f ′ : G′→ G.

6. the composition f ′ ◦ f : G→ G” of tow graph morphism f = (fA, fN) : G→ G′ and
f ′ = (f ′A, f ′N) : G′→ G” is defined by f ′ ◦ f = (f ′A ◦ fA, f ′N ◦ fN).

Page 12

1.3 Graph Grammars and Graph Transformation 13

7. Graphs and graph morphisms as above are defining a category in the sense of category
theory, called the category of (colored) graphs.

1.3.5 Graph Productions

A (typed) graph production p = (L l←− K r−→ R) consists of (typed) graphs L, K, and R, called
the left-hand side, gluing graph, and the right-hand side respectively, and two injective(typed)
graph morphisms l and r.

Given a (typed) graph production p, the inverse production is defined by
p−1 = (L l←− K r−→ R)

1.3.6 Graph Transformation

Given a (typed) graph production p = (L l←− K r−→ R) and a (typed) graph G with a (typed)
graph morphism m : L→ G, called the match a direct (typed) transformation G p,m⇒ H
from G to a (typed) graph H is given by the following double-pushout(DPO)diagram , where
(1) and (2) are pushouts in the category Graph.

Figure 1.13 Graph Transformation with Pushouts (1) and (2)

A graph transformation as given in Figure 1.13 is denoted by G⇒ H via (p, m), where G
is the source graph and H the target graph. In the next we will show that pushouts can be
interpreted as gluing constructions. Given a production and a match m : L→ G means that
we require to be able to construct a context graph D such that G is the gluing of L and D
along K in pushout (1) and H is the gluing of R and D along K in pushout (2) of Figure 1.13,
written
G = L+K D and H = R+K D.
The morphism R→ Hin Figure 1.13 is called comatch of the graph transformation. A
graph transformation sequence, also called derivation, is given by a finite sequence of graph
transformations
G0⇒ via (p0,m0),G1⇒ via (p1,m1)....Gn⇒ via (pn,mn).
In general the construction of a graph transformation G⇒ H via (p,m) from a production
p = (L l←− K r−→ R) and a match m : L→ Gis given in two steps, where the first step requires
that the gluing condition is satisfied:

Page 13

14 Petri Nets and Graph Grammar

STEP 1 (DELETE): Delete m(L -l(K)) from G leading to a context graph D (if the gluing
condition is satisfied)[EMH73], s.t. G is the gluing of L and D along K, i.e. G = L + KD in
(1) of Figure 1.13.

STEP 2 (ADD): Add R-r(K) to D leading to a graph H, s.t. H is the gluing of R and D
along K, i.e. H = R + KD in (2) of Figure 1.13.

Figure 1.14 A Sample Graph Transformation

Conclusion

In this chapter, we have presented basic Petri net and we have given details about an algebraic
approach in graph grammar and graph transformation called Double PushOut (DPO); these
two disciplines in computer science Petri net and graph grammar using DPO as model of
transformation, will be the foundation and aim of following chapter; "Reconfigurable Petri
Nets".

Page 14

Chapter 2

Reconfigurable Petri Nets

Chapter 2

Reconfigurable Petri Nets

Introduction

In the previous chapter, we gave the basic concepts of Petri nets, graph grammar, and graph
transformation. Now we will give how to Petri net is suitable to use DPO from graph grammar
and graph transformation. We begin by relationship between graph grammar and Petri nets.
After that, we present an overview of reconfigurable Petri nets.

2.1 Correspondence of Notions between Petri Nets and Graph
Grammars

The firing of a transition in a place-transition net can be modeled by a double pushout in the
category of discrete graphs labeled over the places of the transitions. Let us consider the
transition firing as token game in Figure 2.1.

Figure 2.1 Transition Firing as Token Game

The transition t in Figure 2.1 requires in the pre-domain one token on place A and
two tokens on place B and produces in the post-domain one token on B and two tokens

Page 16

2.1 Correspondence of Notions between Petri Nets and Graph Grammars 17

on place C. This corresponds to the production in the upper row of Figure 2.2, where the
left hand side consists of three nodes labeled A, B and B and the right hand side of three
nodes labeled B, C and C. The empty interface of the production means that no node is
preserved by the production, which corresponds to the token game in place-transition nets.
In fact, the transition t in Figure 2.1 consumes two tokens and produces one token on place
B. Preservation of tokens in the framework of Petri nets can be modeled by contextual nets,
and transition with context places can be modeled by productions with nonempty interface.

Figure 2.2 Transition Firing as Double Pushout

The marking of the left-hand side net in Figure 2.1 corresponds to the discrete graph to
the left in the lower row of Figure 2.2, while the marking after firing of the transition in Figure
2.1 corresponds to the discrete graph to the right. The discrete graph in the middle of Figure
2.2 is the result of the deleting step of the double pushout and that on the right in the lower
row is the result of the adding step. This shows that the firing step in Figure 2.1 corresponds
exactly to a direct derivation in the double-pushout approach. This correspondence of notions
between place/transition nets and graph grammars is shown in Table 1 in more detail. In
fact, enabling of a transition at a marking corresponds to applicability of a production to a
graph,concurrency of transitions corresponds to parallel independent productions applied
with non-overlapping matches, conflicts correspond to parallel dependent direct derivations
with overlapping matches, a parallel transition step of concurrent transitions corresponds to a
parallel direct derivation, and finally a step sequence to a parallel derivation.

Page 17

18 Reconfigurable Petri Nets

Petri Nets Graph Grammars
tokens nodes
places node labels

marking discrete, labeled graph
transition enabled at a marking production applicable to a graph

firing direct derivation
firing sequence concurrent transitions derivation parallel independent productions

conflict parallel dependence
step parallel direct derivation
step parallel direct derivation

step sequence parallel derivation
Table 2.1 Correspondence of Notions

2.2 Reconfigurable Petri Nets

2.2.1 Basic Concepts

Definition 1 (Place/transition nets). place/transition nets is defined in [EP04] as:
A (marked place/transition) net is given by N = (P,T, pre, post,cap, labp, labT ,m) where P
is a set of places, T is a set of transitions. pre :T → P

⊕
maps a transition to its pre-domain

and post : T → P
⊕

maps it to its post-domain.Moreover cap :P→ Nω
+ assigns to each place

a capacity (either a natural number or infinityω), labP : P→ APis a label function mapping
places to a name space, labT : T → AT is a label function mapping transitions to a name
space and m ∈ P

⊕
is the marking denoted by a multiset of places.

2.2.2 Definition (P/T Morphism)

Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for i = 1,2 a P/T morphism f : PS1→
PS2 is given by f = (fP, fT) with function fP : p1→ P2 and fT : T1→ T2 satisfying

1. f
⊕
P ◦ pre1 = pre2 ◦ fT and f

⊕
P post1 = post2 ◦ fT

2. label1 = label2 ◦ fP and

3. M1(P)⩽ M2(fP(P)) for all p ∈ P1 Moreover, the P/T morphism f is called strict if
fP and fT are injective and M1(p) = M2(fP(P)) for all p ∈ P1

The category defined by P/T systems and P/T morphisms is denoted by PTS where the
composition of P/T morphisms is defined component-wise for places and transitions. The

Page 18

2.2 Reconfigurable Petri Nets 19

class of all strict P/T morphisms is denoted byM .
Next we define the gluing condition which has to be satisfied in order to apply a rule at a
given match. The characterization of specific points is a sufficient condition for the existence
and uniqueness of the so-called pushout complement which is needed for the first step in a
transformation.

2.2.3 Definition (Gluing Condition)

Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) i ∈ {L,K,1}, and let PSL
m−→ PS1 be

a P/T morphism and PSK
l−→ PSL a strict morphism,then the gluing points GP, the dangling

points DP and the identification points IP of PS L are defined by
GP = l(PK ∪TK)

DP = {P ∈ PL|∃t ∈ (T1 \mT (TL)) : mP ∈ pre1(t)
⊕

post1(t)}
IP = {P ∈ PL|∃p′ ∈ PL : P ̸= p′∧mP(P) = mP(P′)}

∪{t ∈ TL|∃t ′ ∈ TL : t ̸= t ′∧mT (t) = mT (t ′)}
The P/T morphisms m and l with l strict satisfy the gluing condition, if all dangling and

identification points are gluing points, i.e DP ∪ IP ⊆ GP, and m is strict on places to be
deleted,i.e ∀p ∈ PL \ l(PK) : ML(P) = M1(m(p)). Next we present rule-based transformations
of P/T systems following the double-pushout (DPO) approach of graph transformations in
the sense of[Roz97, EEPT06].

2.2.4 Definition (P/T System Rule)

Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) i ∈ {L,K,R,1},then a rule rule =

(PSL
l←− PSK

r−→ PSR) consists of P/T systems PSL,PSK ,andPSR, called the left-hand side,
interface, and right-hand side of rule, respectively, and two strict P/T morphisms PSK

l−→
PSLandPSK

r−→ PSR.
The rule rule is applicable at the match PSL

m−→ PS1 if the gluing condition is satisfied
for l and m.In this case, we obtain a P/T system PS0 leading to a transformation step

PS1
rule,m
===⇒ PS2 consisting of the following pushout diagrams (1) and (2). The P/T morphism

n : PSR→ PS2 is called comatch of the transformation step.

Page 19

20 Reconfigurable Petri Nets

Now we are able to define reconfigurable P/T systems, which allow the modification of
the net structure using rules and transformations of P/T systems.

2.2.5 Definition (Reconfigurable P/T Systems)

Given a P/T system PS and a set of rules RULES, a reconfigurable P/T system is defined by
(PS,RULES).

Figure 2.3 Cyclic net with rules

Example 1 (Modifying a cyclic process).[PK18] As an abstract example of a dynamic
system we model a cyclic process that can either be executed or modified using the recon-
figurable Petri net (N, r1, r2). Fig.2.3 depicts a simple place/transition net N and the rules
r1 and r2. The net describes a cyclic process that executes one step and then returns to the
start. The modifications in rule r1 change the process by inserting additional sequential steps.
Rule r2 deletes an intermediate step. In Fig.2.4 the application of rule r1 to N is given. First
a match of the left hand side of the rule is given by the occurrence morphism indicated by
the light grey colour of the places and transitions in L and N. The gluing condition holds
since the occurrence morphism preserves the token. In the first step the transition, which is
coloured light grey, is deleted by the construction of the net D and in the second step the
intermediate place and its adjacent transitions (coloured dark grey) are added.

Figure 2.4 Application of rule r1 to N

Page 20

2.2 Reconfigurable Petri Nets 21

2.2.6 Types of Reconfigurable Petri Nets

Reconfigurable petri net are divided in two family According to M-Adhesive Categories
[PEHP08], It’s summarized in the following.

• Low-Level

1. P/T nets

2. P/Ts with individual tokens

3. decorated P/T nets

4. P/T with inhibitor arcs and transition priorities

5. timed P/T nets

• High-Level

1. AHL1 nets

2. AHL nets with individual tokens

3. AHO2 nets

4. AHO nets with individual tokens

2.2.7 Application of Reconfigurable Petri Nets

There are many application of reconfigurable petri net; we give some of these.

• emergency scenarios using mobile ad-hoc networks [EHP+07]

• reconfigurable manufacturing systems [KBD16]

• communication spaces (e.g. Skype, Apache Waves) [Gab14]

• ubiquitous computing (Living Space) [GNH12]

• hardware reconfiguration [PS16]

• Modeling Multicasting in Dynamic Communication-based Systems by Reconfigurable
High-level Petri Nets[BEE+09]

1Algebraic high-level
2Algebraic higher-order

Page 21

22 Reconfigurable Petri Nets

2.2.8 Tools
RON-Editor One of the tools concerned with reconfigurable Petri nets is
RON-Editor [BEHM07]. The RON-editor is based on reconfigurable object
nets [HEM05]. It is an open source and free tool [RON]. The RON-editor
supports users to create, delete and edit parts of the model like object nets,

net transformations rules and a top-level RON. The RON-editor makes several checks (e.g.
for correct typing of tokens on RON places, to guarantee that mappings in rules satisfy net
morphism properties) that help the user to obtain consistent RONs. Additionally, the editor
comprises a simulator using the AGG engine to simulate the application of rules and thus
firing of high-level transitions in the RONs created with the editors. The set of visual editors
have been realized as Eclipse plug-ins using the Eclipse Modelling Framework (EMF) and
Graphical Editor Framework (GEF) plug-ins.

ReConNet [PEOH12, ReC] is an open source project that has been ini-
tiated at the HAW Hamburg developing a tool for editing and simulating
reconfigurable decorated nets. Itprovides an intuitive graphic-based user
interface that allows the user to create, modify and simulate reconfigurable
nets.

2.3 Reconfigurable Object Nets

Are considered reconfigurable petri; one of the formal modeling language using to describe
the systems wich change their structure at the run-time, but this language is dedicated to
modeling one system not plus. In fact there are reconfigurble distribute system. This requires
a new model for description this systems. we introduce a new generation of reconfigurable
petri nets. this generation is called reconfigurable object nets on used the paradigm of
token as net introduce by valk [Val04]. In this section, we give the basic concepts of our
contribution.

2.3.1 Definition RON:

Reconfigurable object nets (RON) represent an extension from reconfigurable Petri net, use
to describe reconfigurable distributes systemes, multi-agent systems ad-hoc network. RONs
use the paradigm of token as net from valk [Val04] to describe the distribution of the nets
and tokens.The DPO approach from graph grammar and graph transformation (see chapter
1) allows to describe a set of productions rules and for changing nets structure.

RON represent high level nets with two types of places net-places , rule-places and two
types of transition firing-transition and transform-transition, directed arcs connecting places

Page 22

2.3 Reconfigurable Object Nets 23

with transitions. Net-places is the buffer of basic reconfigurable Petri nets, Rule-places mean
the set of production rules.

First off a High level places are typed either as NET or RULE and thus can either hold
object nets or rules and do not have a capacity. Also the arcs have no weights in contrast to
our regular Petri nets. There are two types of high-level transition:
Transform-Transition:
The pre-condition to be enabled. is one net-places and one of rule-places. The post-condition
is a set net-places. The applicaiton of this transition makes changes in the net structure.
Figure 2.5 shows that the application of transform transition required the presence of least
one token object in precondition and at least one rule. After the transformation, the net from
net places change its structure; but in rules places there is no changing in the marking or in
the structure of the rules.

Figure 2.5 Example Transform Transition

Fire-Transition:
This transition is like a transition in basic petri nets with some different; it transition allows an
object from net places to change their marking and shifting the object to another net-places,
the figure 2.6 depicts the application of fire transition.

From figure 2.6, the fire transition have no rule place in the entry.

Page 23

24 Reconfigurable Petri Nets

Figure 2.6 Example Fire transition

Conclusion

In this chapter we have presented a Petri net transformations as generalization of graph
grammar and graph transformation and we presented this as reconfigurable Petri Nets. In the
end of this and after giving the detail about reconfigurbale Petri Nets, we have introduced
another extension for reconfigurable Petri nets called Reconfigurable Object Net. In the next
chapter we give the realization a tool proposed for the editing and the simulation of RONs.

Page 24

Part II

A Tool for Reconfigurable Petri Nets

Chapter 3

Analysis and Design

Chapter 3

Analysis and Design

3.1 Introduction

After having learned the necessary theoretical points, we pass to the application develop-
ment. This chapter is composed of three sections; we begin by present the aim of our project.
Next, we give an abstract model of the application, application. Finally, in last, we present
the details of the general architecture, which was mentioned in the previous section; we use
UML UML1 class diagram to do that.

3.2 Analysis

Nowadays, formal modeling researchers look to introduce new model more flexible and
easy than old ones.One of these models is called reconfigurable Petri nets. However modeling
still difficult using these models and the tools dedicated to these kind of formalisms are not
suitable neither sufficient. Our project aim is the implementation of new software solutions
more easy than other tools and we take the aspect of tokens as nets [Val04], to introduce
reconfigurable object nets (RON) but not like the RON developed in -berlin 2 2[BEHM07].

1The Unified Modeling Language is a general-purpose, developmental, modeling language in the field of
software engineering, that is intended to provide a standard way to visualize the design of a system.

2Technical University Berlin www.tfs.cs.tu-berlin.de/roneditor

Page 27

www.tfs.cs.tu-berlin.de/roneditor

28 Analysis and Design

3.3 Global Design

After having fixed the project aim and before entering in the process of development or
the programming, it is necessary to present the results of analysis of our topic as an abstract
architecture. Figure 3.1 represents our abstract model.

Figure 3.1 Global architecture of the application

According to our global architecture the user can create 3 types of models: petri net, rule
and Ron3 which are stored in files with the following extensions: pnml4, Rule and Ron
Respectively. These files are created After the user draws their model, he also can read these
files with the using of our application in the simulation of petri net or RON or in checking
the validity of the morphisme. The user maybe can use these files (PNML, RULE and RON)
in external tools like Tina (see [Tin]) or ReConNet (see [ReC]) as analyzer to analyze their
petri nets models.

3Reconfigurable Object Nets
4Petri Nets Markup Language

Page 28

3.4 Class Diagram 29

3.4 Class Diagram

The above model (figure 3.1) is the abstraction of our application but we need a model with
some details to describe the tools in a way closer to the programming level. The best model
is UML class diagram.

Figure 3.2 class diagram (P/T nets)

The (Figure 3.2) shows the main classes that are needed to make the addition of low-level
Petri nets (PN) (see Chapter 1.1). A PN class represents a P/T network; instances of this
class that we will use later as Object Nets in RONs. The PN class contains all the necessary
attributes to define a P/T network: a list of Place objects, a list of Transition objects, a list of
Arc objects, including the necessary methods for the addition and removal of these elements.
The Transition class contains the graphical positions PosX and PosY which indicate where the
graphics object is drawn, a reference on a rectangle object (a graphical object that represents
a transition), a list of incoming arcs, a list of outgoing arcs and the necessary methods to add
and delete. The same attributes for the Place class except that the place is associated with a
graphical object of the oval class and that class contains another attribute that indicates the
marking. The Arc class, contains a source object (Place or Transition), a target object (place

Page 29

30 Analysis and Design

or transition), graphical positions of the line object (graphic object that represents an arc)
and a reference to this graphics object (line).

To give a basic understanding of how the RON was implemented, consider the (partial)
model that shown in Figure 3.3.

Figure 3.3 class diagram RONs

Figure 3.3 shows the main classes needed for the creation of a RON. The RON class contains
a list of places that can be objects of NetPlace or classes, a list of transitions that can be
"Transform Transition" or "Fire Transition" classes, a list of arcs and necessary methods
for adding, deleting, importing, exporting, simulation and analysis. The class "Netplace"
contains a list of the objects of the class PN (Token Nets). class contains a list of objects in
the class Rule (Token Rules).

Conclusion

In this chapter, we have shown analysis that has directed us to a design our tool. We move on
to the next stage in which we implement this project. The next steps of the project are an

Page 30

3.4 Class Diagram 31

implementation of the proposed design, testing and discussing some experimental results.
These steps will be the aim of the next chapter 4 which is the last chapter.

Page 31

Chapter 4

Implementation

Chapter 4

Implementation

Introduction

After analysis and design steps that are mentioned in the previous chapter (chapter 3), we
have to pass to the next steps of the project, which are coding and test. These phases
aim to implement a tool for modeling and simulation of reconfigurable object nets. This
chapter includes tow modules. The first module introduces briefly the development tools and
languages that we have learned and exploited in the realization of our project. The second
section is the main implementation results of our final application.

4.1 Development Tools and Languages

In this section, we present different tools and languages, that help us during the realization
of our project in the two levels (programming level, and theoretical level).

4.1.1 Python programming language

Python is an intelligent programming language that we have used it in the
implementation of our application. It is easy to learn, because it is flexible,
and its syntax is not hard to learn. A Python program is short than other lan-
guages programs, because of the availability of many implemented functions.
Python is an open source and untyped programming language. It is available

for all these operating system (Windows, LINUX, Mac OS).

Page 33

34 Implementation

4.1.2 PyCharm Programming Editor
PyCharm is an open source Integrated Development Environment (IDE), used
for python programming. It is a powerful coding assistant, it can highlight
errors and introduces quick fixes based on an integrated Python debugger.
It is a suitable editor for writing and testing many lines of code and classes,
since it offers a structural project view, and a quick files navigation.

4.1.3 Tool Kit Interface “Tkinter” Package
Tool Kit Interface in short “Tkinter” [tk05], it is an open source Graphical User
Interface (GUI) package. It is intended for Python programming language.
We have preferred the Tkinter toolkit for developing GUIs of our application,
because it is simple to learn it , and it is a powerful toolkit. It is available on

both operating systems (Windows, Linux, and Mac OS).

4.1.4 Document Preparation System LATEX
LATEX [Lam17] is a powerful and flexible typesetting system for producing high quality
technical and scientific papers. It based on the tags language. It follows the design philosophy
of separating presentation from content, thus authors focus on what they are writing, not on
what is displayed, because the appearance is handled by LATEX. The appearance includes
many aspects, document structure (part, chapter, section, ..etc), figures, cross-references
and bibliographies. It is more familiar to a computer programmer, because it follows the
code-compile-execute cycle.

4.1.5 Typesetting Editor (TEX MAKER)
TEX MAKER [TMa17] is a free and open source editor for drafting papers,
based on LATEX system. It supports a powerful spell-checker, code auto-
completion, and a pdf displayer. We have used TEX MAKER to draft our
report and make our presentation, because it produces high quality papers
and talks.

4.2 Implementation

Moreover mentioned above (section 4.1), we used in our tool; oriented object programming
(OOP) paradigm, and we used a set of software and hardware which are summarized in the
following table. 4.1.

Page 34

4.2 Implementation 35

Software/Hardware Version
OS linux ubuntu , 64bits, version 16.04

CPU Intel®Pentium(R) CPU P6200 @ 2.13GHz × 2
RAM 4.00Go

Python Interpreter 3.5.0
PyCharm 2016.3.1
Tkinter 8.6

Table 4.1 Software/Hardware versions

4.2.1 Application Home

Figure 4.1 depicts the whole interface of our application.

Figure 4.1 Application Home

After many steps of development, we implemented a graphical tool that allows to model and
simulate;The Reconfigurable object nets based algebraic approach-DPO (see chapter 1,2).
This tool is not only for RONs1 but it also allows modeling and simulation of Low level Petri
nets (net P / T). The tool has been designed to be easy to use with a simple interface (see
Figure 4.1) which consists of a menu bar, a toolbar and a drawing area with scroll-bars, and a
status bar. A menu bar contains the different editors that can work separately one of the other.
Next some description about the components of our tools; menu bar, tool bar and drawing
area, are presented.

1Reconfigurable Object Nets

Page 35

36 Implementation

Figure 4.2 New Menu 1.

(a) File Menu. (b) Open Menu.

Figure 4.3 New Menu 2.

Menu Bar: The application contains a menu bar with three menus (File, Edit and Help);
the main menu is the file menu. We will give the description of the principle menu "File
menu".

File menu: File menu figure 4.3a contains 2 sub menus; new and open menu (See Figure
4.3b, 4.2 and 4.3a). The sub menus new; allows the user to open new drawing area for Petri
net, reconfigurable object nets or to create rule. The sub menus open; allows user to recover
his models for editing and simulation. If the user click at the exporter label in the master
menu, it’s allows to save their models, in their extensions (pnml, rule, ron).

Page 36

4.2 Implementation 37

Figure 4.4 Toolbar

Toolbar: toolbar consists of many buttons see (Figure 4.4).

In the toolbar above, the button , used to draw places (P / T nets), the button , used to

draw transition (P / T nets), the button , used to create arcs between places and transition
in the drawing low level net or RON, the button is used to drag the model of petri net or
reconfigurable object nets in the drawing area, delete button , is used to delete a graphical
object from the drawing area, run simulation button , use to run simulator; for Petri net
model; or Rons models, move button , used to drag or move the graphical object in drawing
area, the button , used to draw fire transition in the ron editor, the button using to draw
transform transition in the ron editor, the button used to draw rule-place for ron, the button

used to draw net-place in the drawing area of the ron editor. The last four buttons run just
in the drawing area of the RON, stop simulation button used for back to initial marking.

After learning about our tools in general, next we go to the features of our application.

4.2.2 Application features

Our tool consists of three modules: Module for P / T net editor, Module for creating a
rule, the last is the module for RON editor, that has been made independently. Below the
description of features of each editor.

Petri Net Editor

The first component we implemented was a graphical editor for P / T net (see Figure 4.5).
This editor allows the creation and modification of a Petri net in the drawing area using the
toolbar above (see 4.2.1.). The first component we implemented is a graphical editor for P /
T net (see Figure 4.5). This editor allows to create and edit a Petri net using a toolbar above
(see 4.2.1.) this format that allows opening their models in other tools like TINA (see 4.11).
After drawing place or transition, the user can change the label and marking of the places
(see figure 4.7, 4.8). The models that are drawn are saved in Pnml file (see figure 4.9 below).

Page 37

38 Implementation

Figure 4.5 Module Petri net

After drawing place or transition user can change the label and marking of the places (see
figure below). The models are saved in pnml file see figure 4.8 below; this format allows
opening their models in other tools like TINA (see 4.10). After drawing place or transition,
the user can change the label and marking of the places (see figure 4.6, 4.7). The models that
are drawn are saved in Pnml file (see figure 4.8 below).

Figure 4.6 Edit Transition

Page 38

4.2 Implementation 39

Figure 4.7 Edit Place

Figure 4.8 Pnml File

Figure 4.10 and 4.11 show how to use pnml file (Figure 4.8) in other tools like TINA to
generate the same model. Moreover, our tool gives more than TINA, give to the user the
enabled transition at the same time of drawing the model see the transition T0 (figure 4.10)
with green colour, is enabled but on TINA no information about that.

Page 39

40 Implementation

Figure 4.9 Petri Net using our Application

Figure 4.10 Petri Net using TINA

To simulate Petri net in our editor; we use the simulation button in the toolbar (Figure
4.5) after clicking this button the other drawing buttons are disabled.

Page 40

4.2 Implementation 41

Simulate Petri Net

To simulate Petri net in our editor, we use the simulation button in the toolbar (Figure 4.4),
after clicking this button the other drawing buttons are disabled.

Figure 4.11 Run Simulation

In the previous chapters, we talk about a set of production rules. in our application to
create a rule the user does not need to draw again the components of these rules but he needs,
just, the pnml file from the Petri net editor.

Figure (4.12a, 4.12b) show that the dynamics (game token) see chapter 2.

(a) Before Firing Transition T0 (b) After Firing Transition T0

Figure 4.12 Before and After Firing Transition T0.

Page 41

42 Implementation

Create Rule:

In the previous chapters, we talk about a set of production rules. in our application to create
a rule the user does not need to draw again the components of these rules but he needs, just,
the pnml file from the Petri net editor.
The GUI of create rule (Figure 4.13) is composed of 3 parts left-hand, interface, right-hand the
user imports the nets of the rules as pnml file using the button with net label see Figure4.13.
Each part is shown in the drawing area to make user decide the file that import is correct or
not.

Figure 4.13 Create Rule

Check Rules and Save:

After the importation of components of the rule; the user can check and save the rule. To
do that, the user opens the menu bar and clicks in export; file dialog is shown and ask the
user about file name and the directory to save it, after clicking on button OK, the process of
checker is run in background; this mode makes user check the morphism in different parts
of the rule. If there is no problem in the rule, an information message is shown, "the rule
is correct". After clicking on the button OK, the rule is saved as XML file with extension
(.rule).
If not, an information message is shown, " rule not checked ". Moreover, the message
indicates the part that does not check the conditions of morphism, in order to provide to the
user to know about what’s wrong in their rule.

Page 42

4.2 Implementation 43

The figures 4.15, 4.16, 4.17 and 4.18 show various morphism checker; this is helpful to
the user in creating their rules. The first figure gives an information message which confirms
that this rule is correct. After that, when the user clicks on OK button, the rule is saved in
XML file with extension rule.

Figure 4.14 RULE FILE

Figure 4.15 Check Morphism 1

The message in figure 4.15 provides that there is no morphism from the interface to the
left hand. Figure 4.16 shows that rule is fully not correct.

Page 43

44 Implementation

Figure 4.16 Check Morphism 2

Figure 4.17 Check Morphism 3

The figure above shows that the case when the user can get rule file. This means that the
user is creating a correct rule.

Page 44

4.2 Implementation 45

Figure 4.18 Check Morphism 4

Ron Editor:

Previously, we talked about Petri net editor drawing and simulation. In the production rule
we talk about the creation and validate this rules, this latter will be the basis for the creation
of the RONs model in our tool. Before entering in more details about how to use our tool in
creation we back to the definition of RONs. RONs represent a high-level Petri net which is
composed of two parts of places (net-places and rule-places). Net-places are used to describe
the models of different systems which can change their structure at the runtime if these
systems satisfy the production rules. These rules represented as tokens in the set of rules
places. Rons are with two other types of components called transform transition and fire
transition. These transitions will be used in the dynamic of the RONs model. Transform
transition is used to change the net structure after the net satisfied the production rule (Figure
4.15). The fire transition provides the net to changes it’s marking. The rest of this chapter is
intended for explaining the instructions of using our tool (from editing the RON model to the
simulation).

Page 45

46 Implementation

Figure 4.19 A RON model

The figure 4.19 above depicts our RONs model. In the next, we give the steps of creating
this model using our tool. To create RONs model in the drawing area. First, open the new
menu in the toolbar 4.2 and choice new RON. After that, you need the toolbar (Figure 4.4) to
draw the different components of the structure of the RONs model.

Page 46

4.2 Implementation 47

.

Figure 4.20 ADD NETS

.

Figure 4.21 File RON

After drawing the structure of the RONs, you must add the behaviour, nets and rules. We
will use the results of the drawing of Petri net; it’s represented pnml file (See figure 4.8) and
the rules; it is represented by rule file (see figure 4.14). The saved of RONs model will be in
the xml file with the extension .ron (see figure 4.21).

Page 47

48 Implementation

Figure 4.22 ADD RULES

The figure above 4.20 is the interface for adding nets. The user can add multiple nets and
can change the name of places as well as he can show the nets in the drawing area.

The figure 4.22 shows how can user add set of production rule in the rule places. To do
that we exploited the same GUI of adding nets but with one difference in the drawing area.
When the user adds the set of rules, he can show the three parts of rules.

Simulate RONs

After that, the user completes his model and wants to simulate it, the user clicks on the
simulation button located on the toolbar. The simulation runs as the simulation of the basic
nets. The other buttons are disabled and the enabled transitions are coloured. The rest of the
simulation takes another way which differs from simulation basic Petri nets. The following
is a description about simulation RONs step by step.

Apply Fire Transition The applying of fire translation provides the Ron model by change
it’s marking, more the net in the set of pre-conditions can change its marking. We do that by
using an external interface displayed when clicking on the enabled transition.

Page 48

4.2 Implementation 49

Figure 4.23 Apply fire Transition 1

Figure 4.24 Apply fire Transition 2

The screen-shot above is about how apply the fire transition, with the simulation button
in the external frame. The user can play the game tokens2 like basic petri nets (see simulate
petri net above figure 4.12a,4.12b).

2Game tokens is the firing the transition in basic petri nets

Page 49

50 Implementation

Apply Transform Transition The applying of transform transition is summarized as
follows:
After the click on the enabled transition (see the condition of apply rules), a new frame
is displayed the Petri nets after the transformation step. Moreover, there are 4 buttons for
showing different parts of the rule and source nets (See figure 4.25).

Figure 4.25 Apply Transform Transition 1

The user can see all the parts of rules and the source nets just with one click on the button
which has the name of the needed part.
The following pictures explain how the user can see the nets transformation in the different
vision.

Figure 4.26 Apply Transform Transition 2

Page 50

4.2 Implementation 51

Figure 4.27 Apply Transform Transition 3

The last two figures show that the user can display any part using in the nets transformation;
more than the figure 4.27 shows that the user can find the occurrence morphism on the net
with the colouring of the deleting part.

The figure 4.26 shows that the user can display all the parts of the transformation at the
same time with the colourization of each part, with special colour, for more flexibility in the
simulation.

Conclusion

In this chapter, we have presented the tools that we have used to implement our application,
then the results of our implementation as a set of graphical user interfaces (GUI).

Page 51

Conclusion

Reconfigurable Petri nets are suitable to model, analyse and diagnose the systems which
are parallel and reconfigurable, to allow the reliability in this type of systems. In fact,
reconfigurable Petri nets provide powerful and intuitive formalism to model dynamic software
or hardware systems that are executed in dynamic infrastructures, but they are difficult to
handle. Modelling and simulating dynamic systems require an automatic tools. Up to
now, there have been two tools that also implement some kind of reconfigurable Petri
nets. However, these tools are not sufficient, which motivates us to develop a new tool for
reconfigurable Petri nets. This tool is suitable for modelling and simulating the reconfigurable
object nets. We have implemented the tool using Python programming language.

As future work, we plan to improve and complete the developer tool and to consider the
analysis of RONs (Reconfigurbale Object Nets). On the theoretical level, look for a new
invented a new method to provide more power and flexibility for reconfigurable Petri nets.

xv

Bibliography

[BEE+09] Enrico Biermann, Hartmut Ehrig, Claudia Ermel, Kathrin Hoffmann, and Tony
Modica. Modeling Multicasting in Dynamic Communication-based Systems by
Reconfigurable High-level Petri Nets. In IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2009, Corvallis, OR, USA, 20-24
September 2009, Proceedings, pages 47–50. IEEE, 2009.

[BEHM07] Enrico Biermann, Claudia Ermel, Frank Hermann, and Tony Modica. A Visual
Editor for Reconfigurable Object Nets based on the ECLIPSE Graphical Ed-
itor Framework. In G. Juhas and J. Desel, editors, Proc. 14th Workshop on
Algorithms and Tools for Petri Nets (AWPN’07), Universität Koblenz-Landau,
Germany, October 2007. GI Special Interest Group on Petri Nets and Re-
lated System Models. http://www.user.tu-berlin.de/lieske/tfs/publikationen/
Papers07/BEHM07.pdf.

[EEHJG99] H. Ehrig, G. Engels, H.-J.Kreowski, and G.Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformation, Concurrency, Parallelism
and Distribution., volume 2. World Scientific, Singapore„ 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic
graph transformation. EATCS Monographs.Springer, 2006.

[EHP+07] Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Ulrike Prange, and Claudia
Ermel. Independence of net transformations and token firing in reconfigurable
place/transition systems. In Petri Nets and Other Models of Concurrency -
ICATPN 2007, 28th International Conference on Applications and Theory of
Petri Nets and Other Models of Concurrency, ICATPN 2007, Siedlce, Poland,
June 25-29, 2007, Proceedings, pages 104–123, 2007.

[EMH73] H. Ehrig, M.Pfender, and H.J.Schneider. Graph grammars: an algebraic ap-
proach. in proceedings of focs 1973. IEEE, pages 167–180, 1973.

[EP04] Hartmut Ehrig and Julia Padberg. Graph Grammars and Petri Net Trans-
formations, pages 496–536. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[Gab14] Karsten Gabriel. Interaction on human-centric communication platforms:
modelling and analysis using algebraic high-level nets and processes. PhD
thesis, Berlin Institute of Technology, 2014.

http://www.user.tu-berlin.de/lieske/tfs/publikationen/Papers07/BEHM07.pdf
http://www.user.tu-berlin.de/lieske/tfs/publikationen/Papers07/BEHM07.pdf

xviii Bibliography

[GNH12] Susann Gottmann, Nico Nachtigall, and Kathrin Hoffmann. On modelling
communication in ubiquitous computing systems using algebraic higher order
nets. ECEASST, 51, 2012.

[HEM05] Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets
with nets and rules as tokens. In Gianfranco Ciardo and Philippe Darondeau,
editors, Applications and Theory of Petri Nets 2005, pages 268–288, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[HHJUG99] H.Ehrig, H.-J.Kreowski, U.Montanari, and G.Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformation, Concurrency, Parallelism
and Distribution., volume 3. World Scientific, Singapore„ 1999.

[KBD16] Laïd Kahloul, Samir Bourekkache, and Karim Djouani. Designing reconfig-
urable manufacturing systems using reconfigurable object petri nets. Int. J.
Computer Integrated Manufacturing, 29(8):889–906, 2016.

[Lam17] Leslie Lamport. LaTeX. https://en.wikipedia.org/wiki/LaTeX, 2017. accessed
on May 18, 2017.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, pages 541–580, 1989.

[PEHP08] Ulrike Prange, Hartmut Ehrig, Kathrin Hoffmann, and Julia Padberg. Trans-
formations in Reconfigurable Place/Transition Systems, pages 96–113. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[PEOH12] Julia Padberg, Marvin Ede, Gerhard Oelker, and Kathrin Hoffmann. Reconnet:
A tool for modeling and simulating with reconfigurable place/transition nets.
ECEASST, 54, 2012.

[PK18] Julia Padberg and Laid Kahloul. Overview of Reconfigurable Petri Nets, pages
201–222. Springer International Publishing, Cham, 2018. https://doi.org/10.
1007/978-3-319-75396-6_11.

[PS16] Julia Padberg and Alexander Schulz. Model checking reconfigurable petri
nets with maude. In Graph Transformation - 9th International Conference,
ICGT 2016, in Memory of Hartmut Ehrig, Held as Part of STAF 2016, Vienna,
Austria, July 5-6, 2016, Proceedings, pages 54–70, 2016.

[ReC] A Tool for Reconfigurable Petri Nets. https://reconnetblog.wordpress.com/.

[RON] An editor for Reconfigurable Object Nets. http://www.user.tu-berlin.de/o.runge/
tfs/projekte/roneditor/.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformation, Concurrency, Parallelism and Distribution., volume 1. World
Scientific, Singapore„ 1997.

[Tin] LAAS CNRS home page. https://www.laas.fr/public/fr.

https://en.wikipedia.org/wiki/LaTeX
https://doi.org/10.1007/978-3-319-75396-6_11
https://doi.org/10.1007/978-3-319-75396-6_11
https://reconnetblog.wordpress.com/
http://www.user.tu-berlin.de/o.runge/tfs/projekte/roneditor/
http://www.user.tu-berlin.de/o.runge/tfs/projekte/roneditor/
https ://www.laas.fr/public/fr

[tk05] An Introduction to Tkinter. http://effbot.org/tkinterbook/, 2005. accessed on
May 18, 2017.

[TMa17] L’éditeur LaTeX universel. http://www.xm1math.net/texmaker/index_fr.html,
2017. accessed on May 18, 2017.

[Val04] RudigerValk. Object Petri Nets Using the Nets-within-Nets Paradigm. Springer,
Berlin, Heidelberg, 2004.

http://effbot.org/tkinterbook/
http://www.xm1math.net/texmaker/index_fr.html

	Contents
	List of Tables
	List of Figures
	Introduction
	I Background
	1 Petri Nets and Graph Grammar
	Introduction
	1.1 Petri Nets (Definitions)
	1.1.1 Basic Petri net
	1.1.2 Reachability tree
	1.1.3 Reachability graph
	1.1.4 Incidence matrix

	1.2 Behaviour and Properties of Petri Nets
	1.2.1 Properties of Petri Nets
	1.2.2 Behaviour of nets and examples

	1.3 Graph Grammars and Graph Transformation
	1.3.1 What is Graph Transformation?
	1.3.2 Overview of Different Approaches
	1.3.3 The Main Ideas of the Algebraic Graph Transformation Approach
	1.3.4 Graphs and Graph Morphisms
	1.3.5 Graph Productions
	1.3.6 Graph Transformation

	Conclusion

	2 Reconfigurable Petri Nets
	Introduction
	2.1 Correspondence of Notions between Petri Nets and Graph Grammars
	2.2 Reconfigurable Petri Nets
	2.2.1 Basic Concepts
	2.2.2 Definition (P/T Morphism)
	2.2.3 Definition (Gluing Condition)
	2.2.4 Definition (P/T System Rule)
	2.2.5 Definition (Reconfigurable P/T Systems)
	2.2.6 Types of Reconfigurable Petri Nets
	2.2.7 Application of Reconfigurable Petri Nets
	2.2.8 Tools

	2.3 Reconfigurable Object Nets
	2.3.1 Definition RON:

	Conclusion

	II A Tool for Reconfigurable Petri Nets
	3 Analysis and Design
	3.1 Introduction
	Introduction
	3.2 Analysis
	3.3 Global Design
	3.4 Class Diagram
	Conclusion

	4 Implementation
	Introduction
	4.1 Development Tools and Languages
	4.1.1 Python programming language
	4.1.2 PyCharm Programming Editor
	4.1.3 Tool Kit Interface ``Tkinter'' Package
	4.1.4 Document Preparation System LaTeX
	4.1.5 Typesetting Editor (TeX MAKER)

	4.2 Implementation
	4.2.1 Application Home
	4.2.2 Application features

	Conclusion

	Conclusion
	Bibliography

