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Abstract
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by Labed Abdel Djalil

Network Intrusion Detection System (NIDS) is a security mechanism used to protect a

computer network from malicious activity and unauthorized access to devices by generat-

ing reports to the administrator of the system. In our project, we propose a deep learning

approach for intrusion detection using a deep neural network (DNN-IDS). We apply our

proposal on NSL-KDD (a benchmark dataset for network intrusion). We particularly

study the performance of the model with both binary and multiclass classifications. The

binary classification model aims at identifying whether network traffic behaviour is nor-

mal or anomalous whereas multiclass classification provides a more refined classification

by determining the class to which traffic belongs (Normal, Denial-of-Service, User to

Root, Probe, Remote to Local). We validate our proposal by evaluating its performance

against state-of-the-art machine learning classification methods in both situations: bi-

nary and multiclass classification. The experimental results show that our approach

performs very well compared to existing NIDSs.
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Résumé

Exact Sciences and Natural and Life Sciences

Computer Science

Mémoire de Master

par Labed Abdel Djalil

Un système de détection d’intrusion réseau est un système de sécurité utilisé pour

protéger un environnement réseau contre les activités malveillantes et l’accès non au-

torisé aux périphériques en générant des rapports pour l’administrateur du système.

Dans notre projet, nous proposons une approche d’apprentissage en profondeur pour la

détection d’intrusion à l’aide d’un réseau neuronal profond (DNN-IDS). Nous applicons

notre proposition sur NSL-KDD (un ensemble de données de référence pour l’intrusion

réseau). De plus, nous étudions les performances du modèle avec des classifications bi-

naire et multiclasse. Le modèle de classification binaire identifie si le comportement du

trafic réseau est normal ou anormal. Le modèle de classification multiclasse vise classer

le traffic dans une des cinq catégories suivantes: (Normal, Deni de Service, User to Root,

Probe, Remote to Local). Pour valider notre proposition, nous la comparons avec les

méthodes de pointe de classification d’apprentissage automatique dans les deux situa-

tions: classification binaire et multiclasse. Les résultats des expérimentations ont prouvé

que l’approche proposée se comporte très bien par rapport aux NIDSs précédemment

mis en oeuvre.

http://univ-biskra.dz/
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Acknowledgements

The first and the last thing is for Allah Who Provided me the sufficient capacity to finish

this work.

I would like to express my thanks for the great support from many people, without

whom this thesis would not have been possible.

I would like to express uttermost gratitude to my supervisor Prof Abdelmalik Bachir for

his guidance, advice and effort, which have been essential at every stage of my research

and shaped the thesis.

Also I am very thankful to my friends Labed Ayoub, Labed Fathi, Labed Nadir, Labed

Kamel, Rabie Bouchamie, Labed Saleh, Labed Taher, Labed Mohamed Mohyeddine,

Ben Nacer Mostafa, Hadef Mehdi, Redjimi Adel, Noureddine Houssem Eddine, Kher-

achi Fadia, Amina Rouina, Samah Merabti, Labed Razgallah, Ben Terki Aboubaker

Seddiq, EL Hamel Soheib, Ben Hammed Radoune for the friendship, inspiration, and

encouragement during my research.

Most importantly, I would like to thank my mother Labed Samia, my father Mansouf,

my grandpa Azzedine and grandma Bachra for their constant support, encouragement,

and motivation, which enabled me to overcome any difficulties I encountered during my

research

At last thanks go to my family members Mohamed, Hadjer and Rinad for their com-

panion and the great happiness they brought.

iii



Contents

Abstract i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

Abbreviations x

1 Intrusion Detection Systems 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Generalities on Information Security . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Information Security . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 The Security Process . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Information Assurance . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4.1 Security Properties . . . . . . . . . . . . . . . . . . . . . 7

1.2.4.2 Information Location . . . . . . . . . . . . . . . . . . . . 7

1.2.4.3 System Processes . . . . . . . . . . . . . . . . . . . . . . 7

1.2.5 Goals of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 What is an Intrusion Detection . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Definition of Intrusion Detection System . . . . . . . . . . . . . . . 9

1.3.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 A Simple Taxonomy of Intrusion Detection Systems . . . . . . . . 9

1.3.4.1 Host-Based versus Network-Based Intrusion Detection . 10

1.3.4.2 Misuse Detection versus Anomaly Intrusion Detection . . 11

The Limitation of Misuse Detection . . . . . . . . . . . . . 11

The Limitation of Anomaly Detection . . . . . . . . . . . . 12

1.3.4.3 Real-time versus Off-line Intrusion Detection . . . . . . . 12

1.3.4.4 Passive versus Active Intrusion Detection . . . . . . . . . 13

1.3.4.5 Depending on the Architecture: . . . . . . . . . . . . . . 13

1.3.5 Placement of NIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



Contents v

1.3.6 Types of Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.7 Desirable Characteristics of IDS . . . . . . . . . . . . . . . . . . . 15

1.3.8 Challenges in Intrusion Detection . . . . . . . . . . . . . . . . . . . 16

1.3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Machine Learning and Deep Learning 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Artificial Intelligence, Machine Learning, and Deep Learning . . . 20

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Types of Machine Learning System . . . . . . . . . . . . . . . . . . 21

2.3.1.1 Supervised/Unsupervised Learning . . . . . . . . . . . . . 22

Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 22

Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . 22

Semisupervised Learning . . . . . . . . . . . . . . . . . . . . 23

Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 24

2.3.1.2 Batch and Online Learning . . . . . . . . . . . . . . . . . 24

Batch Learning . . . . . . . . . . . . . . . . . . . . . . . . . 24

Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1.3 Instance-Based Versus Model-Based Learning . . . . . . . 25

Instance-Based Learning . . . . . . . . . . . . . . . . . . . . 25

Model-Based Learning . . . . . . . . . . . . . . . . . . . . . 25

2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . 28

2.4.1.2 Back-Propagation Algorithm . . . . . . . . . . . . . . . . 29

2.4.1.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 33

L2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 33

Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 34

Other Regularizers . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1.5 Hyperparameter Selection . . . . . . . . . . . . . . . . . . 35

2.4.2 Main Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2.1 Neuron Activations . . . . . . . . . . . . . . . . . . . . . 36

2.4.2.2 Feed-forward Neural Network . . . . . . . . . . . . . . . . 38

2.4.2.3 Batch normalization . . . . . . . . . . . . . . . . . . . . . 39

2.4.2.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . 40

2.4.2.5 Architectural Variations . . . . . . . . . . . . . . . . . . . 40

2.4.2.6 Future Challenges . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Intrusion detection using deep learning 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The NSL-KDD Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Brief KDD CUP 99 Data-Set Description . . . . . . . . . . . . . . 44

3.2.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 44



Contents vi

3.2.3 Advantages of NSL-KDD . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Features Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 Attacks Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.6 Distribution Details . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Proposed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Models Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . 58

Network Structure for Binary Classification . . . . . . . . . 58

Hyperparameters for Binary Classification . . . . . . . . . . 59

3.4.2.2 Multiclass Classification . . . . . . . . . . . . . . . . . . . 59

Network Structure for Multiclass Classification . . . . . . . 60

Hyperparameters for Multiclass Classification . . . . . . . . 60

3.4.3 Training, Validation and Test Data Sets . . . . . . . . . . . . . . . 61

3.4.4 Performance Parameters of IDS . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Results and Discussions 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Deep Neural Network Binary Classification . . . . . . . . . . . . . 66

4.3.1.1 Evaluation Based on Training data . . . . . . . . . . . . . 66

4.3.1.2 Evaluation Based on Test Data . . . . . . . . . . . . . . . 67

4.3.2 Deep Neural Network Multiclass Classification . . . . . . . . . . . 69

4.3.2.1 Evaluation Based on Training data . . . . . . . . . . . . . 69

4.3.2.2 Evaluation Based on Test Data . . . . . . . . . . . . . . . 70

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 74



List of Figures

1.1 The security cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The standard model of information assurance . . . . . . . . . . . . . . . . 8

1.3 Types of IDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Computer network with intrusion detection systems . . . . . . . . . . . . 14

1.5 Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Artificial intelligence, machine learning, and deep learning . . . . . . . . . 20

2.2 Machine learning a new programming paradigm . . . . . . . . . . . . . . . 21

2.3 A labeled training set for supervised learning . . . . . . . . . . . . . . . . 22

2.4 An unlabeled training set for unsupervised learning . . . . . . . . . . . . . 23

2.5 Semisupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Instance-based learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Model-based learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 A composite function representing the computations performed in the
various layers of a DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 Gradient descent variants trajectory towards minimum . . . . . . . . . . . 32

2.13 Main activation functions used in deep neural networks. . . . . . . . . . . 38

2.14 A fully-connected composed of four hidden layers . . . . . . . . . . . . . . 39

2.15 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Number of instance in training dataset . . . . . . . . . . . . . . . . . . . . 53

3.2 Number of instance in testing dataset . . . . . . . . . . . . . . . . . . . . 53

3.3 Example of deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Architecture of the proposed model . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Data preprocessing model . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 The overall architecture of DNN-IDS model in binary classification . . . . 58

3.7 The overall architecture of DNN-IDS model in multiclass classification . . 60

4.1 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Software and hardware stack . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Training and validation accuracy in binary classification . . . . . . . . . . 67

4.4 Training and validation loss in binary classification . . . . . . . . . . . . . 67

4.5 Performance of DNN-IDS and the other models in the binary classification 68

4.6 Training and validation accuracy in multiclass classification . . . . . . . . 69

4.7 Training and validation loss in multiclass classification . . . . . . . . . . . 69

vii



List of Figures viii

4.8 Performance of DNN-IDS and the other models in the multiclass classifi-
cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Tables

3.1 List of NSL-KDD dataset files and their description . . . . . . . . . . . . 45

3.2 Basic features of individual TCP connections . . . . . . . . . . . . . . . . 47

3.3 Content features within a connection suggested by domain knowledge . . 48

3.4 Traffic features computed using a two-second time window . . . . . . . . . 49

3.5 Host based traffic features in a network connection . . . . . . . . . . . . . 50

3.6 Features value type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Mapping of attack class with attack type . . . . . . . . . . . . . . . . . . 52

3.8 Details of normal and attack data in different types of NSL-KDD data-set 53

3.9 Detail of num outbound cmds attribute in NSL-KDD dataset . . . . . . . 57

3.10 The number of neurons in each layer in binary classification . . . . . . . . 58

3.11 Hyperparameter settings in binary classification . . . . . . . . . . . . . . . 59

3.12 The number of neurons in each layer in multiclass classification . . . . . . 60

3.13 Hyperparameter settings in multiclass classification . . . . . . . . . . . . . 61

3.14 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Physical machine specifications . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Confusion matrix binary classification on KDDTest+ . . . . . . . . . . . . 67

4.3 Results of the DNN-IDS in binary classification . . . . . . . . . . . . . . . 68

4.4 The confusion matrix for DNN-IDS multiclass classification . . . . . . . . 70

4.5 Results of the DNN-IDS in Multiclass classification in KDDTest+ . . . . 70

4.6 Results of the DNN-IDS in multiclass classification in KDDTest-21 . . . . 71

ix



Abbreviations

AI Artificial Intelligence

CNN Convolutional Neural Network

DARPA Defense Advanced Research Projects Agency

DNN Deep Neural Network

DMZ DeMilitarized Zone

DoS Denial Of Service

HIDS Host based Intrusion Detection System

GD Gradient Neural Desecent

IPS Intrusion Prevention System

IDS Intrusion Detection System

LAN Local Area Network

MLE Maximum Likelihood Estimation

MSE Mean Sequard Error

NIDS Network based Intrusion Detection System

NLP Natural Language Processing

R2L Root To Local

RBM Restricted Boltzman Machines

ReLU Rectified Linear Units

RMSE Root Mean Sequard Error

RNN Recurrent Neural Network

SGD Stochasitc Gradient Desecent

SVM Support Vector Machine

U2R User To Root

x



Introduction

In the age where everything becomes connected and the increasingly deep integration

of the internet and society, the internet is changing the way in which people live, study,

and work. The importance of the security measures grows bigger as the protection of

data (e.g., company data and research data) or the protection against intrusion attacks

(virus, worm, Trojan horse, DoS etc...) are becoming more and more frequent for almost

everyone working with a connected machine. These attacks are used to illegally gain

access to unauthorized information, misuse of information, or to reduce the availability

of the information to authorized users.

The work concerns a certain method for protecting computer networks. Network Intru-

sion Detection System (NIDS) is one way of protecting a computer network. This kind

of technology enables users of a network to be aware of the incoming threats from the

Internet by observing and analyzing network traffic. They collect and check packets,

looking for a malicious packet and their behaviors. As soon as a suspicious event is

detected, security process takes action to warn the administrator by writing out to log

files, which the administrator can read and discover possible intrusion. The IDS does

not prevent an intrusion like a firewall which closes ports entirely. The IDS lets the traf-

fic flow but sees the traffic and detects intrusion without really doing anything about

it. The rest is up to the administrator or the security policy. Usually an IDS is based

on anomaly detection by making use of different detection techniques such as machine

learning which has proved its effectiveness in this field.

Machine learning methodologies have been widely used in identifying various types of

attacks, and a machine learning approach can help the network administrator take the

corresponding measures for preventing intrusions. The NIDSs are developed as classifiers

to differentiate the normal traffic from the anomalous traffic. Recently, deep learning

1
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based methods have been successfully applied in audio, image, and speech processing

applications. Because of the success of deep learning, we have proposed to investigate

its use for an intrusion detection system using deep neural networks. Our method

called DNN-IDS can operate on two models: (i) binary classification and (ii) multiclass

classifications. We validate our proposal DNN-IDS by comapring its performance against

state-of-the-art machine learning techniques for NIDS.

Structure of the Document

The structure of remainder of this work is as follows.

• Chapter 1. deals with the concept of intrusion detection systems. It will also

cover the different variants of available IDSs techniques.

• Chapter 2. is about deep learning. An introduction to the concept of deep

learning along with the different types of machine learning is presented in this

chapter.

• Chapter 3. covers an overall design of the proposed approach for IDS along with

the description of the dataset NSL-KDD.

• Chapter 4. describes the tools and the environment used in this work. It also

presents experimental results of the implementtion of IDSs.
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Intrusion Detection Systems

3



Intrusion Detection Systems 4

1.1 Introduction

With the growth of networking and a large volume of valuable information produced

such as personal profiles and credit card, the importance of the security measures grows

bigger. Hence, network security has become more important than ever.

Among the mechanisms developed to secure information, Intrusion Detection Systems

are an among the most important components for network security. They collect and

check packets, looking for unnecessary packets and their behaviors. As soon as unnec-

essary events and packets are detected, security processes take action for deleting or

repairing the system. The main focus is on detecting known and unknown attacks in

fast networks in order to reduce attacks by shrinking the time gap between the time of

the attack and its detection.

Due to its importance, intrusion detection systems have drwan a lot of interest and have

been investigated by many researchers since the founding works in this field dating back

to the 1980s [1].

In this chapter we will introduce some basics, concepts, terminology, and definitions

in computer security. Subsequently we will look at the different variants of available

intrusion detection system (IDS) techniques.

1.2 Generalities on Information Security

1.2.1 Information Security

The term security is easiest to define by breaking it into pieces. An information system

consists of the hardware, operating system, and application software that work together

to collect, process, and store data for individuals and organizations. Thus information

systems security is the collection of activities that protect the information system and the

data stored in it. A brief and simple definition of information security is the following:

Informationsecurity = confidentiality + integrity + availability + authentication
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There can be no information security without confidentiality, this ensures that unau-

thorized entities do not intercept, copy, or replicate information. At the same time,

integrity is necessary so that only authorized entities can alter information within a

system. Finally, information is not secure without authentication determining whether

the end entities is authorized to have access.

1.2.2 Basic Terminology

We start by defining some fundamental terms relating to network security. These terms

are the foundation for any discussion of network security and are the elements used to

measure the security of a network.

Computer security

Computer security is the use of technology, policies, and education to assure the

confidentiality, integrity, and availability of data during its storage, processing, and

transmission. To secure data, we pursue three activities: prevention, detection,

and recovery [1].

Vulnerabilities:

A vulnerability is an inherent weakness in the design, configuration, or imple-

mentation of a network or system that renders it susceptible to a threat. Most

vulnerabilities can usually be traced back to one of three sources: poor design,

poor implementation, or poor management.

Attacks:

An attack is a specific technique used to exploit a vulnerability. For example, a

threat could be a denial of service. A vulnerability is in the design of the operating

system, and an attack could be a ”ping of death”. There are two general categories

of attacks, passive and active.

Threat:

A threat is anything that can disrupt the operation, functioning, integrity, or

availability of a network or system. There are different categories of threats. There

are natural threats, occurrences such as floods, earthquakes, and storms. There are

also unintentional threats that are the result of accidents and stupidity. Finally,
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there are intentional threats that are the result of malicious indent. Each type of

threat can be deadly to a network.

Security policy:

Security policy is an action plan that a public or private organization establishes

in order to reduce security risks. This plan usually includes specific plans such as a

defense policy as well as other indirect policies, purchasing policies, and personnel

selection, and also establishes control measures for the security of the organization.

On brief security policy is a statement of what is, and what is not allowed.

Countermeasures:

Countermeasures are the techniques or methods used to defend against attacks

and to close or compensate for vulnerabilities in networks or systems.

1.2.3 The Security Process

• Protection Protection mechanisms are used to enforce a particular policy. The

goal is to prevent things that are undesirable from occurring [1].

• Detection Detection is simply the process of identifying something is true char-

acteristic if not provide an alert or alarm [1].

• Response If, upon examination of an alert provided by our detection system, we

find that a policy violation has occurred, we need to respond to the situation [1].

Figure 1.1: The security cycle
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1.2.4 Information Assurance

The standard model of information assurance is shown in Figure 1.2 [1]. In this model,

the security properties of confidentiality, integrity, and availability of information are

maintained in the different locations of storage, transport, and processing by technolog-

ical means, as well as through the process of educating users in the proper policies and

practices.

The term assurance is used because we fully expect failures and errors to occur [1].

1.2.4.1 Security Properties

The first aspects of this model we will examine are the security properties that can be

maintained. The traditional properties that systems work towards are confidentiality,

integrity, and availability, and other properties are sometimes included. Because different

applications will have different requirements, a system may be designed to maintain all

of these properties or only a chosen subset as needed [1].

1.2.4.2 Information Location

The model of information assurance makes a clear distinction about where information

resides within a system. This is because the mechanisms used to protect, detect, and

respond differ for each case [1].

1.2.4.3 System Processes

While most computer scientists focus on the technological processes involved in imple-

menting security, technology alone cannot provide a complete security solution. This

is because human users are integral in maintaining security. The model of information

assurance recognizes this, and gives significant weight to human processes [1].
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Figure 1.2: The standard model of information assurance

1.2.5 Goals of Security

Given a security policy is specification of secure and non secure actions, these security

mechanisms can prevent the attack, detect the attack, or recover from the attack. The

strategies may be used together or separately [2].

Prevention means that an attack will fail, prevention involves implementation of mech-

anisms that users cannot override and that are trusted to be implemented in a correct,

unalterable way, so that the attacker cannot defeat the mechanism by changing it.

Detection is most useful when an attack cannot be prevented, but it can also indicate

the effectiveness of preventative measures. Detection mechanisms accept that an attack

will occur; the goal is to determine that an attack is under way, or has occurred, and

report it [2].

Recovery has two forms. The first is to stop an attack and to assess and repair any

damage caused by that attack, In a second form of recovery, the system continues to

function correctly while an attack is under way [2].

1.3 Intrusion Detection System

To detect abnormal behavior there are many tools and the most frequently mentioned

Anti-Virus, Firewall and Intrusion Detection System, IDS is more powerful due to de-

tection capabilities [3].
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1.3.1 What is an Intrusion Detection

An intrusion is defined as ”any set of actions that attempt to compromise the integrity,

confidentiality, or availability of a computer resource” [3]. Accordingly, intrusion detec-

tion is defined as ”the problem of identifying actions that attempts to compromise the

integrity, confidentiality, or availability of a computer resource” [3].

1.3.2 Definition of Intrusion Detection System

An IDS intrusion detection system is a piece of software or hardware for monitoring and

detecting data traffic or user behavior to identify any type of threat.

1.3.3 History

In 1987, work on IDS was started by Denning et al. [4]. Authors developed a real-time

Host Based Intrusion Detection System (HIDS) to detect attack from inside as well as

outside the system. For detection of attacks, authors used rule matching mechanism

based on audit trail and system log files [5]. Gradually, various researchers contributed

to make HIDS more efficient. One more HIDS system which was developed in 1988 is

Haystac HIDS [6]. Progressively due to the more usage of computer networks, require-

ments for detection of attack at network side increased. As a result, researchers started

to work on Network Based Intrusion Detection System (NIDS). System presented in [7]

is one of the well known NIDS which was developed in 1998.

1.3.4 A Simple Taxonomy of Intrusion Detection Systems

There are various ways to classify the intrusion detection system. Figure 1.3 shows

various approaches to classify the IDS. Following are the details about well known and

frequently used approaches [8].
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Figure 1.3: Types of IDS

1.3.4.1 Host-Based versus Network-Based Intrusion Detection

• Host-Based System

The host-based intrusion detection systems (HIDS) analyzes the data that origi-

nates on computers (hosts), such as application and operating system event logs,

system all traces. Such systems are effective for insider threats. Abuse of privileges

by insiders, accesses of critical data are some of the attacks which can be detected

by these systems.

• Network-Based System

The network-based intrusion detection systems (NIDS) process the data that origi-

nates on the network, such as TCP/IP traffic. Malformed packets, packet flooding,

probes are some of the attacks which can be detected by such systems.
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• Hybrid System

The Hybrid mean host data is combined with network information to form a

comprehensive view of the network. The main reason for introducing such hybrid

IDS is the need to work on-line with encrypted networks and their data destined to

the single host (only the source and destination can see decrypted network traffic).

The two general architecture HIDS and NIDS described are two different ways of detect-

ing intrusions. As mentioned intrusion detections can be deployed on different areas,

like within a computer to spot users attempting to gain access to which they have no

access right, or monitoring network traffic to detect other kind of intrusions like worms,

Trojan horses or to take control of a host by yielding an illegal root shell, etc.

As for this project we will concentrate our efforts on one type of intrusion detection,

that is Network-Based IDS.

1.3.4.2 Misuse Detection versus Anomaly Intrusion Detection

• Misuse detection technique

Misuse detection or known as signature-based, look for well-defined patterns of

known attacks where the pattern may be signature, protocol, rule, state, system

call and may more. The known attacks are represented as patterns or signatures.

Misuse detection is therefore, simply a problem of matching patterns of attack in

the given source of data. Such systems detect patterns of known attacks quite

accurately and efficiently, and generate very few false alarms.

The Limitation of Misuse Detection

– Cannot detect novel, unknown attacks or variations of known attacks.

– Requires the nature of attacks to be well understood

– Necessitates that human experts work on the analysis and representation of

attacks

• Anomaly detection technique

Anomaly detection is based on the normal behavior of the subject (e.g., a user,

program or a system). Any action that significantly deviates from the normal

behavior is considered as intrusive. Such systems build a statistical or machine
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learning model of normal behavior of the subject. The model is basically a list of

metrics or patterns that capture the normal profile. The system flags an intrusion

if any observed metrics or patterns of given behavior significantly deviate from the

model. Such systems detect previously unknown patterns of attacks.

The Limitation of Anomaly Detection

– Generate many false positives (normal behavior classified as intrusive).

– The difficulty of handling gradual misbehavior and expensive computation

– May miss known attacks

• Specification-based

Specification-based detection technique: It is hybrid technique which merges the

objective of anomaly and misuse detection techniques. It is mainly focused on

identifying deviations from regular behavior.

The above listed two techniques used in intrusion detection system misuse and anomaly

detection. Our interest lie in anomaly detection system and later we are going to develop

an automated and machine learning approach for NIDS.

1.3.4.3 Real-time versus Off-line Intrusion Detection

• Real-time

A real-time IDS monitors the system continuously and reports intrusions as soon

as they are detected. Such systems can substantially reduce the damage to the

system, if the system administrator can be notified as early as possible. Moreover,

there is a great chance of stopping the attack currently in progress and catching

the intruder as intruder would not get much time to delete his trail (e.g., by erasing

logs).

• Off-line

An off-line IDS inspects system logs at periodic intervals and then discovers any

suspicious activity that was recorded. Such systems are very effective in correlating

attacks that span multiple hosts, slow probing attacks that span over hours and

days, and for forensic analysis. An off-line IDS typically reduces system overhead

but gives much less timely notification of intrusions.
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1.3.4.4 Passive versus Active Intrusion Detection

• Active

An active IDS (now called intrusion prevention system IPS) is a system that is

configured to automatically block suspected attacks in progress without any in-

tervention required by an operator. IPS has the advantage of providing real-time

corrective action in response to an attack but has many disadvantages as well.

• Passive

A passive IDS is a system that is configured only to monitor and analyze network

traffic activity and alert an operator to potential vulnerabilities and attacks. It is

not capable of performing any protective or corrective functions on its own. The

major advantages of passive IDSs are that these systems can be easily and rapidly

deployed and are not normally susceptible to attack themselves.

1.3.4.5 Depending on the Architecture:

The most common IDS architecture are:

• Centralized

In centralized IDS, the data may be collected from various sources (hosts or net-

works) but is sent to a centralized location where it is analyzed. Such systems

limit the system scalability as it could become bottleneck on increasing number of

sources and also represent a single point of vulnerability.

• Hierarchical

In hierarchical IDS, some of the data collected from multiple hosts or a single host

is passed up through the layers and is analyzed to varying degree at each level.

• Distributed

In Distributed IDS, the data is collected and analyzed across the entire network

being monitored and results are then sent to a centralized location. Such systems

are scalable and not subject to a single point of failure.
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1.3.5 Placement of NIDS

Network Intrusion Detection Systems are placed at a strategic point or points within the

network to monitor traffic to and from all devices on the network. A large NIDS server

can be set up on a backbone network, to monitor all traffic, or smaller systems can be set

up to monitor traffic for particular server, switch, gateway, or router. It can be shown

in Figure 1.4 that IDS could be placed in (Local Area Network) LAN, (DeMilitarized

Zone) DMZ or Internet area.

Figure 1.4: Computer network with intrusion detection systems

1.3.6 Types of Alarms

An IDS takes input and classifies it as a normal or an attack. This input can be in the

form of network traffic, system calls and their sequences, commands and their sequences,

user behavior, system behavior and many more. The IDS applies its detection algorithm

and classifies the input as a normal or an attack and plays alarms accordingly. Following

are the list of various alarms with their meaning [9]:

1. True Positive: The input is an attack which is detected by IDS as an attack.

2. True Negative: The input is normal which is detected by IDS as normal traffic.

3. False Positive: The input is normal which is detected by IDS as an attack.



Intrusion Detection Systems 15

4. False Negative: The input is an attack which is detected by IDS as normal.

Figure 1.5: Alarms

1.3.7 Desirable Characteristics of IDS

As per [10] and [11], following are the desirable characteristics of IDS:

1. Minimum Human Supervision: It must require minimum human supervision.

2. Fault Tolerant: It must continue operating even after system failure.

3. Recoverable: It must be recoverable from the crashes which might be due to

hardware or software crashes.

4. Resistant to Attacker: It must periodically check itself to identify whether attacker

has modified its own behavior or working.

5. Minimal Overhead: It must require minimum hardware resources so that it does

not affect the normal operation of the system.

6. Configurable: It must have facility to configure as per the policy requirement of

the department.

7. Updatable: It must be able to update itself by automated process or by updates

sent by central authority.

8. Accuracy: It must have high accuracy. Number of false alarm rate should be low
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9. Completeness: It should be able to detect all the attacks. This is very difficult to

characterize as it is not possible to have knowledge about all the possible attacks.

10. Timeliness: It should be able to give quick response.

1.3.8 Challenges in Intrusion Detection

Intrusion detection will develop towards distributed, intelligent, high detection speed,

high accuracy and high security. And the research focus of intrusion detection will

include the following.

• Distributed intrusion detection

Distributed intrusion detection system is mainly for large networks and heteroge-

neous system, which uses distributed structure, collaborative processing and anal-

ysis of a variety of information, and a single architecture of intrusion detection

system compared with greater detection ability[12].

• Intelligent intrusion detection

Intelligent intrusion detection method is the present stage, including machine

learning, neural networks, data mining, and other methods. It has carried out

various intelligent techniques in the application and research of intrusion detec-

tion. The main purpose of the study is reduced detection system false alarm and

false alarm probability, improve the system self learning ability and real-time re-

sponse. From the current research results, the intrusion detection method based

on intelligent technology has many advantages, and has good development poten-

tial [13].

• Intrusion detection based on protocol analysis:

The calculation amount of intrusion detection based on protocol analysis is rela-

tively small. It can be used to detect the presence of a high degree of regularity

of network protocol, even in high load network, it is not easy to generate packet

loss [14].

• Combined with operating system:

Closely integrated with the operating system can enhance the intrusion detection

system to new attack detection capabilities.
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• Application layer intrusion detection:

The semantics of many intrusions can be understood only in the application layer,

and the detection of this kind of intrusion needs to be realized by analyzing the

application layer [15].

• High speed packet capture technology:

For network intrusion detection system, high-speed packet capture can reduce the

resource consumption and improve the detection speed.

• Efficient pattern matching algorithm:

As intrusions become more diverse and complex, more and more complex models

need to be stored in rule base. And complexity of intrusion model definition are

higher and higher. Therefore, it is urgent to research and use efficient pattern

matching algorithm [16].

• Test and evaluation of intrusion detection system:

The establishment of common intrusion detection system evaluation method and

testing platform, which is very important to promote the application and popu-

larization of intrusion detection system, has become another important direction

of intrusion detection research [17].

• Standardization of intrusion detection system:

There is no formal international standards of intrusion detection system so far.

And it is not conducive to the development and application of intrusion detection

system.

• The interaction between IDS and IDS and other security components:

Intrusion detection system could combine with other IDS or security components

by cascaded connection or integration.

• Research on the security of intrusion detection system itself:

Intrusion detection system has its own security problem as well. And there should

be research on how to protect itself against network attacks.
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1.3.9 Conclusion

In this chapter, we have seen an overview about network security. Then we defined the

concept of IDS.

Furthermore we mentioned the two main methods of the IDS: the misuse and anomaly

detection methods which were described together with their strengths and weaknesses.

The differences have been presented and it has been decided to build our an IDS based

on anomaly detection technique. That is due to the fact that an anomaly detection

technique IDS is more automated and can detect an unknown attack.

Finally we cited the most desirable characteristics and the challenges of intrusion detec-

tion system. The anomaly detection NIDS we want to build is another proposal to how

to make IDS more automated and with minimum intervention from experts.
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2.1 Introduction

To improve the detection efficiency, some artificial intelligence algorithms, have been

adopted to solve the intrusion detection problem. In this project we going to to adopt

deep learning as a technique used in anomaly intrusion detection.

In this chapter, we provide the theoretical background necessary for understanding the

methods discussed in the next chapter. Then, we discuss relevant details of machine

learning, neural networks, and deep learning.

2.2 Artificial Intelligence

In the past few years, artificial intelligence (AI) has been a subject of intense media hype.

Machine learning, deep learning, and AI come up in countless articles, often outside of

technology-minded publications [18].

2.2.1 Artificial Intelligence, Machine Learning, and Deep Learning

Artificial intelligence was born in the 1950s, when a handful of pioneers from the nascent

field of computer science started asking whether computers could be made to think a

question whose ramifications we are still exploring today. A concise definition of the

field would be as follows the effort to automate intellectual tasks normally performed

by humans. As such, AI is a general field that encompasses machine learning and deep

learning (see Figure 2.1), but that also includes many more approaches that do not

involve any learning [18].

Figure 2.1: Artificial intelligence, machine learning, and deep learning
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2.3 Machine Learning

Machine learning arises from this question: could a computer go beyond what we know

how to order it to perform and learn on its own how to perform a specified task? Could a

computer surprise us? Rather than programmers crafting data-processing rules by hand,

could a computer automatically learn these rules by looking at data? This question opens

the door to a new programming paradigm. With machine learning, humans input data

as well as the answers expected from the data, and out come the rules. These rules can

then be applied to new data to produce original answers (see Figure 2.2) [18].

Figure 2.2: Machine learning a new programming paradigm

A machine-learning system is trained rather than explicitly programmed. It is presented

with many examples relevant to a task, and it finds statistical structure in these examples

that eventually allows the system to come up with rules for automating the task [18].

Although machine learning only started to flourish in the 1990s, it has quickly become

the most popular and most successful subfield of AI, a trend driven by the availability of

faster hardware and larger datasets. Machine learning is tightly related to mathematical

statistics, but it differs from statistics in several important ways. Unlike statistics,

machine learning tends to deal with large, complex datasets (such as a dataset of millions

of images, each consisting of tens of thousands of pixels) for which classical statistical

analysis such as Bayesian analysis would be impractical. As a result, machine learning,

and especially deep learning, exhibits comparatively little mathematical theory maybe

too little and is engineering oriented. It is a hands-on discipline in which ideas are

proven empirically more often than theoretically [18].

2.3.1 Types of Machine Learning System

There are so many different types of machine learning systems that it is useful to classify

them in broad categories based on:
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2.3.1.1 Supervised/Unsupervised Learning

Machine learning systems can be classified according to the amount and type of super-

vision they get during training. There are four major categories: supervised learning,

unsupervised learning, semisupervised learning, and reinforcement learning [19].

Supervised Learning In supervised learning, the training data you feed to the

algorithm includes the desired solutions, called labels (Figure 2.3) [19].

Figure 2.3: A labeled training set for supervised learning

Here are some of the most important supervised learning algorithms:

• k-Nearest Neighbors (KNN)

• Linear Regression

• Logistic Regression

• Support Vector Machines (SVMs)

• Decision Trees and Random Forests

• Neural networks (NN)

Unsupervised Learning In unsupervised learning, as you might guess, the training

data is unlabeled. The system tries to learn without a teacher. (Figure 2.4)[19].
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Figure 2.4: An unlabeled training set for unsupervised learning

Here are some of the most important unsupervised learning algorithms:

• Clustering (e.g., k-Mean, Hierarchical Cluster Analysis HCA)

• Visualization and dimensionality reduction (e.g., Principal Component

Analysis PCA, Kernel PCA, Locally-Linear Embedding LLE)

• Association rule learning (e.g., Apriori, Eclat)

Semisupervised Learning Some algorithms can deal with partially labeled training

data, usually a lot of unlabeled data and a little bit of labeled data. This is called

semisupervised learning (Figure 2.5) [19].

Figure 2.5: Semisupervised learning

Most semisupervised learning algorithms are combinations of unsupervised and super-

vised algorithms. For example, deep belief networks (DBNs) are based on unsupervised

components called restricted Boltzmann machines (RBMs) stacked on top of one an-

other. RBMs are trained sequentially in an unsupervised manner, and then the whole

system is fine-tuned using supervised learning techniques [19].
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Reinforcement Learning Reinforcement Learning is a very different beast. The

learning system, called an agent in this context, can observe the environment, select and

perform actions, and get rewards in return (or penalties in the form of negative rewards,

as in Figure 2.6). It must then learn by itself what is the best strategy, called a policy,

to get the most reward over time. A policy defines what action the agent should choose

when it is in a given situation [19].

Figure 2.6: Reinforcement learning

2.3.1.2 Batch and Online Learning

Another criterion used to classify machine learning systems is whether or not the system

can learn incrementally from a stream of incoming data.

Batch Learning In batch learning, the system is incapable of learning incrementally

it must be trained using all the available data. This will generally take a lot of time and

computing resources, so it is typically done offline. First the system is trained, and then

it is launched into production and runs without learning anymore; it just applies what

it has learned. This is called offline learning [19].

Online Learning In online learning, you train the system incrementally by feeding

it data instances sequentially, either individually or by small groups called mini-batches.

Each learning step is fast and cheap, so the system can learn about new data on the fly,
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as it arrives. Online learning is great for systems that receive data as a continuous flow

and need to adapt to change rapidly or autonomously [19].

2.3.1.3 Instance-Based Versus Model-Based Learning

One more way to categorize machine learning systems is by how they generalize. There

are two main approaches to generalization: instance-based learning and model-based

learning [19].

Instance-Based Learning the system learns the examples by heart, then generalizes

to new cases using a similarity measure (Figure 2.7) [19].

Figure 2.7: Instance-based learning

Model-Based Learning Another way to generalize from a set of examples is to

build a model of these examples, then use that model to make predictions. This is

called model-based learning (Figure 2-8) [19].

Figure 2.8: Model-based learning
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2.4 Deep Learning

The performance of machine learning systems strongly depends on the representation of

the input data. For many years the research in the field has focused on proper methods

for feature extraction, transformation and selection [20]. In standard pattern recogni-

tion approaches [21], these features were normally hand-designed and later exploited by

classification algorithms.

Differently to past approaches, the idea of representation learning is to jointly discover

not only the mapping from input feature to output, but also the features itself [22].

Deep learning [23] follows the philosophy of representation learning and aims to pro-

gressively discover complex representations starting from simpler ones. The principle of

composition, on the other hand, can be used to describe the world around us efficiently.

The deep learning paradigm is currently implemented with Deep Neural Networks (DNNs),

that are Artificial Neural Networks (ANNs) based on several hidden layers between input

and output (see Figure 2.9). Each layer learns higher-level features that are later pro-

cessed by the following layer [24]. When a suitable high-level representation is reached,

a classifier can perform the final decision. Modern DNNs provide a very powerful frame-

work for supervised learning: when adding more layers, in fact, a deep network can

represent functions of increasing complexity and can potentially reach higher levels of

semantic representations.

Figure 2.9: Neural network architecture

ANNs have been object of several research in the past decades [25]. These efforts were

extremely important for the research community, since they laid the foundations for

the basic learning algorithms [21]. For instance, the back-propagation algorithm was
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invented in the 60s-70s with the contributions of many scientists [26]. Despite these

achievements, the time was not yet ripe for the explosion of this technology. The current

rise of deep learning can be explained with the following motivations:

• Big Data: A key ingredient for the success of this technology is the availability of

large datasets. Current systems, in fact, aim to incorporate considerable knowledge

into a machine, requiring lots of data. More precisely, the effectiveness of DNNs

strongly depends on the capacity of the model, that can be increased by adopting

deep and wide architectures. The improved network capacity, however, increases

the number of parameters, inherently requiring more data to reliably estimate

them. Fortunately, the rapid spread of internet and smartphones, allows easy and

cheap big-data collections.

• Computational power: To properly exploit deep models and large datasets, a

considerable computational power is required. In the last years, important pro-

gresses have been done to develop specialized hardware for deep learning. Modern

Graphical Processor Units (GPUs), for instance, are currently used by most of

deep learning practitioners to efficiently train complex models.

• Computationally efficient inference: DNNs usually require a lot of compu-

tational power during the training phase. An interesting aspect is that inference

can be computed relatively efficiently, allowing, for instance, the development of

real-time speech recognizers or lowlatency dialogue systems.

• Powerful priors: Last but not least, deep learning incorporates reasonable as-

sumptions about the world. The basic assumption is the compositionality principle

previously discussed, that efficiently describes the complex world around us as a

progressive composition of different elements. This assumption acts as a prior

knowledge used to defeat curse of dimensionality: among all the possible func-

tions that are able to explain a dataset, deep learning restricts this selection to

a smaller sub-set that satisfies the compositionality constraint. This naturally

entails a regularization effect, that allows training deep architectures.
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2.4.1 Basic Algorithms

This part proposes an overview of the main algorithms and techniques used for deep

learning. In particular, some general notions about supervised learning are recalled in

sub-section 2.1.1. The back-propagation algorithm is discussed in sub-section 2.1.2, while

the main optimization techniques are summarized in sub-section 2.1.3. Regularization

methods are finally described in sub-section 2.1.4.

2.4.1.1 Supervised Learning

DNNs are often trained in a supervised fashion [21]. This training modality can be

formalized as follows let us assume to have a set of N training, where each element is

a pair composed of a feature vector xi and its corresponding label yi examples like so

{(x1, y1), ..., (xi, yi), ..., (xn, yn)}.The learning algorithm seeks a function f : X → Y that

maps the input space X into the output space Y. Deep learning is a form of parametric

machine learning, whose function f depends on a set of trainable parameters θ. For

each particular choice of θ, a different mapping function f is obtained. The number of

possible functions that can be represented by the DNN is called capacity.

The goal of supervised learning is to find a function f that is able to ”explain” well the

training samples. More formally, this implies finding proper values of θ able to minimize

a certain performance metric:

θ̂ = argθminL(Y, f(X, θ))

The function L is called loss (or cost) and, intuitively, should assume low values when

the parameters θ lead to an output well-matching with the reference labels.

In the context of the Maximum Likelihood Estimation (MLE), the optimization problem

can be reformulated in this way:

θ̂ = argθmaxP (Y |X, θ)

where P (Y |X, θ) is the conditional probability distribution defined at the output of

the DNN. To perform a MLE estimation, a popular choice of L is the Negative Log-

Likelihood (NLL) or Cross-Entropy (CE). In this case, the MLE optimization can be
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rewritten as:

θ̂ = argθmin− log(P (Y |X, θ))

Another popular choice is the Mean Squared Error (MSE):

θ̂ = argθmin ‖Y − f(X, θ)‖2

Solving the training optimization problem is challenging, especially for DNNs composed

of a huge number of parameters. The functions f originated by DNNs are, in fact,

typically non-linear, making the optimization space highly non-convex. Recently, some

theoretical and experimental studies have shown that the main challenge are saddle

points and not local minima as commonly believed in the past [27]. Even though these

results are still object of an open debate in the research community, they suggest that

the parameter space is flat almost everywhere and the (very rare) local minima are

almost all also global ones [28].

There are in principle various ways to solve this optimization problem [29]. A naive

solution would be to try all the possible θ and choose the configuration that minimizes

the cost function. This approach is clearly unfeasible, especially for a large number of

parameters. Another solution would be to exploit evolutionary optimizations, based on

genetic algorithms or particle swarm techniques [30]. Despite the interesting aspects

of these optimizers (e.g, high parallelism, differentiability is not strictly required), such

methods require very frequent evaluations of the cost function, that is impractical for

DNNs trained on large datasets. At the time of writing, the most popular choice is

gradient-based optimization.

2.4.1.2 Back-Propagation Algorithm

The gradient ∂L
∂θ is a very precious information that describes what happens to the cost

function L when a little perturbation is applied to the parameters θ. If this perturbation

causes an improvement of the loss, it could be convenient to do a little step in the

direction indicated by the gradient.



Machine Learning and Deep Learning 30

The computation of ∂L
∂θ is normally performed with the back-propagation algorithm

[31], that is often misunderstood as meaning the whole learning procedure. Actually,

back-propagation is only a method for computing the gradient.

Deriving an analytical expression of ∂L
∂θ is rather straightforward for systems that are

differentiable almost everywhere. In most of the cases, in fact, the analytical expression

of the gradient is a direct application of basic calculus rules. As shown in Figure 2.10, a

DNN can be described as a composite function that performs a chain of computations.

Gradients can thus be computed with the chain rule, as reported in the following

Figure 2.10: A composite function representing the computations performed in the
various layers of a DNN
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Beyond the mathematical expression, the intuition behind the chain rule is this: the

little change applied to the parameter θ1 causes a change on the output of function

f1. This perturbation will propagate until the end of the chain, eventually causing a

perturbation on the final node, that typically computes the cost function L.

Despite the relative simplicity of the gradient expression, its numerical evaluation can be

computationally expensive. A naive (but inefficient) solution would be to independently

evaluate the gradient expression for each parameter. The back-propagation algorithm

[31] is a simple and inexpensive procedure that performs the various operations in a

specific order. From the previous equations, one can notice that there are several shared
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computations. It would be, for instance, very convenient to start from the last equation,

store the results in bold, and reuse them to compute the following gradients.

The back-propagation algorithm is based on a dynamic programming approach and is

summarized by the following step:

1. Forward Propagation: propagate the input features to the output and store the

activations y.

2. Compute Loss: evaluate the loss function L at end of the chain.

3. Back Propagation: compute the gradient from the last element of the chain to

the first one.

When propagating gradients through long computational chains, however, some issues

might arise [32]. The chain rule, in fact, implies several gradient multiplications that

can lead to vanishing or, less often, to exploding gradients [33].

Exploding gradients can effectively be tackled with simple clipping strategies [32], while

vanishing gradient is more critical and might impair training very deep neural networks.

2.4.1.3 Optimization

Once computed, the gradient has to be exploited by an optimizer to progressively derive

better parameters.

The most popular optimization algorithm is Gradient Descend (GD), that updates θ

according to the following equation:

θ = θ − η∂L
∂θ

(2.5)

The parameters are updated in the direction pointed by the gradient, with a step size

determined by the learning rate η (the minus is due to the minimization of the loss see

Figure 2.11). Note that gradient-based optimization does not provide any guarantee

on global optimality. In such complex high dimensional spaces, a crucial role is thus

played by a proper initialization of the θ and by a suitable choice of loss and activation

functions.
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Figure 2.11: Gradient descent

Depending on how many data are used to compute the gradient, some variants of GD

can be defined. When the gradient is computed on the full training dataset, the opti-

mizer is called batch-GD. A popular alternative is Stochastic Gradient Descend (SGD)

that splits the dataset into several smaller chunks (called mini-batches) and update the

parameters more frequently, with well-known benefits in terms of both accuracy and

training convergence. Below is a graph that shows the gradient descent’s variants and

their direction towards the minimum:

Figure 2.12: Gradient descent variants trajectory towards minimum

Standard SGD, however, has trouble navigating on areas where the surface curves much

more steeply in one dimension rather than in another. To mitigate this issue, a momen-

tum is often applied to the update equations for accelerating the training convergence

[34].
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Another issue is that the same learning rate applies to all the parameters. This stiffness

can be critical, since each θ has its own characteristics, possibly requiring independent

learning rates. For instance, if the absolute value of the gradient is very large in a specific

dimension, it means that we are in a very steep area and would be more prudent to do

a little step using a small learning rate. On the contrary, when the gradient is small, a

higher learning rate can be used. Following this philosophy, several variations of SGD,

such as Adagrad [35], Adadelta [36], RMSprop, Adam [37], have been recently proposed.

These solutions, in general, rescale η by gradient-history metrics, resulting in a faster

and more robust optimization.

2.4.1.4 Regularization

crucial challenge in machine learning is the ability to perform well on previously unob-

served inputs. This ability is called generalization [23]. Possible causes of poor general-

ization are underfitting and overfitting, that are two central issues when training DNNs.

Underfitting occurs when the model is not able to reach a sufficiently low error on

the training set. This might arise when the DNN has not enough capacity. Overfit-

ting occurs when the gap between training and test errors is too large. Differently to

underfitting, this might happen when the model has excessive capacity. The strategies

to counteract overfitting are known as regularization, and normally consist of methods

for reducing the network capacity based on prior knowledge. From this point of view,

even deep learning itself can be regarded as a regularization technique, due to the prior

knowledge naturally embedded in the compositionality principle.

The great importance of these methodologies has made regularization one of the major

research directions in the field. In the following, the most popular regularizers are

described.

L2 Regularization Many regularization approaches are based on limiting the model

capacity by adding a parameter norm penalty to the loss function. These approaches

tend to penalize too complex solutions, following the philosophy of the Occam’s razor

principle: ”among competing hypotheses leading to the same performance, the simpler

one should be selected”. The most common method following this approach is the L2
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regularization, that add a penalty to the loss function L:

L̃ = L+ α ‖θ‖2 (2.6)

where α is an hyperparameter that weights the contribution of the regularization term.

The insight behind this kind of regularization is that solutions characterized by higher

norms of the the trainable parameters are more complex and are more likely to overfit

the training dataset.

Dropout An effective way to improve generalization is to combine several different

models [38]. If each classifier has been trained separately, it might have learned differ-

ent aspects of the data distribution and their mistakes are likely to be complementary.

Combining them helps produce a stronger model, that is hopefully less prone to over-

fitting. Even though these methods are very effective, a major limitation lies in the

considerable computational efforts needed to train and test different DNNs. Dropout

[39] is an effective regularization method that provides an inexpensive approximation to

training and evaluating an exponential number of neural networks.

The key idea is to randomly drop neurons during training with a probability called

dropout rate ρ. This way, a subnetwork is sampled from an exponential number of

smaller DNNs for each training sample. At test time, the whole network is used (i.e.,

the DNN with all the neurons active), but the activations are scaled down by ρ.

This ensemble learning approach significantly reduces overfitting and gives major per-

formance improvements. Many variants of dropout have been proposed in the literature

[40, 41]. For instance, in [42] the regularizer is applied to the weight connections rather

than on neurons, while in [43, 44] dropout is extended to recurrent neural networks.

Data Augmentation The best way to achieve generalization would be to train the

model with more data. However, in practice, the amount of data is limited and the

collection of large annotated corpora is very expensive. A possible alternative is to

artificially process the available data, in order to generate novel training samples. For a

computer vision application, one can for instance, rescale, rotate, or shift the available

images to generate novel samples. For speech recognition, one way is to apply proper

algorithms able to modify pitch, formants, and other speaker characteristics. Data
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augmentation can also be regarded as a way for adding prior knowledge to a model,

since we exploit the information that the new samples do not change the class label

when are processed.

Other Regularizers Other approaches have been proposed for counteracting over-

fitting. A popular way is to add random noise during learning. Several methods have

been proposed in the literature, proposing to add it at gradient, weight, input, output

or hidden activation levels [45–47].

An alternative consists in adopting a semi-supervised approach, where unsupervised

data can be exploited as prior knowledge to improve generalization. From this point

of view, the pre-training approach based on Restricted Boltzman Machines (RBM) [48]

or autoencoders [49] can be regarded as a form of regularization. Multi-task learning

(i.e., building DNN solving multiple correlated tasks) can also be considered as a sort

of regularization, since it encourages the DNN to discover very general features at the

first hidden layers.

Finally, one the most popular and simple approach for regularization is early stopping

[50]. The idea is to periodically monitoring the performance of the DNN on held-out

data and stop the training algorithm when this performance begins to deteriorate.

2.4.1.5 Hyperparameter Selection

Most deep learning algorithms are based on some hyperparameters that must be properly

set to ensure a good performance. The most important ones describe the structure of

the network (e.g., number of hidden layers, number of hidden units per layer), determine

the optimization characteristics (e.g., learning rate), and specify the behaviour of the

regularizer (e.g., weight decay or dropout rate). Properly setting the hyperpameters

is rather difficult, mainly because a new model should be trained for each new setting.

Moreover, several hyperparameters can be correlated each other, making an independent

optimization of them usually not viable.

There are two basic approaches to derive them: choosing them manually and choos-

ing them automatically. The manual selection requires a considerable experience and
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familiarity with the addressed task as well as a precise knowledge of the role of each spe-

cific hyperparameter. This is possible for well-explored machine learning tasks, where a

detailed literature suggesting reasonable settings is available.

When the manual approach is not feasible, a possible alternative is to automatically

select the hyperparameters with grid search. Grid search simply tries all the combina-

tions over a specified range of values. Although this search can be easily parallelized, its

computational expense is exponential in the number of hyper-parameters. A straight-

forward alternative is to sample them randomly [51]. This approach is still very easy to

parallelize, and is generally faster than grid search.

2.4.2 Main Architectures

This section summarizes the main architectures used in deep learning.

2.4.2.1 Neuron Activations

The computations performed by the DNNs are a sequence of linear operations followed

by non-linear ones. More precisely, the output of a hidden layer hi+1 composed of n

neurons and fed by m input features hi, can be represented as follows:

hi+1 = g(Whi + b︸ ︷︷ ︸
a

) (2.7)

Where W is the weight matrix (n ∗m), b is the bias vector of n element and g is the

activation function. The linear transformation performed before applying g is called

affine transformation a. The choice of g is particularly important, and several research

efforts have been devoted to study proper activation functions. The most popular are:

• Linear: The simplest neurons are obtained by directly taking the affine transfor-

mation without any non-linearity. These neurons are called linear and can be used,

for instance, for predicting real numbers in the output layer (regression problem).
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• Sigmoid; For several decades, the most popular activation was the logistic sig-

moid:

σ(x) =
1

1 + exp(−x)
=

exp(x)

1 + exp(−x)
(2.8)

The main advantage is that such activations are bounded between 0 and 1. How-

ever, the use of sigmoid activations in modern feedforward networks is now dis-

couraged, since they are characterized by close-to zero gradients across most of

their domain. In fact, σ(x) saturates when their input is very positive or very

negative, slowing down the training.

• Hyperbolic Tangent: This kind of non-linearity is a rescaled version of the

sigmoid function:

tanh(x) =
exp(x)− exp(−x)

exp(x)− exp(+x)
= 2σ(2x)− 1 (2.9)

It suffers from the main disadvantages of sigmoid units, but in general it provides

better performance. This is due to the fact that tanh is symmetric around zero,

making this activation less prone to saturation in the last layers.

• Rectified Linear Units: This kind of activation is currently the most popular

choice in modern feed-forward neural networks [52, 53]:

ReLU(x) = max(0, x) (2.10)

The main insight behind the use of these activations is that they are rather similar

to linear units. Linear units, as we have outlined before, lead to a convex opti-

mization space, that is very easy to optimize. ReLUs inherit, at least in part, the

benefits of the latter activations. More precisely, the derivatives of a ReLU remain

large whenever the unit is active.
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Figure 2.13: Main activation functions used in deep neural networks.

• Softmax: Softmax neurons are often used in the output layer to estimate a prob-

ability distribution over a set of n alternatives. To represent probabilities, each

output neuron must assume values between 0 and 1, and the sum of all of them

must be 1. Formally, the softmax of the ith neuron is defined as follows:

softmax(ai) =
exp(ai)∑n
j=1 exp(aj)

(2.11)

2.4.2.2 Feed-forward Neural Network

The prediction P (y = x) in Feed-Forward DNNs (FF-DNN) is just a function of the

current input x and of the parameters θ:

y = f(x, θ) (2.12)

These models are called feed-forward because the information flows from the input to the

output without any feedback connection. An example of feed-forward neural network

composed of four hidden layers is shown in Figure 2.14. The figure depicts a popular

architecture called fully-connected
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Figure 2.14: A fully-connected composed of four hidden layers

DNN or fully-connected, where all the neurons are connected with the ones of the fol-

lowing layer.

An alternative to fully-connected neural neural networks are Convolutional Neural Net-

works (CNNs) [54]. Differently to the former ones, CNNs are based on local connectivity,

weight sharing and max pooling. The combination of these characteristics make CNNs

particularly suitable for managing correlations across features. Moreover, the presence

of max pooling allows the network to obtain shift-invariant properties. CNNs are in-

spired by biological studies of the visual cortex and are extremely successful in practical

applications, especially in computer vision [55].

2.4.2.3 Batch normalization

Training DNNs is complicated by the fact that the distribution of each layer’s inputs

changes during training, as the parameters of the previous layers change. This problem,

known as internal covariate shift, slows down the training of deep neural networks.

Batch normalization [56], that has been recently proposed in the deep learning com-

munity, addresses this issue by normalizing the mean and the variance of each layer’s

pre-activation for each training mini-batch. It has been long known that the network

training converges faster if its inputs are properly normalized [57] and, in such a way,

batch normalization extends this normalization to all the layers of the architecture.
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Batch normalization resulted particularly helpful to achieve regularization, to signifi-

cantly speed-up the convergence of the training phase as well as to improve the overall

accuracy of a DNN. The regularization effect is due to the fact that mean and variance

normalizations are performed on each mini-batch rather than on the entire dataset.

2.4.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are architectures suitable for processing sequences

[58]. The elements of a sequence are, in most of the cases, not independent. This means

that, in general, the emission of a particular output might depend on the surrounding

elements or even on the full-history. To properly model the sequence evolution, the

presence of memory to keep track of past or future elements is thus of fundamental im-

portance. The memory can be implemented using feedback connections, that introduce

the concept of state (see Figure 2.15).

Figure 2.15: Recurrent neural networks

2.4.2.5 Architectural Variations

During the last years, several novel architectures have been proposed in the deep learning

field this part summarizes the most popular ones.

First of all, architectures based on combinations of convolutional, recurrent and fully-

connected layers gained a lot of popularity, especially in the field of speech recognition

[59]. Convolutional layers are used for feature extraction, recurrent layers for temporal

processing, and fully-connected layers for the final classification.
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Other recently-proposed DNNs extend the shortcut idea to feed-forward DNN for im-

proving the propagation of the gradient across the various hidden layers. With this re-

gard, a popular architecture is called Residual Neural Networks (ResNet) [60]. ResNets

consider a direct connection through the various hidden layers, that allow the gradient

to flow unchanged. By stacking these layers, the gradient can theoretically pass over all

the intermediate layers and reach the bottom one without being diminished.

A related idea is exploited in the context of Highway connections [61, 62]. Highway

Networks preserve the shortcuts introduced in ResNets, but augments them with a

learnable gate that manages the information flow through the hidden layers. The latter

networks actually extend the idea of multiplicative learning gates to feed-forward DNNs.

2.4.2.6 Future Challenges

The rapid rise of deep leaning contributed to spread optimism towards this technology.

However, despite of such a great enthusiasm, there are still major scientific challenges

to address for really reaching higher levels of artificial intelligence [63].

A noteworthy challenge is the effective use of unsupervised data. The recent progress

mostly involved supervised learning, that have contributed to achieve state-of-the-art

performance in numerous fields. The goal of unsupervised learning is to understand the

world around us by observation, which is an ability largely missing in current supervised

DNNs.

Another challenge concerns the learning efficiency. Current solutions, in fact, require

much more information than humans to learn. For instance, humans are able to learn

a simple concept (such as a cat) with few examples, while a machines can model it

only with hundreds or even thousands of samples. In the future, the development of

learning algorithms able to better disentangle and model the factors of variability will

be of primary interest.

Moreover, current deep neural networks are able to solve rather efficiently only single

tasks that are generally rather limited and specific (like recognizing faces, classifying

sounds, playing Atari). Differently to human brain, current technology is not able to

simultaneously solve very different problems at the same time. It would be thus of great
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interest the development of more effective multi-task strategies capable of better mimic

the human brain.

Another challenge for the future is long-life learning. Current systems are first trained

and later tested. The idea of long-life learning is to build a never-ending learning system,

that continues to learn from the experience and progressively improves its performance.

Beyond the other challenges, a major achievement would also be the development of

a kind of ”theory of intelligence” that can better steer the development of intelligent

machines. The research in the field, in fact, is now solely based on empirical attempts,

that are mostly guided by human intuitions. We can compare the current situation of

AI with the first attempts done by the Wright brothers to build a ”flying machine”.

Their approach was only based on a trial-and-error strategy, without any notion about

the physics of aerodynamics, whose knowledge is clearly very helpful to design modern

aircrafts.

2.5 Related Work

This section presents various recent accomplishments in this area. It should be noted

that we discuss only the work which have used the NSL-KDD dataset for their per-

formance benchmarking, therefore, any dataset referred from this point forward should

be considered as NSL-KDD. This allows a more accurate comparison of our work with

other found in literature.

Many machine learning techniques were used for developing IDS. A Studies on each

technique along with their results was discussed clearly in [64]. A number of approaches

based on traditional machine learning, including J48, Naive Bayesian, NB Tree, Random

Forest, Multi-layer Perceptron, Random Tree and Support Vector Machine, have been

proposed and have achieved success for an intrusion detection system.

In [65], the author propose a deep learning approach for intrusion detection using re-

current neural networks (RNN-IDS). and they study the the performance of the model

in binary classification and multiclass classification. The experimental results show that

RNN-IDS is very suitable for modeling a classification model.
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3.1 Introduction

After the theoretical study in the two previous chapter. We will describe the NSL-

KDD dataset, which is widely used as one of the few publicly available data sets for

network-based anomaly detection systems. Therefore we’ll describe the global design of

the proposed approaches.

3.2 The NSL-KDD Data Set

During the last decade the analysis of intrusion detection has become very important,

the researcher focuses on various dataset to improve system accuracy and to reduce false

positive rate based on DAPRA 98 and later the updated version as KDD cup 99 dataset

which shows some statistical issues, it degrades the evaluation of anomaly detection that

affects the performance of the security analysis which leads to the replacement of KDD

dataset to NSL-KDD dataset.

3.2.1 Brief KDD CUP 99 Data-Set Description

KDD’99 data set is prepared by Stolfo et al [66]. and is built based on the data captured

in DARPA’98 IDS evaluation program . DARPA’98 is about 4 gigabytes of compressed

raw (binary) tcpdump data of 7 weeks of network traffic, which can be processed into

about 5 million connection records, each with about 100 bytes. The two weeks of

test data have around 2 million connection records. KDD training dataset consists

of approximately 4,900,000 single connection vectors each of which contains 41 features

and is labeled as either normal or an attack, with exactly one specific attack type.

3.2.2 Dataset Description

The inherent drawbacks in the KDD cup 99 dataset [66] has been revealed by vari-

ous statistical analyses has affected the detection accuracy of many IDS modelled by

researchers. NSL-KDD data set [67] is a refined version of its predecessor.

It contains essential records of the complete KDD data set. There are a collection of

downloadable files at the disposal for the researchers. They are listed in the Table 3.1
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No Name of the file Description

1 KDDTrain+.TXT
The full NSL-KDD train set including attack-type

labels and difficulty level in CSV format

2 KDDTrain+ 20Percent.TXT A 20% subset of the KDDTrain+.txt file

3 KDDTest+.TXT
The full NSL-KDD test set including attack-type

labels and difficulty level in CSV format

4 KDDTest-21.TXT
A subset of the KDDTest+.txt file which does not

include records with difficulty level of 21 out of 21

Table 3.1: List of NSL-KDD dataset files and their description

1. Redundant records are removed to enable the classifiers to produce an un-biased

result.

2. Sufficient number of records is available in the train and test data sets, which is

reasonably rational and enables to execute experiments on the complete set.

3. The number of selected records from each difficult level group is inversely propor-

tional to the percentage of records in the original KDD data set.

3.2.3 Advantages of NSL-KDD

The NSL-KDD data set has the following advantages over the original KDD data set:

• It does not include redundant records in the train set, so the classifiers will not be

biased towards more frequent records.

• There is no duplicate records in the proposed test sets, therefore, the performance

of the learners are not biased by the methods which have better detection rates

on the frequent records.

• The number of selected records from each difficulty level group is inversely pro-

portional to the percentage of records in the original KDD data set. As a result,

the classification rates of distinct machine learning methods vary in a wider range,

which makes it more efficient to have an accurate evaluation of different learning

techniques.
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• The number of records in the train and test sets are reasonable, which makes it

affordable to run the experiments on the complete set without the need to randomly

select a small portion. Consequently, evaluation results of different research works

will be consistent and comparable.

3.2.4 Features Details

In each record there are 41 attributes unfolding different features of the flow and a label

assigned to each either as an attack type or as normal.

The details of the features namely the features name, their description and sample data

are listed in the Tables below. The Table 3.6 contains type information of all the 41

attributes available in the NSL-KDD data set. The 42nd feature contains data about the

various 5 classes of network connection vectors and they are categorized as one normal

class and four attack class. The 4 attack classes are further grouped as DoS, Probe, R2L

and U2R. The description of the attack classes. In NSL-KDD features can be classified

into three groups:

1. Basic features: this category encapsulates all the attributes that can be extracted

from a TCP/IP connection. Most of these features leading to an implicit delay in

detection.

2. Traffic features: this category includes features that are computed with respect

to a window interval and is divided into two groups:

• same host features: examine only the connections in the past 2 seconds

that have the same destination host as the current connection, and calculate

statistics related to protocol behavior, service, etc.

• same service features: examine only the connections in the past 2 seconds

that have the same service as the current connection.

The two aforementioned types of traffic features are called time-based. However,

there are several slow probing attacks that scan the hosts (or ports) using a much

larger time interval than 2 seconds, for example, one in every minute. As a result,

these attacks do not produce intrusion patterns with a time window of 2 seconds.

To solve this problem, the same host and same service features are re-calculated
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but based on the connection window of 100 connections rather than a time window

of 2 seconds. These features are called connection-based traffic features.

3. Content features: unlike most of the DoS and Probing attacks, the R2L and

U2R attacks don’t have any intrusion frequent sequential patterns. This is because

the DoS and Probing attacks involve many connections to some host(s) in a very

short period of time; however the R2L and U2R attacks are embedded in the data

portions of the packets, and normally involves only a single connection. To detect

these kinds of attacks, we need some features to be able to look for suspicious

behavior in the data portion, e.g., number of failed login attempts. These features

are called content features.

No feature name description Sample Data type

1 duration
Length of time duration
of the connection

0 continuous

2 protocol type Protocol used in the connection tcp discrete

3 service Destination network service used ftp data discrete

4 src bytes

Number of data bytes
transferred from
source to destination
in single connection

491 continuous

5 dst bytes

Number of data bytes
transferred from
destination to source
in single connection

0 continuous

6 flag
Status of the connection Normal
or Error

SF discrete

7 land

if source and destination
IP addresses and
port numbers are equal
then, this variable
takes value 1 else 0

0 discrete

8 wrong fragment
Total number of wrong
fragments in this
connection

0 continuous

9 urgent

The number of urgent
packets in this
connection.Urgent
packets are packets
with the urgent
bit activated

0 continuous

Table 3.2: Basic features of individual TCP connections
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No feature name description
Sample

Data
type

10 Hot

Number of hot indicators in the

content such as: entering a system

directory, creating programs and

executing programs

0 continuous

11 Num failed logins Count of failed login attempts 0 discrete

12 Logged in
Login Status :1 if successfully

logged in; 0 otherwise
0 discrete

13 Num compromised
Number of“compromised”

conditions
0 continuous

14 Root shell
1 if root shell is obtained;

0 otherwise
0 discrete

15 Su attempted

1 if “su root” command

attemptedor used

; 0 otherwise

0 discrete

16 Num root

Number of“root” accesses

or number of operations

performed as a root in the

connection

0 discrete

17 Num file creations
Number of file creation

operations in the connection
0 continuous

18 Num shells Number of shell prompts 0 continuous

19 Num access files
Number of operations

on access control files
0 continuous

20 Num outbound cmds

Number of outbound

commands in an ftp

session

0 continuous

21 Is hot login

1 if the login belongs

to the“hot” list i.e.,root

or admin;else 0

0 discrete

22 Is guest login
1 if the login is a

“guest”login; 0 otherwise
0 discrete

Table 3.3: Content features within a connection suggested by domain knowledge
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No. feature name description
Sample

Data
type

23 Count

Number of connections to the same

destination host as the current conn

ection in the past two seconds

2 continuous

24 Srv count

Number of connections to the same

service (port number) as the current

connection in the past two seconds

2 discrete

25 Serror rate

The percentage of connections that

have activated the flag (4) s0, s1,s2

or s3, among the connection saggre

gated in count (23)

0 discrete

26 Srv serror rate

The percentage of connections that

have activated the flag (4) s0, s1,s2

or s3, among the connection saggre

gated insrv count (24)

0 continuous

27 Rerror rate

The percentage of connections that

have activated the flag (4) REJ, am

ong the connection saggregated

in count (23)

0 discrete

28 Srv rerror rate

The percentage of connections that

have activated the flag (4) REJ, am

ong the connection saggregated

insrv count (24)

0 discrete

29 Same srv rate

The percentage of connections that

were to the same service, among

the connection saggregated in

count (23)

1 continuous

30 Diff srv rate

The percentage of connections that

were to different services, among

the connection saggregated in

count (23)

0 continuous

31 Srv diff host rate

The percentage of connections that

were to different destination mach

ines among the connection saggreg

ated in srv count (24)

0 continuous

Table 3.4: Traffic features computed using a two-second time window
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No feature name description
Sample
Data

type

32 Dst host count
Number of connections having
the same destination host IP
address

150 continuous

33
Dst host srv

count
Number of connections having
the same port number

25 continuous

34
Dst host same

srv rate

The percentage of connections
that were to the same service,
among the connection saggreg
ated in dst host count(32)

0.17 continuous

35
Dst host diff

srv rate

The percentage of connections
that were to different services,
among the connection saggreg
ated in dst host count(32)

0.03 continuous

36
Dst host same
src port rate

The percentage of connections
that were to the same source
port, among the connection
saggregated in dst host srv
count (33)

0.17 continuous

37
Dst host srv
diff host rate

The percentage of connections
that were to different destination
machines,among the connection
saggregated in dst host srv c

0 continuous

38
Dst host

serror rate

The percentage of connections
that haveactivated theflag (4) s0,
s1,s2 or s3, among theconnection
saggregated in dst host count(32)

0 continuous

39
Dst host srv
serror rate

The percent of connections
that haveactivated theflag (4)
s0, s1,s2 or s3, among the
connection saggregated in
dst host srv count (33)

0 continuous

40
Dst host

rerror rate

The percentage of connections
that have activated the flag (4)
REJ, among the connection
saggregated in dst host count(32)

0.05 continuous

41
Dst host srv
rerror rate

The percentage of connections
that have activated the flag (4)
REJ, among the connection
saggregated in
dst host srv count (33)

0 continuous

Table 3.5: Host based traffic features in a network connection
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Type Features

Nominal Protocol type(2), Service(3), Flag(4).

Binary

Land(7), logged in(12), root shell(14),

su attempted(15), is host login(21),

is guest login(22).

umeric

Duration(1), src bytes(5), dst bytes(6),

wrong fragment(8), urgent(9), hot(10),

num failed logins(11),

num compromised(13), num root(16),

num file creations(17), num shells(18),

num access files(19),

num outbound cmds(20), count(23),

srv count(24), serror rate(25),

srv serror rate(26), rerror rate(27),

srv rerror rate(28), same srv rate(29),

diff srv rate(30), srv diff host rate(31),

dst host count(32), dst host srv count(33),

dst host same srv rate(34),

dst host diff srv rate(35),

dst host same src port rate(36),

dst host srv diff host rate(37),

dst host serror rate(38),

dst host srv serror rate(39),

dst host rerror rate(40),

dst host srv rerror rate(41).

Table 3.6: Features value type
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3.2.5 Attacks Details

The attack classes present in the NSL-KDD data set are grouped into four categories

[64, 66] :

1. Denial of Service Attack (DoS): Denial of service is an attack category, which

depletes the victim’s resources thereby making it unable to handle legitimate re-

quests e.g. syn flooding. Relevant features: source bytes and percentage of packets

with errors.

2. Probing Attack: Surveillance and other probing attack’s objective is to gain in-

formation about the remote victim e.g. port scanning. Relevant features: duration

of connection and source bytes.

3. User to Root Attack (U2R): unauthorized access to local super user (root)

privileges is an attack type, by which an attacker uses a normal account to login

into a victim system and tries to gain root/administrator privileges by exploiting

some vulnerability in the victim e.g. buffer overflow attacks. Relevant features:

number of file creations and number of shell prompts invoked.

4. Remote to Local Attack (R2L): unauthorized access from a remote machine,

the attacker intrudes into a remote machine and gains local access of the victim

machine. E.g. password guessing Relevant features: Network level features –

duration of connection and service requested and host level features number of

failed login attempts.

The specific types of attacks are classified into four major categories. The Table 3.7

shows this detail.

Attack
Class

Attack Type

DoS
Back, Land, Neptune, Pod, Smurf, Teardrop, Apache2, Udpstorm,
Processtable, Worm (10)

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan,Saint (6)

R2L
Guess Password, Ftp write, Imap, Phf, Multihop, Warezmaster,
Warezclient, Spy, Xlock, Xsnoop, Snmpguess, Snmpgetattack,
Httptunnel, Sendmail, Named (16)

U2R Buffer overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps (7)

Table 3.7: Mapping of attack class with attack type
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3.2.6 Distribution Details

The Table 3.8 shows the distribution of the normal and attack records available in the

various NSL-KDD datasets.

DataSetType
Total No. of

Records
Normal
Class

DoS
Class

Probe
Class

U2R
Class

R2L
Class

KDDTrain+20% 25192
13449 9234 2289 11 209

53.39% 36.65% 9.09% 0.04% 0.83%

KDDTrain+ 125973
67343 45927 11656 52 995

53.46% 36.46 9.25% 0.04% 0.79%

KDDTest+ 22544
9711 7458 2421 200 2754

43.08% 33.08% 10.74% 0.89% 12.22%

KDDTest-21 11850
2152 4342 2402 200 2754

18.16% 36.64% 20.27% 1.69% 23.24%

Table 3.8: Details of normal and attack data in different types of NSL-KDD data-set

Fig 1 and 2 explains about the analysis of NSL-KDD dataset in detail and shows the

number of individual records in four types of attacks for both training and testing.

Figure 3.1: Number of instance in training dataset

Figure 3.2: Number of instance in testing dataset
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3.3 Motivation

Deep learning techniques have enjoyed enormous success in the speech and language

processing community over the past few years [68], beating previous state-of-the-art

approaches. and played played an important role in the fields of computer vision, nat-

ural language processing (NLP), semantic understanding, speech recognition, language

modeling, translation, picture description, and human action recognition [69, 70], among

others.

Figure 3.3: Example of deep learning

In light of the success of deep learning, we have proposed a deep learning approach for

an intrusion detection system using deep neural networks (DNN).

We chose a deep neural network as the classifier in our study as it offers a number of

advantages over alternative classification approaches, including the need for less formal

statistical training, the capability to detect complex non-linear relationships between

predictors and the outcomes, the ability to model the interrelationships among the

predictor variables and the availability of various training algorithms [71]. The superior

performance of deep networks has already been documented in various comparative

empirical studies and contests [72], [73], [26].
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3.4 Proposed Approaches

We propose two models architectures for IDS Binary classification model and multiclass

classification model based in deep neural network the objective of these models is identi-

fying whether network traffic behavior is normal or anomaly in Binary classification , or

a five-category classification problem, identifying whether it is normal or any one of the

other four attack types: Denial of Service (DOS), User to Root (U2R), Probe (Probing)

and Root to Local (R2L).

We apply preprocessing to the (NSL-KDD) dataset, after data preprocessing stage we

feed the data to the DNN for building the model and evaluate the performance of the

model in binary classification and multiclass classification, beside that we present all the

details used to design the network architecture. Forethought Binary classification and

multiclass classification are independent of each other.

The Figure 3.3 show to us the global architecture design and the implementation of the

intrusion detection system based on deep neural network (DNN-IDS).

Figure 3.4: Architecture of the proposed model
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3.4.1 Data Preprocessing

NSL-KDD dataset consists of different data types, the non-numeric values and numeric

values we need to converted non-numeric into numeric in Numericalization stage. Next

bring the dataset into the same range in Normalization . These two steps were performed

for both NSL-KDD train and test datasets see Figure 3.5.

Figure 3.5: Data preprocessing model

• Numericalization:

The Deep neural network uses only numerical values for training and testing.

Hence a preprocessing stage is needed to convert the non-numerical values to

numerical values. Two main tasks in Numericalization are:

1. Converting the non-numerical features in the dataset to numerical values,

such as protocol type, service and flag features, into numeric form. For ex-

ample, the feature protocol type has three types of attributes, (tcp, udp, and

icmp) and its numeric values are encoded as binary vectors (1,0,0), (0,1,0)

and (0,0,1).Similarly, the feature service has 70 types of attributes, and the

feature flag has 11 types of attributes. Continuing in this way, 41-dimensional

features map into 122-dimensional features after transformation, using One-

HotEncoding which is a representation of categorical variables as binary vec-

tors.
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2. Convert the attack types at the end of the dataset into its numeric categories.

1 is assigned to normal data. 2, 3, 4 and 5 are assigned to DoS, Probe, R2L

and U2R attack types respectively.

• Normalization:

Normalization reduces the size of the dataset and more importantly reduces the

response time of detection engine by a large extent. Because of the features of

the NSL-KDD dataset have either discrete or continuous values, the ranges of the

features value were different and this made them incomparable. As a result, the

features were normalized by using min-max normalization (Equation 3.1) to map

all the different values for each feature to [0, 1] range.

xi =
xi −Min

Max−Min
(3.1)

In addition, there is one attribute (num outbound cmds) in the dataset whose value

is always 0 for all the records in the training and test data (Table 3-9). We eliminated this

attribute from the dataset. The total number of attributes become 121 after performing

the above mentioned steps.

DataSetType
Total No. of

Records num outbound cmds

KDDTrain+ 125973 0

KDDTest+ 22544 0

Table 3.9: Detail of num outbound cmds attribute in NSL-KDD dataset

3.4.2 Models Architectures

In general a neural network consist of an input layer, an output layer, and one ore more

hidden layers, the network is called a deep network. Each layer is composed of multiple

neurons, and edges that connect neurons between adjacent layers have weights. The

values of neurons (except the neurons in the input layer) and the weights are trained

during a training phase.



Intrusion Detection Using Deep Learning 58

3.4.2.1 Binary Classification

Binary classification, or Two-class classification, may be the most widely applied kind of

machine learning problem. This part is done be using a binary version of the NSL-KDD

dataset. This version contains just two different class. So the attack column does only

contain the values (Normal, Anomaly). As well we build a model to classify intrusion

as normal or anomaly. The following illustrations show to us the step used to build a

binary classification model.

Figure 3.6: The overall architecture of DNN-IDS model in binary classification

Network Structure for Binary Classification The neural network was designed

using Keras. Keras is a neural networks Application Programming Interface (API)

written in Python, it runs on top of either TensorFlow, Theano or Microsoft Cognitive

Toolkit (CNTK), which are software libraries for machine learning. The network was

designed by stacking network layers on top of each other, as each layer type has its own

function in Keras. Our network, including an input layer, three hidden layers and an

output layer, is as follows:

layers Input H1 H2 H3 Output

Num of neurons 121 256 114 78 1

Table 3.10: The number of neurons in each layer in binary classification
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Hyperparameters for Binary Classification There are a large number of hy-

perparameters which have to be defined before training a network. There are certain

parameters required for setting up a network and training it. Table 3.11 shows hyper-

parameter settings which have been used throughout all experiments.

Hyperparameter Setting

Activation function for neurons ReLU

Activation function for last layer Sigmoid

Type of training Supervised fine-tuning

Weight initialization Glorot uniform

Dropout rate 20%

Optimizer RMSprop

Initial learning rate 0.001

Batch size 128

Weight regularizer None

Lost function Binary crossentropy error function

Table 3.11: Hyperparameter settings in binary classification

Because we are attacking a binary-classification problem, we will end the network with

a single unit and a sigmoid activation. This unit will encode the probability that the

network is looking at one class or the other.

3.4.2.2 Multiclass Classification

Multiclass classification is when the output of the prediction done by the algorithms can

be more then just two classes. In this case, we have build a network to classify intrusion

into 5 mutually exclusive classes, the attack column contain five different attacks (DoS,

R2L, U2R, Prop, Normal). Because we have many classes, this problem is considered

as an instance of multiclass classification, and because each data point should classified

into only one category, the problem is more specifically an instance of single-label,

multiclass classification. The following illustrations show to us the step used to build

a single-label multiclass classification model.
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Figure 3.7: The overall architecture of DNN-IDS model in multiclass classification

Network Structure for Multiclass Classification This topic-classification prob-

lem looks similar to the previous binary classification problem: in both cases, we’re

trying to classify intrusion. But there is a new constraint here: the number of output

classes has gone from 1 to 5. The dimensionality of the output space is much larger. In

network like that we have been using, an input layer, three hidden layers and an output

layer, is as follows:

layers Input H1 H2 H3 Output

Num of neurons 121 2048 1024 512 5

Table 3.12: The number of neurons in each layer in multiclass classification

Hyperparameters for Multiclass Classification The following Table 3.12 shows

hyperparameter settings which have been used throughout all experiments.
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Hyperparameter Setting

Activation function for neurons ReLU

Activation function for last layer Softmax

Type of training Supervised fine-tuning

Weight initialization Glorot uniform

Dropout rate 50%, 20%

Optimizer RMSprop

Initial learning rate 0.0001

Batch size 256

Weight regularizer None

Loss function Categorical Crossentropy function

Table 3.13: Hyperparameter settings in multiclass classification

Because we are attacking a multiclass classification problem, we will end the network

with a 5 units and a softmax activation. It means the network will output a probability

distribution over the 5 different output classes, for every input sample, the network will

produce a 5-dimensional output vector, where outputi is the probability that the sample

belongs to class i. The 5 scores will sum to 1.

3.4.3 Training, Validation and Test Data Sets

Machine learning models need to be trained, selected, and tested on independent data

sets to avoid overfitting and assure that the model will generalize to unseen data. Hold-

out validation, partitioning the data into a training, validation, and test set, is the

standard for deep neural networks. The training set is used to learn models with differ-

ent hyperparameters, which are then assessed on the validation set. The model with best

performance, e.g. prediction accuracy or mean squared error, is selected, and further

evaluated on the test set to quantify the performance on unseen data and for comparison

to other methods.

Typically we use the data set (KDDTrain+) for training the model and the rest (KD-

DTest+, KDDTest-21 ) for model testing. moreover we use about 60% of (KDDTrain+)

for training and the remaining 40% for validation in binary classification as well as

multiclass classification.
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3.4.4 Performance Parameters of IDS

Performance of IDS is measured by various parameters like accuracy, precision, recall,

and Fscore. These parameters are used to evaluate the IDS and compare it with other

IDS [74]. To calculate the parameters, confusion matrix which is shown in Table-1.1

is used. On the basis of this confusion matrix and formulas shown bellow performance

parameters are calculated.

Actual
Predicted

Attack Normal

Attack
True Positive

(TP)

False Negative

(FN)

Normal
False Positive

(FP)

True Negative

(TN)

Table 3.14: Confusion matrix

As per [75], Accuracy, Precision, Recall and Fscore can be calculated as follows:

• Accuracy: the fraction of all correctly predicted among the total amount of

predicted shown in (3-2):

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

• Precision: is the fraction of true positives (TP) among the true and false positives

shown in (3-3):

Precision =
TP

TP + FP
(3.3)

• Recall or True Positive Rate (TPR): the fraction of true positives (TP) among

the true positives and false negatives (TP + FN), as shown in (3.4):

Recall =
TP

TP + FN
(3.4)
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• The F-score: is a metric to evaluate the accuracy of the predictions (Equation

3.5). For every class, an F-score will be determined. The F-score combines preci-

sion (Equation 3.3) and recall (Equation 3.4) featuring a score of 1 as the perfect

score:

Fscore =
2 ∗ precision ∗ recall
precision+ recall

(3.5)

3.5 Conclusion

We have proposed a network intrusion detection system based on deep neural network.

Also we use a Deep learning, on NSL-KDD a benchmark dataset for network intrusion.

In the next chapter we present the performance of the model in binary classification

and multiclass classification and compare it with a previous work. Compared metrics

include the accuracy, precision, recall, and f-measure values.

.



Chapter 4

Results and Discussions

64
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4.1 Introduction

In this chapter all of the results from the experiments will be presented. The results

will be presented using different kinds of plots, bar charts, tables and some text to

explain the different presentations. This chapter should give a overview of how the

different experiments performed. The comparison of performance of DNN-IDS with

other machine learning methods. The results from the different experiments will be

gone through and explained thoroughly.

The objective in this chapter is to present the performance of the model in binary

classification and multiclass classification.

4.2 Experimental Environment

In this project, we have used Keras one of the most famous library used in production of

deep learning and has also been adopted by researchers at large scientific organizations,

in particular CERN and NASA [76].

Figure 4.1: Keras

Keras is a high-level neural networks API, written in Python and capable of running on

top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast

experimentation. Being able to go from idea to result with the least possible delay is

key to doing good research in deep-learning [76].

Figure 4.2: Software and hardware stack
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The experiment is performed on a personal notebook TOSHIBA SATELLITE PSCG8E

which has a configuration as fallow:

CPU: Intel(R) Core(TM) i3- 3120M @ 2.50 GHz

Cores: 04

Memory: 06 GiB

OS: Ubuntu 16.04 LTS 64-bit

Table 4.1: Physical machine specifications

As can be seen from Table 4.1, the notebook has CPU power due to it’s 4 cores and

each and every one of them have 2.50 GHz. Thus the computation or power needed to

train and test the deep neural network should not be a problem.

The Operating System(OS) running on the notebook is Ubuntu 16.04 LTS, which Keras

framework should work good together with and that should not be a problem.

The notebook also has enough memory available, it has a total of 8 GiB. Which is enough

to run and do the processes that needs to be run, in order to do what is intended to do

in this project.

4.3 Results and Discussions

4.3.1 Deep Neural Network Binary Classification

4.3.1.1 Evaluation Based on Training data

Figure 4.3 and 4.4 show the training and validation results, the curves indicate there

is no overfitting, Also the training curves are closely tracking the validation curves.

Additionally The training accuracy increases linearly over time, until it reaches 99.81%,

whereas the validation accuracy reach 99.56%. The validation loss reaches its minimum

then stalls, whereas the training loss keeps decreasing linearly until it reaches nearly 0.
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Figure 4.3: Training and validation accuracy in binary classification

Figure 4.4: Training and validation loss in binary classification

4.3.1.2 Evaluation Based on Test Data

Actual
Predicted

Attack Normal

Attack 10062 2771

Normal 756 8995

Table 4.2: Confusion matrix binary classification on KDDTest+

Table 4.2 gives a very clear picture on how accurate the DNN model have performed.

True positive and True negative values are very high, which indicates that the model
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did a good job classifying the test data.

Accuracy Precision Recall F1 score

KDDTest+ 0.8435 0.7636 0.9221 0.8354

KDDTest-21 0.7032 0.3364 0.6524 0.4439

Table 4.3: Results of the DNN-IDS in binary classification

Table 4.3 show the accuracy, precision, recall and f1 score with KDDTest+ and KDDTest-

21, As observed that DNN perform very well for binary classification and achieved

84.35% accuracy rate in the KDDTest+ and 70.32% in the KDDTest-21.

Figure 4.5: Performance of DNN-IDS and the other models in the binary classification

The results for the proposed DNN-IDS approach and state-of-the-art approaches are

presented in Figure 4.5. We compared the results of our model against state-of-the-art

approaches which used the same datasets (NSL-KDD datasets). In [64], the authors have

shown the results obtained by J48 (decision tree), Naive Bayesian, NB Tree, Random

Forest, Multi-layer Perceptron, Random Tree and Support Vector Machine the best

accuracy rate achieved was 82.02% with NB-Tree and the RNN model also give 81.29%

in [65], which is the recent literature about deep learning algorithms applied in the
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filed of intrusion detection. Obviously, The accuracy achieved using DNN for binary

classification outperforms many of the previous work results.

4.3.2 Deep Neural Network Multiclass Classification

4.3.2.1 Evaluation Based on Training data

Figure 4.6: Training and validation accuracy in multiclass classification

Figure 4.7: Training and validation loss in multiclass classification

From figure 4.5 and 4.6 we observe non difference between training and validation which

mean the model is not overfitted. Beside The training accuracy increases linearly over

time, until it reaches 99.46%, whereas the validation accuracy reach 99.51%, Also The
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validation loss reaches its minimum then stalls, whereas the training loss keeps decreasing

linearly until it reaches nearly 0.

4.3.2.2 Evaluation Based on Test Data

Normal DoS Probe R2L U2R

Normal 9427 65 217 0 2

DoS 1114 6314 30 0 0

Probe 510 214 1684 13 0

R2L 2453 1 6 291 3

U2R 175 0 4 4 17

Table 4.4: The confusion matrix for DNN-IDS multiclass classification

Table 4.4 displays is how many samples the model classified correctly and incorrectly.

The columns are aligned in a way that shows the correctly classified samples in the

corresponding columns. So the column Normal which is the first both horizontal and

vertical, way to the left in the table, shows the correctly predicted Normal samples. The

column that is talked about is the one containing the number 9427. The others in the

same row horizontally are the ones that should have been classified as Normal, but were

not.

Precision Recall F1-score support

Normal 0.69 0.97 0.81 9711

DoS 0.96 0.85 0.90 7458

Probe 0.87 0.70 0.77 2421

R2L 0.94 0.11 0.19 2754

U2R 0.77 0.09 0.15 200

Avg/Tottal 0.83 0.79 0.75 22544

Accuracy 78.65

Table 4.5: Results of the DNN-IDS in Multiclass classification in KDDTest+

As we observe From table 4.5 and 4.6 they give us the accuracy, recall, precision, and f1

score for each class, Also we notice that DNN perform very well for multiclass classifi-

cation and achieved 78.65% accuracy rate in the KDDTest+ but did not generalize well

in the KDDTest-21 achieved only 59.51% .
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Precision Recall F1-score support

Normal 0.31 0.87 0.45 2152

DoS 0.92 0.74 0.82 4342

Probe 0.87 0.69 0.77 2402

R2L 0.95 0.11 0.19 2754

U2R 0.77 0.09 0.15 200

Avg/Tottal 0.80 0.60 0.59 11850

Accuracy 59.51

Table 4.6: Results of the DNN-IDS in multiclass classification in KDDTest-21

Figure 4.8: Performance of DNN-IDS and the other models in the multiclass classifi-
cation

The experiment shows that the accuracy of the model is 78.65% for the test set KD-

DTest+ and 59.51% for KDDTest-21, which is better than those obtained using J48,

naive bayes, random forest, multi-layer perceptron and the other classification algo-

rithms [64]. But it is not better than RNN which obtained 81.29% in KDDTest+ and

64.51% in KDDTest-21 [65].
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4.4 Conclusion

The results presented in this chapter were very encouraging and the experimental re-

sults based on the benchmark network intrusion dataset NSL-KDD to evaluate anomaly

detection accuracy, show that for both binary and multiclass classification, the intrusion

detection model DNN-IDS preform well in KDDTest+ and KDDTest-21 and we get high

accuracy rate than other machine learning methods.



Conclusion

The main goal of this work was to investigate the effectiveness of machine learning

techniques on detecting malicious traffic and classify it into the corresponding classes of

attacks. In our study, we utilized a deep learning technique called deep neural network

to build an effective and flexible model for NIDS.

We used the popular benchmark network intrusion dataset NSL-KDD to validate and

evaluate the accuracy of our proposal. The NSL-KDD dataset contains various indica-

tors for multiple attacks blended in with normal traffic. There are labels linked to each

sample, which makes it possible for the model to differentiate between patterns of attacks

compared to normal traffic. We have provided tow implementation of our model using

both binary classification and multiclass classification. This was done to observe how

well our proposal performed when exposed to binary classification and multiclass clas-

sification. We have shown that our DNN-IDS model has high accuracy in both binary

and multiclass classification and less false-alarm rates compared with state-of-the-art

machine learning methods.

The developed intrusion detection system (DNN-IDS) was intended to be used in a real

network environment. However, we did not manage to realize that due to the time

pressure.

As concluding remark to the project we may say that it has been truly exciting and

fascinating working on this project. It is an open project covering a wide range of

subjects and there are a lot of extension possibilities and challenges. One of the main

challenging directions is the design of a solution that does not rely on a pre-prepared

data such as NSL-KDD and try to work directly on raw traffic packets and detects

malicious ones.
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